66
TOPIC 6 Structural Dynamics III Analysis of Elastic MDOF Systems

Damping and Modal Analysis

Embed Size (px)

DESCRIPTION

Damping and Modal Analysis

Citation preview

TOPIC 6 Structural Dynamics IIIAnalysis of Elastic MDOF Systems

TOPIC 6 Structural Dynamics IIIAnalysis of Elastic MDOF Systems

• Equations of Motion for MDOF Systems

• Uncoupling of Equations through use of Natural Mode Shapes

• Solution of Uncoupled Equations

• Recombination of Computed Response

• Modal Response Spectrum Analysis (By Example)

• Use of Reduced Number of Modes

ux

uyrz

Majority of Massis in Floors

Typical Nodal DOF

Motion isPredominantlyLateral

Planar Frame with 36 Degrees of Freedom

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Planar Frame with 36 Static Degrees of Freedombut with only THREE Dynamic DOF

u1

u2

u3

f11

f21

f31

V1=1 kip

fff

11

21

31

• •• •• •

⎢⎢⎢

⎥⎥⎥

Development of Flexibility Matrix

Development of Flexibility Matrix

f12

f22

f32

V2=1 kip

• •• •• •

⎢⎢⎢

⎥⎥⎥

fff

12

22

32

Development of Flexibility Matrix

f13

f23

f33

V3=1 kip • •• •• •

⎢⎢⎢

⎥⎥⎥

fff

13

23

33

Ufff

Vfff

Vfff

V=⎧

⎨⎪

⎩⎪

⎬⎪

⎭⎪

+⎧

⎨⎪

⎩⎪

⎬⎪

⎭⎪

+⎧

⎨⎪

⎩⎪

⎬⎪

⎭⎪

11

21

31

1

12

22

33

2

13

23

33

3

Uf f ff f ff f f

VVV

=⎡

⎢⎢⎢

⎥⎥⎥

⎨⎪

⎩⎪

⎬⎪

⎭⎪

11 12 13

21 22 23

31 32 33

1

2

3

FV U=

KU V=K F= −1

Concept of Linear Combination of Shapes (Flexibility)

m1

m3

m2

k1

k2

k3

V1(t), u1(t)

V2(t), u2(t)

V3(t), u3(t)

Kk kk k k k

k k k=

−− + −

− +

⎢⎢⎢

⎥⎥⎥

1 1

1 1 2 2

2 2 3

0

0

Mm

mm

=⎡

⎢⎢⎢

⎥⎥⎥

1

2

3

0 00 00 0

U tu tu tu t

( )( )( )( )

=⎧

⎨⎪

⎩⎪

⎬⎪

⎭⎪

1

2

3

V tV tV tV t

( )( )( )( )

=⎧

⎨⎪

⎩⎪

⎬⎪

⎭⎪

1

2

3

Idealized Structural Property Matrices

Note: Damping to be shown later

K KK K

rr

Fn n n m

m n m m

n

m

n, ,

, ,

LNM

OQPLNMOQP= LNMOQP

K r K r Fn n n n m m n, ,+ =

0

K r K rm n n m m m, ,+ = 0

Static Condensation

Massless DOF

DOF with mass

2

1

Condensed Stiffness Matrix

Static Condensation(continued)

r K K r

K r K K K r F

K K K K r F

Kr F

K K K K K

m m m m n n

n n n n m m m m n n n

n n n m m m m n n n

n n

n n n m m m m n

= −

− =

− =

=

= −

, ,

, , , ,

, , , ,

, , , ,

1

1

1

1

n s

2

1

Rearrange

Plug into

Simplify

m

m

m

u t

u t

u t

k k

k k k k

k k k

u t

u t

u t

V t

V t

V t

1

2

3

1

2

3

1 1

1 1 2 2

2 2 3

1

2

3

1

2

3

0 0

0 0

0 0

0

0

⎢⎢⎢

⎥⎥⎥

⎨⎪

⎩⎪

⎬⎪

⎭⎪+

− + −

− +

⎢⎢⎢

⎥⎥⎥

⎨⎪

⎩⎪

⎬⎪

⎭⎪=

⎨⎪

⎩⎪

⎬⎪

⎭⎪

( )

( )

( )

( )

( )

( )

( )

( )

( )

MU t KU t V t( ) ( ) ( )+ =

m u t k u t k u t V tm u t k u t k u t k u t k u t V tm u t k u t k u t k u t V t

1 1 1 1 1 2 1

2 2 1 1 1 2 2 2 2 3 2

3 3 2 2 2 3 3 3 3

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

+ − =− + + − =− + + =

Coupled Equations of Motion for Undamped Forced Vibration

DOF 1

DOF 2

DOF 3

Mu t Ku t( ) ( )+ = 0

Assume u t t( ) sin= φ ω

K Mφ ω φ− =2 0Then has three (n) solutions:

φϕϕϕ

ω1

11

21

31

1=⎧

⎨⎪

⎩⎪

⎬⎪

⎭⎪

, φϕϕϕ

ω2

12

22

32

2=⎧

⎨⎪

⎩⎪

⎬⎪

⎭⎪

, φϕϕϕ

ω3

13

23

33

3=⎧

⎨⎪

⎩⎪

⎬⎪

⎭⎪

,

Natural Mode Shape Natural Frequency

Solutions for System in Undamped Free Vibration

( ) sinu t t= −ω φ ω2

K Mφ ω φ= 2 For a SINGLE Mode

K MΦ ΦΩ= 2 For ALL Modes

[ ]Φ = φ φ φ1 2 3Where:

Ω212

22

32

=

⎢⎢⎢

⎥⎥⎥

ωω

ω

Solutions for System in Undamped Free Vibration

Note: Mode shape has arbitrary scale. UsuallyΦ ΦT M I=

ϕ1 1 0i = .or

MODE 1 MODE 3MODE 2

ϕ11

ϕ21

ϕ31 ϕ32

ϕ22

ϕ12

ϕ33

ϕ23

ϕ13

Mode Shapes for Idealized 3-Story Frame

U Y Y Y=

⎨⎪

⎩⎪

⎬⎪

⎭⎪

+

⎨⎪

⎩⎪

⎬⎪

⎭⎪

+

⎨⎪

⎩⎪

⎬⎪

⎭⎪

φ

φ

φ

φ

φ

φ

φ

φ

φ

11

21

31

1

12

22

33

2

13

23

33

3U

Y

Y

Y

=

⎢⎢⎢

⎥⎥⎥

⎨⎪

⎩⎪

⎬⎪

⎭⎪

φ φ φ

φ φ φ

φ φ φ

11 12 13

21 22 23

31 32 33

1

2

3

U Y= Φ

KU V=

Concept of Linear Combination of Mode Shapes(Change of Coordinates)

K Y VΦ =Φ Φ ΦT TK Y V=

Mode Shape

Modal Coordinate

[ ]Φ = φ φ φ1 2 3

Φ ΦT Kk

kk

=

⎢⎢⎢

⎥⎥⎥

1

2

3

*

*

*

Φ ΦT Mm

mm

=

⎢⎢⎢

⎥⎥⎥

1

2

3

*

*

*

Φ ΦTCc

cc

=

⎢⎢⎢

⎥⎥⎥

1

2

3

*

*

*

Generalized Mass

Generalized Damping

Generalized Stiffness

Orthogonality Conditions

ΦTV tV tV tV t

( )( )( )( )

*

*

*

=

⎨⎪

⎩⎪

⎬⎪

⎭⎪

1

2

3

Generalized Force

Mu Cu Ku V t( )+ + =

yu Φ=M y C y K y V tΦ Φ Φ ( )+ + =

Φ Φ Φ Φ Φ Φ ΦT T T TM y C y K y V t( )+ + =

mm

m

yyy

cc

c

yyy

kk

k

yyy

V tV tV t

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

*

*

*

*

*

*

*

*

*

*

*

*

( )( )( )

⎢⎢⎢

⎥⎥⎥

⎨⎪

⎩⎪

⎬⎪

⎭⎪+

⎢⎢⎢

⎥⎥⎥

⎨⎪

⎩⎪

⎬⎪

⎭⎪+

⎢⎢⎢

⎥⎥⎥

⎨⎪

⎩⎪

⎬⎪

⎭⎪=

⎨⎪

⎩⎪

⎬⎪

⎭⎪

MDOF Equation of Motion:

Transformation of Coordinates:

Substitution:

Premultiply by ΦT:

Using Orthogonality Conditions: Uncoupled Equations of Motion are:

Development of Uncoupled Equations of Motion

ug ,ur 1

⎪⎭

⎪⎬

⎪⎩

⎪⎨

⎧+

⎪⎭

⎪⎬

⎪⎩

⎪⎨

=⎪⎭

⎪⎬

⎪⎩

⎪⎨

+++

=

)()()(

)(0.10.10.1

)()()()()()(

)(

3,

2,

1,

3,

2,

1,

tututu

MtuM

tutututututu

MtF

R

R

R

g

Rg

Rg

Rg

I

Move to RHS as )()( tuMRtVgEFF

−=

Earthquake “Loading” for MDOF System

)()(* tuMRtVg

TΦ−=

⎪⎭

⎪⎬

⎪⎩

⎪⎨

111

=R

m1=2

m2=3

m3=1u1

u2

u3

M =+⎡

⎢⎢⎢

⎥⎥⎥

2 13

1 ⎪⎭

⎪⎬

⎪⎩

⎪⎨

011

=R

u1

u2

u3

m1=2

m2=3

m3=1 M =⎡

⎢⎢⎢

⎥⎥⎥

23

1

Modal Earthquake Loading

( )u tg

( )u tg

m y c y k y V t1 1 1 1 1 1 1* * * * ( )+ + =

m y c y k y V t3 3 3 3 3 3 3* * * * ( )+ + =

m y c y k y V t2 2 2 2 2 2 2* * * * ( )+ + =

( ) /* *y y y V t m1 1 1 1 12

1 1 12+ + =ξ ω ω

( ) /* *y y y V t m2 2 2 2 22

2 2 22+ + =ξ ω ω

( ) /* *y y y V t m3 3 3 3 32

3 3 32+ + =ξ ω ω

Simplify by Dividing Through by m* and defining ξωi

i

i i

cm

=*

*2

Development of Uncoupled Equations of Motion(Explicit Form)

MODE 1

MODE 2

MODE 3

MODE 1

MODE 2

MODE 3

Definition of Modal Participation Factor

Typical Modal Equation:

( )*

*y w y w y V tmi i i i i ii

i

+ + =2 2ξ

recall V t Mr v ti iT

g*( ) ( )= −φ

Right hand side = −φ i

T

ig

Mrm

v t* ( )

Modal Participation Factor Pi

Concept of Effective Modal Mass

For each Mode i M P mi i i= 2 *

In Previous Development, We have Assumed:

Φ ΦTCc

cc

=

⎢⎢⎢

⎥⎥⎥

1

2

3

*

*

*

• Rayleigh “Proportional Damping”• Wilson “Discrete Modal Damping”

Development of a Modal Damping Matrix

Two Methods Described Herein:

MASSPROPORTIONALDAMPER

STIFFNESSPROPORTIONALDAMPER

C M K= +α β

Rayleigh Proportional Damping

C M K= +α β

For Modal Equations to Be Uncoupled:

2ω ξ φ φn n nT

nC=

Using Orthogonality Conditions:

2 2ω ξ α βωn n n= +

ξω

α ω βnn

n= +1

2 2

Rayleigh Proportional Damping

Φ ΦT M I=Assumes

Mode ω1 4.942 14.63 25.94 39.25 52.8

Structural Frequencies

Rayleigh Proportional Damping (Example)

0.00

0.05

0.10

0.15

0 20 40 60Frequency, Radians/Sec.

Mod

al D

ampi

ng R

atio

MASSSTIFFNESSTOTAL

TYPEα = 0.41487β = 0.00324

5% Critical in Modes 1 and 3

Modes α β1 & 2 .36892 0.005131 & 3 .41487 0.003241 & 4 .43871 0.002271 & 5 .45174 0.00173

Proportionality Factors (5% each indicated mode)

Rayleigh Proportional Damping (Example)5% Damping in Modes 1 & 2, 1 & 3, 1 & 4, or 1 & 5

0.00

0.05

0.10

0.15

0 20 40 60Fequency, Radians/sec

Mod

al D

ampi

ng R

atio

1,21,31,41,5

MODES

MASSPROPORTIONALDAMPER

STIFFNESSPROPORTIONALDAMPER

C M K= +α β

Rayleigh Proportional Damping

Wilson Damping

Directly Specify Modal Damping Values ξi*

Φ ΦTCc

cc

mm

m=

⎢⎢⎢

⎥⎥⎥=

⎢⎢⎢

⎥⎥⎥

1

2

3

1 1 1

2 2 2

3 3 3

22

2

*

*

*

* *

* *

* *

ω ξω ξ

ω ξ

Φ ΦT

n n

n n

C c= •••

L

N

MMMMMM

O

Q

PPPPPP

=

− −

22

22

1 1

2 2

1 1

ξ ωξ ω

ξ ωξ ω

( )Φ ΦT c C− − =

1 1

C M Mi i iT

ii

n

=⎡

⎣⎢

⎦⎥

=∑2

1

ξω φ φ

FORMATION OF EXPLICIT DAMPING MATRIXFROM “WILSON” MODAL DAMPING

5 5 5

0

10

0

2

4

6

8

10

12

4.94 14.57 25.9 39.2 52.8

Frequency, Radians per second

Mod

al D

ampi

ng R

atio

Wilson Damping (Example)5% Damping in Modes 1 and 2, 310% in Mode 5, Zero in Mode 4

Wilson Damping (Example)5% Damping in all Modes

5 5 5 5 5

0

2

4

6

8

10

12

4.94 14.57 25.9 39.2 52.8

Frequency, Radians per second

Mod

al D

ampi

ng R

atio

Solution of MDOF Equations of Motion

• Explicit (Step by Step) Integration of Coupled Equations

• Explicit Integration of FULL SET of Uncoupled Equations

• Explicit Integration of PARTIAL SET of Uncoupled Equations

• Modal Response Spectrum Analysis

Time, t

Forc

e, V

(t)

t1 t3t2t0

Vt2

Vt1 1δ

Time, τ

δ =−−

V Vt tt t2 2

2 1

Computed Response for Piecewise Linear Loading

EXAMPLE of MDOF Response of Structure Responding to1940 El Centro Earthquake

k3=180 k/in

u1(t)

u2(t)

u3(t)

k1=60 k/in

k2=120 k/in

m1=1.0 k-s2/in

m2=1.5 k-s2/in

m3=2.0 k-s2/in

Assume WilsonDamping with 5%critical in each mode.

N-S Component of 1940 El CentroEarthquake. Maximum acceleration = 0.35 g

M =⎡

⎢⎢⎢

⎥⎥⎥

−10

152 0

..

.kip s / in2

k3=180 k/in

u1(t)

u2(t)

u3(t)

k1=60 k/in

k2=120 k/in

m1=1.0 k-s2/in

m2=1.5 k-s2/in

m3=2.0 k-s2/in

K =−

− −−

⎢⎢⎢

⎥⎥⎥

60 60 060 180 1200 120 300

kip / in

Form Property Matrices:

Example (Continued)

Ω2 2

21096 6

212 4=⎡

⎢⎢⎢

⎥⎥⎥

..

.sec

k3=180 k/in

u1(t)

u2(t)

u3(t)

k1=60 k/in

k2=120 k/in

m1=1.0 k-s2/in

m2=1.5 k-s2/in

m3=2.0 k-s2/in

Φ = − −−

⎢⎢⎢

⎥⎥⎥

1000 1000 10000 644 0 601 2 570 300 0 676 2 47

. . .

. . .

. . .

K MΦ ΦΩ= 2

Solve Eigenvalue Problem:

Example (Continued)

Normalization of Modes using Φ ΦT M I=

vs

⎥⎥⎥

⎢⎢⎢

−−−=Φ

514.0431.0223.0534.0384.0478.0

208.0638.0749.0

⎥⎥⎥

⎢⎢⎢

−−−

47.2676.0300.057.2601.0644.0

000.1000.1000.1

MODE 1 MODE 2 MODE 3

T=1.37 sec T=0.639 sec T=0.431 sec

Example (Continued)Mode Shapes and Periods of Vibration

ω=4.58 rad/sec ω=9.83 rad/sec ω=14.57 rad/sec

k3=180 k/in

u1(t)

u2(t)

u3(t)

k1=60 k/in

k2=120 k/in

m1=1.0 k-s2/in

m2=1.5 k-s2/in

m3=2.0 k-s2/in

M MT*

..

.sec /= =

⎢⎢⎢

⎥⎥⎥

−Φ Φ1801

2 4552310

2kip in

ωn =⎧

⎨⎪

⎩⎪

⎬⎪

⎭⎪

4 589 83

14 57

.

..

/ secrad

Tn =⎧

⎨⎪

⎩⎪

⎬⎪

⎭⎪

1370 6390 431

...

sec

Compute Generalized Mass:

Example (Continued)

k3=180 k/in

u1(t)

u2(t)

u3(t)

k1=60 k/in

k2=120 k/in

m1=1.0 k-s2/in

m2=1.5 k-s2/in

m3=2.0 k-s2/in

Compute Generalized Loading:

)()(* tvMRtVg

TΦ−=

V v tn g*

..

.( )= −

⎨⎪

⎩⎪

⎬⎪

⎭⎪

2 5661254

2 080

Example (Continued)

( ) /* *y y y V t m1 1 1 1 12

1 1 12+ + =ξ ω ω

( ) /* *y y y V t m2 2 2 2 22

2 2 22+ + =ξ ω ω

( ) /* *y y y V t m3 3 3 3 32

3 3 32+ + =ξ ω ω

k3=180 k/in

u1(t)

u2(t)

u3(t)

k1=60 k/in

k2=120 k/in

m1=1.0 k-s2/in

m2=1.5 k-s2/in

m3=2.0 k-s2/in. . . ( )y y y v tg1 1 10 458 21 0 1 425+ + =

. . . ( )y y y v tg2 2 20 983 96 6 0 511+ + = −

. . . ( )y y y v tg3 3 31 457 212 4 0 090+ + =

Write Uncoupled (Modal) Equations of Motion:

Example (Continued)

Modal Participation Factors

14250 511

0 090

..

.−

19110 799

0 435

..

.−

ModeModeMode

123

Modal Scaling φ i , .1 10= φ φiT

iM = 10.

Modal Participation Factors

142510000 644 1911

0 7440 4800 223

... .

.

.

.

RS|T|

UV|W|=RS|T|

UV|W|

using usingφ1 1 1, = φ φ1 1 1T M =

0.300

Effective Modal Mass

M P mn n n= 2Mode 1Mode 2Mode 3

3 66 81 810 64 14 950 20 5 100%

.

.

.

Accum%

4.50 100%

%mn

( ) /* *y y y V t m1 1 1 1 12

1 1 12+ + =ξ ω ω

1 00 0 458 21 0 1 4251 1 1. . . . ( )y y y v tg+ + =

M = 1.00 kip-sec2/in

C = 0.458 kip-sec/in

K1 = 21.0 kips/inch

Scale Ground Acceleration by Factor 1.425

Example (Continued)Solving Modal Equation via NONLIN:

For MODE 1:

MODE 1

Example (Continued)

MODE 2

MODE 3

-2.00

-1.00

0.00

1.00

2.00

0 1 2 3 4 5 6 7 8 9 10 11 12

MODAL Displacement Time Histories (From NONLIN)

-6.00

-3.00

0.00

3.00

6.00

0 1 2 3 4 5 6 7 8 9 10 11 12

-0.20

-0.10

0.00

0.10

0.20

0 1 2 3 4 5 6 7 8 9 10 11 12

Time, Seconds

T=1.37

T=0.64

T=0.43

Maxima

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10 12

Time, Seconds

Mod

al D

ispl

acem

ent,

Inch

es

MODE 1MODE 2MODE 3

MODAL Response Time Histories:

Example (Continued)

-6-4-20246

0 1 2 3 4 5 6 7 8 9 10 11 12

-6-4-20246

0 1 2 3 4 5 6 7 8 9 10 11 12

Time, Seconds

u1(t)

u2(t)

u3(t)

=0.300 x MODE 1 - 0.676 x MODE 2 + 2.47 x MODE 3

Example (Continued)Compute Story Displacement Time-Histories:

-6-4-20246

0 1 2 3 4 5 6 7 8 9 10 11 12

u t y t( ) ( )= Φ

=k2[u2(t)-u3(t)]

Example (Continued)

Compute Story Shear Time-Histories:

-400-200

0200400

0 1 2 3 4 5 6 7 8 9 10 11 12

-400-200

0200400

0 1 2 3 4 5 6 7 8 9 10 11 12

-400-200

0200400

0 1 2 3 4 5 6 7 8 9 10 11 12

Time, Seconds

u2(t)

u3(t)k2=120 k/in

u1(t)

134.8 k

62.1 k

23.5 k

5.11”

2.86”

1.22”

134.8

196.9

220.4

1348

3317

5521

0

Displacements and Forces at time of Maximum Displacementt = 6.04 seconds

Story Shear (k) Story OTM (ft-k)

Example (Continued)

38.2 k

182.7 k

124.7 k

3.91”

3.28”

1.92”

38.2

162.9

345.6

382

2111

5567

0

Displacements and Forces at time of Maximum Sheart = 3.18 seconds

Story Shear (k) Story OTM (ft-k)

Example (Continued)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

Period, Seconds

Spec

tral

Dis

plac

emen

t, In

ches

1.20”

3.04”

3.47”

MODE 3T=0.431 Sec.

MODE 2T=0.639 Sec.

MODE 1T=1.37 Sec.

Displacement Response Spectrum1940 El Centro, 0.35g, 5% Damping

Example (Response Spectrum Method)

. . . ( )y y y v tg1 1 10 458 21 0 1 425+ + =

. . . ( )y y y v tg2 2 20 983 96 6 0 511+ + = −

. . . ( )y y y v tg3 3 31 457 212 4 0 090+ + =

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

Period, Seconds

Spec

tral

Dis

plac

emen

t, In

ches

1.20”

3.04”

3.47”

y1 1 425 3 47 4 94= =. * . . "

y 2 0 511 3 04 1 55= =. * . . "

y 3 0 090 1 20 0 108= =. * . . "

Modal Equations of Motion Modal Maxima

Example (Continued)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

Period, Seconds

Spec

tral

Dis

plac

emen

t, In

ches

1.20 x 0.090”

3.04 x 0.511”

3.47x 1.425”

MODE 1

MODE 2

MODE 3

-2.00

-1.00

0.00

1.00

2.00

0 1 2 3 4 5 6 7 8 9 10 11 12

-6.00

-3.00

0.00

3.00

6.00

0 1 2 3 4 5 6 7 8 9 10 11 12

-0.20

-0.10

0.00

0.10

0.20

0 1 2 3 4 5 6 7 8 9 10 11 12

Time, Seconds

T=1.37

T=0.64

T=0.43

The Scaled ResponseSpectrum gives the SameResults as the PreviousTime-Histories

Example (Continued)

10000 6440 300

4 9404 94031811482

.

.

..

.

..

⎨⎪

⎩⎪

⎬⎪

⎭⎪

=⎧

⎨⎪

⎩⎪

⎬⎪

⎭⎪

10000 6010 676

155015500 9311048

...

....

−−

⎨⎪

⎩⎪

⎬⎪

⎭⎪

= −−

⎨⎪

⎩⎪

⎬⎪

⎭⎪

10002 570

2 4700108

01080 278

0 267

..

..

..

.−⎧

⎨⎪

⎩⎪

⎬⎪

⎭⎪

= −⎧

⎨⎪

⎩⎪

⎬⎪

⎭⎪

MODE 1

MODE 2

MODE 3

Example (Continued)Computing Story Displacements

4 940 1550 01083181 0 931 10481482 1048 0 267

518348184

2 2 2

2 2 2

2 2 2

. . .

. . .. . .

.

.

.

+ ++ ++ +

⎨⎪

⎩⎪

⎬⎪

⎭⎪=⎧

⎨⎪

⎩⎪

⎬⎪

⎭⎪

Square Root of the Sum of the Squares

4 940 1550 01083181 0 931 10481482 1048 0 267

6 605162 80

. . .

. . .. . .

.

.

.

+ ++ ++ +

⎨⎪

⎩⎪

⎬⎪

⎭⎪=⎧

⎨⎪

⎩⎪

⎬⎪

⎭⎪

Sum of Absolute Values

5112 86122

.

..

⎨⎪

⎩⎪

⎬⎪

⎭⎪

“Exact”

Example (Continued)Modal Combination Techniques (For Displacement)

At time of Max. Displacement

4 940 31813181 1482

1482 0

175916991482

. .

. ..

.

.

.

−−−

⎨⎪

⎩⎪

⎬⎪

⎭⎪=⎧

⎨⎪

⎩⎪

⎬⎪

⎭⎪

1550 0 9310 931 1048

1048 0

2 48101171048

. ( . ). ( . )

.

.

..

− −− − −

− −

⎨⎪

⎩⎪

⎬⎪

⎭⎪=

⎨⎪

⎩⎪

⎬⎪

⎭⎪

0108 0 2780 278 0 2670 267 0

0 3860 545

0 267

. ( . ). ..

..

.

− −− −

⎨⎪

⎩⎪

⎬⎪

⎭⎪= −⎧

⎨⎪

⎩⎪

⎬⎪

⎭⎪

MODE 1

MODE 2

MODE 3

Example (Continued)Computing Interstory Drifts

1759 601699 1201482 180

1055203 9266 8

. ( ). ( ). ( )

.

.

.

⎨⎪

⎩⎪

⎬⎪

⎭⎪=⎧

⎨⎪

⎩⎪

⎬⎪

⎭⎪

2 481 600117 1201048 180

148 914 0188 6

. ( ). ( ). ( )

..

.−

⎨⎪

⎩⎪

⎬⎪

⎭⎪=

⎨⎪

⎩⎪

⎬⎪

⎭⎪

0 386 600 545 120

0 267 180

23 265 4

481

. ( ). ( )

. ( )

..

.−⎧

⎨⎪

⎩⎪

⎬⎪

⎭⎪= −⎧

⎨⎪

⎩⎪

⎬⎪

⎭⎪

MODE 1

MODE 2

MODE 3

Example (Continued)Computing Interstory Shears

106 149 232204 14 654267 189 481

220215331

2 2 2

2 2 2

2 2 2

+ ++ ++ +

⎨⎪

⎩⎪

⎬⎪

⎭⎪=⎧

⎨⎪

⎩⎪

⎬⎪

⎭⎪

...

38 2163346

.⎧

⎨⎪

⎩⎪

⎬⎪

⎭⎪

“Exact”

At time of Max. Shear

135197220

⎨⎪

⎩⎪

⎬⎪

⎭⎪

“Exact”

At time of Max. Displacement

207203346

⎨⎪

⎩⎪

⎬⎪

⎭⎪

“Exact”

Envelope = Maximumper Story

Example (Continued)Computing Interstory Shears: SRSS Combination

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10 12

Time, Seconds

Mod

al D

ispl

acem

ent,

Inch

es

MODE 1MODE 2MODE 3

MODAL Response Time Histories:

Using Less than Full (Possible) Number of Natural Modes

u tu t u t u t u t u t u t u t u t u tnu t u t u t u t u t u t u t u t u tnu t u t u t u t u t u t

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .... ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .... ( )( ) ( ) ( ) ( ) ( ) (

=1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

3 3 3 3 3 3

1 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 83 3 3) ( ) ( ) .... ( )u t u t u tn

⎢⎢⎢

⎥⎥⎥

y ty t y t y t y t y t y t y t y t y tny t y t y t y t y t y t y t y t y tny t y t y t y t y t y t

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .... ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .... ( )( ) ( ) ( ) ( ) ( ) (

=1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

3 3 3 3 3 3

1 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 83 3 3) ( ) ( ) .... ( )y t y t y tn

⎢⎢⎢

⎥⎥⎥

[ ]u t y t( ) ( )= φ φ φ1 2 3

3 x nt 3 x 3 3 x nt

3 x nt

Time-History for DOF 1

Time-History for MODE 1

Transformation:

Using Less than Full Number of Natural Modes

[ ]u t y t( ) ( )= φ φ1 2

3 x nt 3 x 2 2 x nt

3 x nt

Time-History for DOF 1

u tu t u t u t u t u t u t u t u t u tnu t u t u t u t u t u t u t u t u tnu t u t u t u t u t u t

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .... ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .... ( )( ) ( ) ( ) ( ) ( ) (

=1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

3 3 3 3 3 3

1 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 83 3 3) ( ) ( ) .... ( )u t u t u tn

⎢⎢⎢

⎥⎥⎥

Time-History for MODE 1

Transformation:

y ty t y t y t y t y t y t y t y t y tny t y t y t y t y t y t y t y t y tn

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .... ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .... ( )

=⎡

⎣⎢

⎦⎥

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

1 2 3 4 5 6 7 81 2 3 4 5 6 7 8

Mode 3 NOT Analyzed

Using Less than Full (Possible) Number of Natural Modes

4 940 1550 0108

3181 0 931 0 278

1482 1048 0 267

518

333

184

518

3 31

182

2 2 2

2 2 2

2 2 2

. . .

. . ( . )

. . .

.

.

.

.

.

.

+ +

+ + −

+ +

⎨⎪⎪

⎩⎪⎪

⎬⎪⎪

⎭⎪⎪

=

⎨⎪

⎩⎪

⎬⎪

⎭⎪

⎨⎪

⎩⎪

⎬⎪

⎭⎪

Square Root of the Sum of the Squares

4 940 1550 0108

3181 0 931 0 278

1482 1048 0 267

6 60

383

2 80

6 49

4 112

2 53

. . .

. . ( . )

. . .

.

.

.

.

.

.

+ +

+ + −

+ +

⎨⎪

⎩⎪

⎬⎪

⎭⎪=

⎨⎪

⎩⎪

⎬⎪

⎭⎪

⎨⎪

⎩⎪

⎬⎪

⎭⎪

Sum of Absolute Values

5112 86122

.

..

⎨⎪

⎩⎪

⎬⎪

⎭⎪

“Exact”

At time of Max. Displacement

Using Less than Full (Possible) Number of Natural Modes(Modal Response Spectrum Technique)

3 modes 2 modes

NEHRP Provisions allow an ApproximateModal Analysis Technique Called the

“EQUIVALENT LATERAL FORCE PROCEDURE”

Empirical Period of VibrationSmoothed Response SpectrumCompute Total Base Shear V as if SDOF

Distribute V Along Height assuming “Regular”Geometry

Compute Displacements and Member Forcesusing Standard Procedures