56
Damped expectations for the second generation: controlling the chaos

Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Damped expectations for the second generation:

controlling the chaos

Page 2: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic
Page 3: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic
Page 4: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic
Page 5: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Theorist

Page 6: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Theorist Experimentalist

or

Page 7: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic
Page 8: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic
Page 9: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic
Page 10: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Wow, you’re working on your report already? It’s not due until Thursday!

Yeah, I know … Mom says the pills I’m taking are starting to work.

I thought we could go outside and play … it’s snowing … Calvin?

What? Oh, sorry, I wasn’t listening.

I really have to finish this.

Page 11: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

total magnetization

macroscopic picture microscopic picture

Page 12: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

microscopic picture

total magnetization

macroscopic picture

Page 13: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Background Field driven magnetodynamics

G H

HMdtdM /mgddtdL /

M

LL ˆ

precession

damping MM ˆ

precession

damping

L

d

Page 14: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Background Equation of Motion (damped-driven oscillator)

MMHM-M ˆ

precession

damping

}

{

Page 15: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Background

H

V+ V- e-

50 mm

After current Before current

Current-driven magnetodynamics

Page 16: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Background Current driven magnetodynamics

Wide domain wall

Electron flow

If spins follow magnetization direction

Reaction torque on magnetization

Domain wall translates

s

Bs

eM

jPmv

Adiabatic spin-transfer torque

Page 17: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Background Equation of Motion

)M(vM)M(vMMHM-M ss ˆˆ

precession

damping

}

{

adiabatic spin torque

non-adiabatic spin torque

{ }

Field (H) driven terms Current (vs) driven terms

Page 18: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Background

Page 19: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Background

Page 20: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Background Magnetic state affects current

Mfixed

Mfree q

2.04

2.00

R(W)

H (T) -0.2 0.2 0

Giant Magnetoresistance

Albert Fert Peter Grünberg

Cu

Co

Cu

Co

Cu

Page 21: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Background Magnetic state affects current

Mfixed

Mfree q

2.04

2.00

R(W)

H (T) -0.2 0.2 0

Giant Magnetoresistance

Nobel prize

2007 Albert Fert Peter Grünberg

Cu

Co

Cu

Co

Cu

Page 22: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Background Currents control magnetic state

Mfixed

Mfree q

2.04

2.00

R(W)

H (T) -0.2 0.2 0

Giant Magnetoresistance

J. Z. Sun et al. JAP (2003)

Spin-Transfer Torque

I (mA) -20 20 0

2.05

2.00

R(W) Antiparallel

Cu

Co

Cu

Co

Cu

Spin currents can switch magnetization!

Page 23: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Background Current-induced switching dynamics

Low current damped motion

High current switching

High current, high field stable precession

M

Heff Damping torque

Spin transfer torque

Better MRAM

Current-tunable microwave oscillators

Page 24: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Background Complex phase diagram

-0.5 1.5

J (108 A/cm2)

0.16

0 0.0

0.2

0.08

0.5

Parallel

Antiparallel

Precession

DR

(W

)

Fie

ld (

T)

Mfixed

Mfree q

Cu

Co

Cu

Co

Cu

Page 25: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Background Equation of Motion

)M(vM)M(vMMHM-M ss ˆˆ

precession

damping

}

{

adiabatic spin torque

non-adiabatic spin torque

{ }

Field (H) driven terms Current (vs) driven terms

well understood, conservative

well understood, conservative

less well understood, dissipative

less well understood, dissipative

Page 26: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Background Equation of Motion

)M(vM)M(vMMHM-M ss ˆˆ

precession

damping

}

{

adiabatic spin torque

non-adiabatic spin torque

{ }

well understood, conservative

well understood, conservative

less well understood, dissipative

less well understood, dissipative

We want to understand the origin of these parameters

Page 27: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Background Equation of Motion

precession

damping

}

{

well understood, conservative

less well understood, dissipative

MMHM-M ˆ

Page 28: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Model Motivating data

Ni

Co Fe

Temperature (K)

Dam

pin

g,

Ferromagnetic resonance

measurements

MMH-MM ˆ

Page 29: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Coupling to the environment

uniform precession

magnons electronic excitations

phonons

eddy currents

electron-hole pairs

Stoner excitations

electron-lattice scattering

scattering to degenerate modes

magneto-striction

magnon-phonon scattering

Extrinsic effects

Intrinsic effects

Page 30: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Model Effective Field Model

eff

0

M

1H =

M

Em

nk nk

nk

E f

eff

0

M M

1H =

M

nk nknk nk

nk

ff

m

reversible

magnetocrystalline anisotropy

dM M

H0

conductivity-like

resistivity-like

Temp.

Dam

pin

g

irreversible

Page 31: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Fermi Surfaces

Real Fermi Surfaces Representative Fermi Surfaces

kx

ky kz

Up Spin Down Spin

Iro

n

Co

bal

t N

icke

l

Page 32: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Band Structure

H nk = nk nk

Page 33: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Breathing Fermi Surface : Hso(t) = -x l s(t)

kx

ky kz

kx

ky kz

kx

ky kz

t

t Energy pumped from Zeeman to spin-orbit type producing electron-hole pairs

Scattering of excited electrons into holes reestablishes equilibrium

kx

ky kz

t

t

Continued pumping and scattering damp the precession

M

M

M

M

dM

dM

.

Page 34: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Model State energies change with precession

F

k

M

Generation of electron-hole pairs due to energy

changes – breathing Fermi surface

ground state excited state

Spin-orbit energy depends on spin

direction (s)

nk

nknkso mH )ˆ(sx

M M M

Representative spin:

lattice scattering

time axis

nk

nknkf

M

0M

1

m eff

H

Page 35: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Model

Conductivity-like term decreases as scattering rate increases

F

k Total

~ s(T)

Temperature

Dam

pin

g lattice

scattering

lattice scattering

short lifetime small damping

F

k

long lifetime large damping

The breathing Fermi surface contribution

Page 36: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Bubbling Fermi Surface : V(t) = Hso(t) - Hso

kx

ky kz

The effective perturbation generates electronic excitations over the Fermi surface, reducing the Zeeman energy.

M

M dM

V(0) = 0

V(t) = Hso(t) – Hso(0)

Electron-electron and electron-lattice scattering restores equilibrium.

kx

ky kz

Page 37: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Model State populations change with precession

M

Generation of electron-hole pairs due to

population changes – bubbling Fermi surface

Eigenstates depend on spin direction (s)

)ˆ()ˆ( zHmHV sososo

M M M

Representative spin:

time axis

F

k

nk

nknkf

mM

0M

1effH

Page 38: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Model

Resistivity-like term increases as scattering rate increases

F

k

DOS

F

The bubbling Fermi surface contribution

~r(T)

Temp.

Dam

pin

g

Total

Page 39: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Model Qualitative prediction

eff

0

s M M

1H =

M

nk nknk nk

nk

ff

m

conductivity-like ‘breathing’ terms

Resistivity-like ‘bubbling’ terms

eff

0 (1)

s M

1H =

M

nknk

nk

f

m

eff

0 (2)

s M

1H =

M

nknk

nk

fm

total damping

conductivity-like

resistivity-like Dam

pin

g,

Scattering rate (temperature)

Qualitative predication

MMH-MM ˆ

Page 40: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Model Qualitative match with experiment

total damping

conductivity-like

resistivity-like Dam

pin

g,

Scattering rate (temperature)

Qualitative predication

Ni

Co Fe

Temperature (K)

Dam

pin

g,

Ferromagnetic resonance measurements

MMH-MM ˆ

Page 41: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Background

Current (vs) driven terms Field (H) driven terms

Equation of Motion

)M(vM)M(vMMHM-M ss ˆˆ

precession

damping

}

{

adiabatic spin torque

non-adiabatic spin torque

{ }

Page 42: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Model Non-adiabatic STT as extension of damping

),,0(Im Eq

),,(Im 0Eq

)M(vM)M(vMMH-MM ss ˆˆ

precession

damping

}

{

adiabatic spin torque

non-adiabatic spin torque

{ }

Conservative torques

Dissipative torques

Page 43: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Model Non-adiabatic STT as extension of damping

),,0(Im Eq

),,(Im 0Eq

)M(vM)M(vMMH-MM ss ˆˆ

precession

damping

}

{

adiabatic spin torque

non-adiabatic spin torque

{ }

Conservative torques

Dissipative torques

precession on

current off

Rotation in time:

Page 44: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Model Non-adiabatic STT as extension of damping

),,0(Im Eq

),,(Im 0Eq : all Fermi level electrons contribute nk

nk

)M(vM)M(vMMH-MM ss ˆˆ

precession

damping

}

{

adiabatic spin torque

non-adiabatic spin torque

{ }

Conservative torques

Dissipative torques

precession on

current off

Rotation in time:

Page 45: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Model Non-adiabatic STT as extension of damping

),,0(Im Eq

),,(Im 0Eq : all Fermi level electrons contribute nk

nk

)M(vM)M(vMMH-MM ss ˆˆ

precession

damping

}

{

adiabatic spin torque

non-adiabatic spin torque

{ }

Conservative torques

Dissipative torques

precession off

current on

Rotation in space:

Page 46: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Model Non-adiabatic STT as extension of damping

),,0(Im Eq

),,(Im 0Eq : all Fermi level electrons contribute

: Fermi level electron contributions are weighted by their velocity

nk

nk

nk

nknk

sv

v

)M(vM)M(vMMH-MM ss ˆˆ

precession

damping

}

{

adiabatic spin torque

non-adiabatic spin torque

{ }

Conservative torques

Dissipative torques

precession off

current on

Rotation in space:

Page 47: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Model Non-adiabatic STT as extension of damping

),,0(Im Eq

),,(Im 0Eq : all Fermi level electrons contribute

: Fermi level electron contributions are weighted by their velocity

nk

nk

nk

nknk

sv

v

)M(vM)M(vMMH-MM ss ˆˆ

precession

damping

}

{

adiabatic spin torque

non-adiabatic spin torque

{ }

Conservative torques

Dissipative torques

rr

s

t

s

dt

sd ˆˆˆ

Page 48: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Model Qualitative Summary

total dissipation

changes in energy

changes in populations

o

r

Scattering rate (temperature)

nk

nknk

sv

v

rr

s

t

s

dt

sd ˆˆˆ

Dissipation occurs through the spin-orbit interaction and electron-lattice scattering

nk

nknkf

mM

0M

1effH

conductivity-like breathing terms

resistivity-like bubbling terms

: precession dissipation parameter : spin-transfer torque dissipation parameter

Page 49: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Model

Page 50: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Model

Page 51: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Model

Newton’s apple tree England

Descendant of Newton’s apple tree

NIST, Maryland

Page 52: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

HAPPY BIRTHDAY!

Thanks for the chaotic upbringing

Page 53: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

END

Page 54: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic

Damped expectations for the second generation

Page 55: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic
Page 56: Damped expectations for the second generationeinstein.drexel.edu/~bob/70Birthday/KeithGilmore.pdf · Albert Fert Peter Grünberg Cu Co Cu Co Cu. Background Currents control magnetic