99
DAFTAR PUSTAKA ACI 233R-95 (1995) : Ground Granulated Blast Furnace Slag as a Cementitious in Concrete, Michigan, Detrorit. ACI Committee 211.4R-95 (1995) : Guide for Selecting Proportional for High- Strength Concrete with Portland Cement and Fly Ash (ACI-211), ACI Journal, Detroit, Michigan, 1993. ACI Committee 211.4R-93 (1996) : Guide for Selecting Proportional for High- Strength Concrete with Portland Cement and Fly Ash, Michigan, Detroit. ACI Committee 363R (1996) : State-of-the-Art Report on High-Strength Concrete, Michigan, Detroit. ACI Committee 225R-99 (1999) : Guide to the Selection and Use of Hydraulic Cements, Michigan, Detroit. ACI Education Bulletin E3-01 (2001) : Cementitous Materials For Concrete, Michigan, Detroit, E3-21 pp. ACI Education Bulletin E3-01 (2001) : Cementitous Materials For Concrete, Michigan, Detroit, E3-21 pp. ACI Committee 318-02 (2002) : Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Michigan, Detroit. ACI Committee 233R-03 (2003) : Slag Cement in Concrete and Mortar, Michigan, Detroit. ASTM, 1993, “Cement; Lime; Gypsum”, Vol. 04.01, Easton, MID, U.S.A. ASTM, 1993, “Concrete and Aggregates”, Vol. 04.02, Easton, MID, U.S.A. Ashad, H., (1998) : Kontribusi Nickel Slag-Cement Terhadap Kekuatan dan Durabilitas Beton Kinerja Tinggi, Tesis Magister, Program Pascasarjana, Institut Teknologi Bandung. Ashad, H., Nasution, A., Imran, I., Soegiri, S., (2006) : Degradasi Kekuatan Beton Akibat Intrusi Mikroorganisme, Jurnal Teknik Sipil, Institut Teknologi Bandung, Volume 13, No. 3, Juli, 151-158. Belie, N.D., Debruyckere, M., Nieuwenburg, D.V., and Blaere, B.D., (1997) : Concrete Attack by Feed Acid : Accelerated Test to Compare Different Concrete Composition and Technologies, ACI Materials Journal, No. 94- M62, November-December, pp. 546-554. Besari, M.S., Munaf, D.R., and Hanafiah (1992) : The Effect of Fly Ash and Strength of Coarse Aggregate to the Mechanical Properties of High 274

DAFTAR PUSTAKA - Institut Teknologi · PDF fileDAFTAR PUSTAKA ACI 233R-95 ... L., Khatri, R.P., and Sirivivatnanon, V. ... Standards and Evaluation, 10-12 July, Bandung, Indonesia

Embed Size (px)

Citation preview

DAFTAR PUSTAKA

ACI 233R-95 (1995) : Ground Granulated Blast Furnace Slag as a Cementitious in Concrete, Michigan, Detrorit.

ACI Committee 211.4R-95 (1995) : Guide for Selecting Proportional for High-Strength Concrete with Portland Cement and Fly Ash (ACI-211), ACI Journal, Detroit, Michigan, 1993.

ACI Committee 211.4R-93 (1996) : Guide for Selecting Proportional for High-Strength Concrete with Portland Cement and Fly Ash, Michigan, Detroit.

ACI Committee 363R (1996) : State-of-the-Art Report on High-Strength Concrete, Michigan, Detroit.

ACI Committee 225R-99 (1999) : Guide to the Selection and Use of Hydraulic Cements, Michigan, Detroit.

ACI Education Bulletin E3-01 (2001) : Cementitous Materials For Concrete, Michigan, Detroit, E3-21 pp.

ACI Education Bulletin E3-01 (2001) : Cementitous Materials For Concrete, Michigan, Detroit, E3-21 pp.

ACI Committee 318-02 (2002) : Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Michigan, Detroit.

ACI Committee 233R-03 (2003) : Slag Cement in Concrete and Mortar, Michigan, Detroit.

ASTM, 1993, “Cement; Lime; Gypsum”, Vol. 04.01, Easton, MID, U.S.A.

ASTM, 1993, “Concrete and Aggregates”, Vol. 04.02, Easton, MID, U.S.A.

Ashad, H., (1998) : Kontribusi Nickel Slag-Cement Terhadap Kekuatan dan Durabilitas Beton Kinerja Tinggi, Tesis Magister, Program Pascasarjana, Institut Teknologi Bandung.

Ashad, H., Nasution, A., Imran, I., Soegiri, S., (2006) : Degradasi Kekuatan Beton Akibat Intrusi Mikroorganisme, Jurnal Teknik Sipil, Institut Teknologi Bandung, Volume 13, No. 3, Juli, 151-158.

Belie, N.D., Debruyckere, M., Nieuwenburg, D.V., and Blaere, B.D., (1997) : Concrete Attack by Feed Acid : Accelerated Test to Compare Different Concrete Composition and Technologies, ACI Materials Journal, No. 94-M62, November-December, pp. 546-554.

Besari, M.S., Munaf, D.R., and Hanafiah (1992) : The Effect of Fly Ash and Strength of Coarse Aggregate to the Mechanical Properties of High

274

Strength Concrete, 17th Conference on Our Word in Concrete & Structures, 25-27 August., Singapore, 25-32.

Bhanja, S. (2001) : Influence of Microsilica on the Characteristics of High Strength Concrete at Different Water-Cementitious Material Ratios and on Different Types of Samples, PhD Dissertation, Jadavpur University, Kolkata, India.

Bhanja, S. and Sengupta, B. (2003) : Optimum Silica Fume Content and Its Mode of Action on Concrete, ACI Materials Journal, No. 100-M46, Sept-Oct., pp. 407-412.

Bijen, J. (1996) : Blast Furnace Slag Cement, Cip Royal Library Den Haag, Netherlands.

Bilgrami, K.S. and Verma, R.N. (1994) : Physiology of Fungi, 2nd ed., Vikas Publishing House PVT Ltd., Delhi, pp. 507.

Brandt, A.M. (1995) : Cement-Based Composites : Materials, Mechanical Properties and Performance, E & FN Spon, London.

Buchea, L., Khatri, R.P., and Sirivivatnanon, V. (2004) : Performance Based Specification For Sulphate Resisting Concrete, The First International Conference of Asian Concrete Federation (AFC), 28-29 October, Chiang May, Thailand.

Bye, G.C. (1983) : Portland Cement : Composition, Production and Properties, The Institute of Ceramic, Pergamon Press, New York.

Carlile, M.J. and Watkinson, S.C. (1994) : The Fungi, Academic Press, London, pp. 482.

Cramer, S., and Sippel, C. (2005) : Effects of Ground Granulated Blast Furnace Slag in Portland Cement Concrete, Wisconsin Highway Research Program, Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Final Report, WHRP 05-04, #0092-02-14a..

Desai, C.S., and Siriwardane, H.J. (1984) : Constitutive Laws For Engineering Materials With Emphasis on Geologic Materials, Prentice-Hall, Inc, Englewood Cliffs, New Jersey.

Freeman, R.B., and Carrasquillo, R.L. (1995) : Production of Sulfate Resistant Concrete Containing High Calcium Fly Ash and Sodium Sulfate Admixture, Proc., 5th International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Wisconsin, pp. 154-176.

Gandjar, I., Syamsuridzal, W., dan Oetari, A. (2006) : Mikologi Dasar dan Terapan, Yayasan Obor Indonesia, Jakarta.

275

George, C. M., (1997) : Durability of Calcium Aluminate Cement Concrete : Understanding the Evidence, Mechanism of Chemical Degradation of Cement-Based Systems, edited by Scrivener, K.L and Young, J.F, E & FN Spon, London, pp. 254-263.

Ghosh, S.N., Sarkar, S.L., and Harsh, S. (1993) : Mineral Admixtures in Cement and Concrete, Volume-4, Akademia Books International, New Delhi.

Ginting, P. (2007) : Sistem Pengelolaan Lingkungan dan Limbah Industri, Yrama Widya, Bandung.

Hall, G.R. (1989) : Control of Microbiologically Induced Corrosion of Concrete in Waste-Water Collection and Treatment Systems, Materials Performance, Vol. 28, No. 10, pp. 45-49.

Howsam, P. (1990) : Microbiology in Civil Engineering, E. & F.N. Spon, Melbourne, Australia.

Imran, I., Budiono, B., Munaf, D.R., and Moestopo, M. (1999) : On the Mechanical Behaviour of Concrete Structures and Materials (Experimental and Analytical Studies), Final Report, Urge Project, Chapter 2.

Kearns, J.R., and Little, B.J. (1994) : Microbiologically Influenced Corrosion Testing, ASTM, PCN. 04-012320-27, STP. 1232, Philadelphia, U.S.A.

Khedr, S.A. and Abou-Zeid, M.N. (1994) : Characteristics of Silica-Fume Concrete, Journal of Materials in Civil Engineering, ASCE, V.6, No. 3, pp. 357-375.

Khosama, L. K., (1997) : Penggunaan Terak nikel Sebagai Agregat Pada Beton Mutu Tinggi, ”, Tesis Magister, Program Pascasarjana, Institut Teknologi Bandung.

Khunthongkeaw, J. dan Tangtermsirikul, S. (2004) : Model for Simulating Carbonation of Fly Ash Concrete, The First International Conference of Asian Concrete Federation (AFC), 28-29 October, Chiang May, Thailand.

Kulpa, C. F. and Baker, C. J. (1990) : Involvement of Sulfur-Oxidizing Bacteria in Concrete Deterioration, Proceedings, Paul Klieger, Symposium on Performance of Concrete, ed. D. Whiting, ACI SP-122, pp.313-322.

Lane, D.A., and Ozyildirim, C. (1999), Combination of Pozzolans and Ground Granulated Blast Furnace Slag for Durable Hydraulic Cement Concrete, Final Report, Virginia Transportation Research Council (A Cooperative Organization Sponsored Jointly by the Virginia Department of Transportation and the University of Virginia), VTRC 00-R1.

Louis, (2003) : Penggunaan Terak Nikel Sebagai Agregat Beton Pemberat Pipa Gas Lepas Pantai, Tesis Magister, Program Pascasarjana, Institut Teknologi Bandung.

276

Madigan, M.T., Martinko, J.M., and Parker, J. (2002) : Brock Biology of Microorganisms, 10th ed., Prentice Hall International Inc., Englewood Cliff.

Malhorta, V.M, 1986, “Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete”, Proceedings Second International Conference, Madrid, Spain.

Maso, J.C. (1996) : Interfacial Transition Zone in Concrete, Rilem Report 11, E & FN Spon, London.

Mehta, P.K. (1986) : Concrete Structure, Properties, and Materials, Prentice-Hall, New Jesdey.

Mehta, P.K. (1991) : Concrete in the Marine Environment, Elsevier Science Publisher Ltd, England.

Mehta, P.K. and Monteiro, P.J.M. (2001) : Concrete Microstructure, Properties and Materials. ”, Prentice-Hall, New Jesdey

Meklin, T. (2002) : Microbial Exposure and Health in Schools Effects of Moisture Damage and Renovation, Dissertation, Department of Environmental Sciences, University of Kuopio, Finland. 13-18.

Mindess, S., and Young, J. F. (1981) : Concrete, Prentice-Hall, Inc., Englewood Cliffs, N.J. 07632, New Jersey.

Munaf, D.R. (1992) : Pembuatan dan Penyelidikan Perilaku Beton Mutu Tinggi Serta Bahan Pembentuknya, Laporan Penelitian, Institut Teknologi Bandung.

Nagai, K., K. Suzuki, G. Okada (1998) : Studies on the Distribution of Alkalophilic and Alkali-Tolerant Soil Fungi II : Fungal Flora in Two Limestone Caves in Japan, Mycoscience 39 : 293-298.

Naik, T.R., Ramme, B.W., Kraus, R.N., and Siddique, R. (2003) : Long-Term Performance of High-Volume Fly Ash Concrete Pavements, ACI Materials Journal, Vol.100, No.2, March-April, pp.150-155.

Neville, A.M., 1996, “Properties of Concrete”, John Wiley and Sons Inc., New York.

Oluokun, F.A. (1994) : Fly Ash Concrete Mix Design and the Water-Cement Ratio Law, ACI Materials Journal, V. 91, No. 4, July-Aug., pp. 362-371.

Pedersen, K. (2001) : Microbial Features, Event and Processes in the Swedish Final Repository for Low-and Intermediate-Level Radiactive Waste, SKB Rapport R-01-05, Göteborg University, Sweden.

Rapindrarajah, R.S., Pathmasiri, M., and Khan, A.S. (2004) : Binder Type on High-Strength Concrete Properties, The First International Conference of Asian Concrete Federation (AFC), 28-29 October, Chiang May, Thailand.

277

Robson, T.D., (1992) : High Alumina Cement and Concrete, Contractor’s Record Limited, Wiley, New York, pp. 145-159.

Said, I. (1996) : Mechanical Properties of High Performance Concrete, ACI Materials Journal, Vol. 93, No. 5, pp. 416-425.

Scrivener, K.L., Cabiron, J.L., and Letourneux, R. (1999) : High Performance Concretes from Calcium Aluminat Cement, Cement and Concrete Research, Vol. 29, No. 8, pp. 1215-1223.

Siddique, R. (2000) : Special Structural Concretes, Galgotia Publications Pvt. Ltd., New Delhi.

Soegiri, S., Munaf, D.R., and Khosama, L.L. (1997) : Mechanical Properties of High Performance Nickel Slag Conrete, 22nd Conference on Our Word Concrete and Structures, 25-27 August, Singapore.

Soegiri, S. (2000) : Durability of High Performance Nickel Slag Concrete, Second Asia/Pacific Conference on Durability of Building System, Harmonized Standards and Evaluation, 10-12 July, Bandung, Indonesia.

Suhud, R., Imran, I., Darmawan, S., dan Tanujaya, H. (1999) : Perilaku Mekanik Beton Kinerja Tinggi dengan Gradasi Butiran Bercelah (Gap Grading Concrete), Laporan Penelitian Hibah Bersaing VI Perguruan Tinggi, Depdikbud.

Taylor, H.F.W. (1997) : Cement Chemistry, 2nd Edition, Thomas Telford, London.

Tazawa, E.I., Morinaga, T., and Kawai, K., (1998) : Deterioration of Concrete Derived from Metabolites of Microorganisms, Proceedings, Paul Klieger, Symposium on Performance of Concrete, ed. D. Whiting, ACI SP145-59, pp.1087-1097.

Tikalsky, P.J., and Carrasquillo, R.L. (1993) : Fly Ash Evaluation and Selection for Use in Sulfate Resistant Concrete, ACI Materials Journal, 90(6), pp. 545-551.

Tremper, B., (1989) : The Effect of Acid Waters on Concrete, Journal of American Concrete Institute- Proceedings, pp. 1-32.

Uchikawa, H., and Okamura, T. (1993) : Binary and Ternary Components Blended Cement, Progerss in Cement and Concrete, Vol. 4, pp. 1-83, Akademia Books International, New Delhi, India.

Videla, C., Covarrubias, J.P., and Masana, C. (2004) : Updating Concrete Drying-Shrinkage Prediction Models for Local Materials, ACI Material Materials Journal, No. 101-M21, May-June, pp. 187-198.

Videla, C., and Gaedicke, C. (2004) : Modeling Portland Blast-Furnace Slag Cement High-Performance Concrete, ACI Material Materials Journal, No. 101-M41, Sept.-Oct., pp. 365-375.

278

Voet, D., and Voet, J. (1995) : Biochemistry, 2nd ed., John Wiley & Sons. Inc., New York, pp. 1361.

Waluyo, L. (2005) : Mikrobiologi Umum, UMM Press, Malang, 95-120.

Yogendran, V., Langan, B.W., and Ward, M.A. (1991) : Hydration of Cement and Silica Fume Paste, Cement and Concrete Research, V. 21, No. 5, pp. 691-708.

Pustaka dari situs :

ACPA Update (2003) : Slag Cement and Concrete Pavements, Concrete Pavement Research and Technology, American Concrete Pavement Association, No. 4.03, March, http://www.pavement.com., download pada tanggal 24 Agustus 2006.

Anderson, M. dan Dover, M. D. (2004) : Bonded Fly Ash : A Low-Energy Replacement for Portland Cement Concrete to Improve Resistance to Chem-Bio Intrusion, http://www.natick.army.mil/soldier/ jocotas/ ColPro_ Papers/Anderson.pdf., download pada tanggal 26 Agustus 2006.

Aviam, O., Bar_Nes, G., Zeiri, Y., dan Sivan, A. (2004) : Accelerated Biodegradation of Cement by Sulfur-Oxidizing Bacteria as a Bioassay for Evaluating Immobilization of Low-Level Radiactive Waste, Journal of Applied and Environmental Microbioligy, V.70(10), Oct., 6031-6036, http://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6927/cr-6927.pdf., download pada tanggal 12 September 2006.

Berndt, M.L. (2001) : Protection of Concrete in Cooling Towers From Microbilogically Influenced Corrosion, Geothermal Resources Council Transactions, Vol. 25, 3-7, Sandiego, http://www.gov/est/files/pdf/ micgrc01.pdf., download pada tanggal 07 Juli 2006.

Bertolini, L., Elsener, B., Pedeferri, P., dan Polder, R. P. (2004) : Properties of Cementitious Materials, WILEY VCH Verlag GmbH & Co. KgaA, Weinheim, http://doi.wiley.com/10.1002/3527603379.ch19., download pada tanggal 07 Desember 2006.

Bullard, J.W. (2003) : The Virtual Cementand Concrete Testing Laboratory Consortium, Annual Report 2002, NISTIR 6962, National Institute of Standards and Technology, http://www.fire.rust.gov/bfrlpubs/build03/PDF/ b03004.pfd., download pada tanggal 15 Oktober 2006.

Fontes, C.M.A., Barbosa, M.C., Toledo Filho, R.D., dan Goncalves, J.P (2004) : Potentiality of Seage Sludge Ash as Mineral Additive in Cement Mortar and High Performance Concrete, http://congress.cimne.upc.cs/rilem04/ admin/filePaper/p343.pdf., download pada tanggal 10 September 2006.

279

Hamada, H., Yamaji, T., Mohammed, T.U., dan Torii, K. (2005) : Unexpected Expansion of Concrete Made With Laumontite Containing Aggregates Under Seawater Condition, Asean Journal of Civil Engineering (Building and Housing), Vol. 6, No. 5, pp. 361-372, http://www.icic.gov.ir/ Publication/AJCE/PDF/vol6-No5/Hamada-1.pdf., download pada tanggal 26 Januari 2007.

Hendrik, G. van Oss (2001) : Cement-2000, Cement in the 20th Century, http://mineralsusgs.gov/minerals/pubs/commodity/cement/170400.pdf., download pada tanggal 07 Oktober 2006.

Hernandez, M., Marchand, E.A., Roberts, D., dan Peccia, J. (2002) : In Situ Assessment of Active Thiobacillus Species in Corroding Concrete Sewers Using Fluorescent RNA Probes, International Biodeterioration & Biodegradation, 49, 271-276, http://www.elsevier.com/locate/ibiod., download pada tanggal 10 Juni 2006.

Hooton, R.D., Pun, P., Kujondic, T., dan Fidjestol, P. (2005) : Influence of Silica Fume on Chloride Resistance of Concrete, http://www.silicafume.org/pdf/ reprints-hooton97.pdf., download pada tanggal 23 September 2006.

Jian-xiong, C., Han-bin, C., Pei, X., dan Lan-fang, Z. (2002) : A Study Complex Alkali-Slag Environmental Concrete, Internationl Workshop on Sustainable Development and Concrete Technology, pp. 299-307, http://www. cptechcenter.org/publications/sustainable/chenslag.pdf., download pada tanggal 03 Januari 2007.

Jooss, M. (2001) : Leaching of Concrete Under Thermal Influence, Otto-Graf Journal, Vol. 12, http://www.mpa.uni-stutgart.de/publikationen/otto_graf_ journal/ogj_2001/beitrag_jooss.pdf., download pada tanggal 27 April 2005.

Kim, A.G. (1999) : Environmental Remediation With Products of Fluidized Bed Combustion, Proceedings of the 15thInternational Conference on Fluidized Bed Combustion, Paper No. FBC99-0030, Savannah, Georgia, http://www.mcrcc.osmre.gov/PDF/Forum/CCB2/P2.pdf., download pada tanggal 15 Nopember 2005.

Lange, D.A., Jennis, H.M., dan Shah, S.P. (1994) : Image Analysis Techniques For Characterization of Pore Structure of Cement-Based Materials, Cement and Concrete Research, Vol. 24, No. 5, pp. 841-853, http://cee.uiuc.edu/ research/dlange/Publications/journal.html., download pada tanggal 28 April 2005.

Li, Z., Ding, Z., dan Zang, Y. (2004) : Development of Sustainable Cementitous Materials, International Workshop on Sustainable Development and Concrete Technology, pp. 55-76, http://www.cptechcenter.org/publications/ sustainable/lisustainable.pdf., download pada tanggal 09 Januari 2007.

280

Ling, W., Pei, T., dan Yan, Y. (2004) : Application of Ground Granulated Blast Furnace Slag in High Performance Concrete in China, International Workshop on Sustainable Development and Concrete Technology, pp. 309-317, http://www.ctre.iastate.edu/pubs/sustainable/wangslag.pdf., download pada tanggal 19 Maret 2006.

Livingston, R.A. dan Bumrongjaroen, W. (2005) : Optimization of Silica Fume, Fly Ash and Cement Mixes for High Preformance Concrete, http://www. flyash.info/2005/79liv.pdf., download pada tanggal 13 Pebruari 2007.

Meschke, G. dan Grasberger, S. (2003) : Numerical Modeling of Coupled Hygromechanical Degradation of Cementitious Materials, Journal of Engineering Mechanics, ASCE, Vol. 129, No. 4, April, 1-10, http://link. aip.org/link/?QEM/129/383/Mesche., download pada tanggal 26 Mei 2006.

Mobasher, B., Devaguptapu, R. dan Arino, A.M. (1996) : Effect of Copper Slag on the Hydration of Blended Cementitous Mixtures, Proceedings, ASCE, Materials Engineering Conference, Materials for the New Millenium, ed. K. Chong, pp. 677-1686, http://enpub.fulton.asu.edu/cement/papers/asce6.pdf., download pada tanggal 22 Juni 2005.

Morton, G. (2003) : Things That Go Rot in The Night a Review of Biodeterioration, Microbiology Today, Vol. 30, Aug., pp. 103-106, http:// www.uclan.ac.uk/facs/science/forensic/research/morton.htm. download pada tanggal 04 Juli 2006.

Nemati, K.M. (2005) : Strength of Concrete, CM 425, Concrete Technology, University of Washington, http://www.nemati.com/pub.htm., download pada tanggal 19 April 2006.

Neuwald, A.D. (2004) : Supplementary Cementitious Materials, http://www. Precast.org/publications/mc/2004_sepoct/cementitious_materials.htm., download pada tanggal 25 Maret 2006.

Nixon, R. (2003) : Evaluating Concrete Deterioration, Root Cause, M & M Engineering, Austin, Texas, www.mmengineering.com., download pada tanggal 17 Juli 2006.

Sanchez, N.M., Cutright, T.J., dan Qiao, P. (2003) : Simultaneous Evaluation Composite Biodeterioration and Changes in the Physicochemical and Biological Water Characteristics, International Biodeterioration & Biodegradation, No. 52, pp.187-196, http://www.eng.auburn.edu/users/ mendenc/Paper%201.pdf., download pada tanggal 18 September 2006.

Sand, W. (2004) : Microbial Life in Geothermal Waters, http://mainlymartian. blogs.com/semijournal/2004/03/methane_and_thu.html., download pada tanggal 22 Oktober 2006.

281

Shirakawa, M.A., Tapper, R., Cincotto, M.A., Beech, I. dan Gambale, W. (2004) : Fungal Growth Measurement by ESEM in Four Different Mortars and Proposal of a Biodeterioration Mechanism, http://www.sci.port.ac.uk/ec/ SHIRAKAW.PDF., download pada tanggal 14 Maret 2006.

Slag Cement Associaton (2002) : Reducing Permeability, SCA, No. 16, http://www.slagcement.org., download pada tanggal 16 April 2006.

Slag Cement Associaton (2005) : Effect of Slag Cement on Shrinkage in Concrete, SCA, No. 27, http://www.slagcement.org., download pada tanggal 09 Maret 2006.

Schmidt, R., dan Feldmann, T. (2003) : Accurate Quantitative Phase Analysis of Sulphates and Calcite in Portland cement, Bruker Advanced X-Ray Solutions, Germany, www.bruker.axs.de., download pada tanggal 05 Mei 2006.

Sutter, L.L., dan Dam, T.V. (2003) : Preliminary Investigation of the Role of Bacteria in Concrete Degradation, http://www.tech.mtu.edu/~llsutter/pdf/ BUGSsum.pdf., download pada tanggal 18 Mei 2006.

Thomas, M.D.A., Hopkins, D.S., Girn, R., Munro, R., dan Muhl, E. (2004) : The Use of High Volume Fly Ash in Concrete, http://www.hvfacprojectindia.com/ resources/other-documents/CBRIFINAL.pdf., download pada tanggal 02 Januari 2007.

Wang, G., dan Emery, J. (2004) : Technology of Slag Utilization in Highway Constrcution, John Emery Geotechnical Engineering Limited, Toronto, Ontairo, Canada, http://www.worldbank.org/servlet/WDSContentServer/ WDSP/IB/1999/09/14/000009265_3970716150148., download pada tanggal 10 April 2006.

Zayed, A. (2003) : Cement Composition and Structural Durability in Florida, Final Report, Florida Department of Transportation, State Project Number BC353-29, Department of Civil and Environmental Engineering, University of South Florida, http://www.dot.state.fl.us/research-center/Completed_ Proj/Summary_SMO/FDOT_BC353_29_rpt.pdf., download pada tanggal 16 Juni 2006.

282

LAMPIRAN A

KARAKTERISTIK MATERIAL DAN KOMPOSISI CAMPURAN BETON

283

Tabel A.1. Karakteristik agregat halus dan kasar

Agregat kasar No. Uraian Unit Agregat

halus φ2,4- φ4,8

φ4,8 -

φ9,5

φ9,5-

φ19

φ19 -

φ25 1. Kadar air % 5,35 0,83 0,63 0,53 0,43 2. Kadar lumpur % 2,03 0,38 0,31 0,40 0,27 3. Kadar organik - rendah - - - - 4. Berat isi kering kg/m3 1597 1530 1551 1572 15845. Apparent specific

gravity 2,81 2,72 2,71 2,70 2,69

6. Bulk specific gravity : - Dry basic

- SSD basic

2,39 2,55

2,56 2,62

2,52 2,59

2,49 2,57

2,46 2,55

7. Absorption % 5,93 2,35 2,74 3,09 3,41 8. Abrasion % - 28,53

Tabel A.2. Distribusi ukuran butir dan modulus kehalusan agregat halus Tertahan Kumulatif

Saringan Ukuran (gr) (%) Tertahan (%)

Lolos (%)

Spesifikasi ASTM

C33-92a 3/8” 9,50 0,00 0,00 0,00 100,00 100 No. 4 4,76 0,00 0,00 0,00 100,00 95 – 100 No. 8 2,40 71,00 7,10 7,10 92,90 80 – 100 No. 16 1,20 282,00 28,20 35,30 64,70 50 - 85 No. 30 0,60 281,00 28,10 63,40 36,60 25 – 60 No. 50 0,30 252,00 25,20 88,60 11,40 10 - 30 No. 100 0,15 80,00 8,00 96,60 3,40 2 – 10 No. 200 0,075 34,00 3,40 100,00 0,00 0

Modulus kehalusan 2,91

Tabel A.3. Distribusi ukuran butir dan modulus kehalusan agregat kasar Tertahan Kumulatif

Saringan Ukuran (gr) (%) Tertahan (%)

Lolos (%)

Spesifikasi ASTM

C33-92a 1” 25,40 0,00 0,00 0,00 100,00 100

3/4“ 19,50 250,00 5,00 5,00 95,00 90 – 100 3/8” 9,50 2.875,00 57,50 62,50 37,50 20 – 55 No. 4 4,76 1.625,00 32,50 95,00 5,00 0 - 10 No. 8 2,40 250,00 5,00 100,00 0,00 0 - 5

Modulus kehalusan 3,63

284

Tabel A.4. Sifat-sifat fisis dan komposisi kimia semen type I

No. Uraian Unit Nilai

1. Specific gravity - 3,15 2. Berat isi kg/m3 1380 3. Specific surface m2/kg 291 4. Initial setting time menit 138 5. Final setting time menit 279 6. SiO2 % 21,20 7. CaO % 64,90 8. Al2O3 % 6,96 9. Fe2O3 % 3,10 10. MgO % 1,20 11. Na2O % 0,00 12. K2O % 0,00 13. Loss of Ignition (LoI) % 0,90

Tabel A.5. Sifat-sifat fisis dan komposisi kimia bubuk slag nikel

No. Uraian Unit Nilai

1. Specific gravity - 3,36 2. Berat isi kg/m3 1775 3. Specific surface m2/kg 306 4. SiO2 % 42,57 5. CaO % 6,46 6. Al2O3 % 3,67 7. Fe2O3 % 25,71 8. MgO % 16,82 .9. Na2O % 2,29 10. K2O % 0,06 11. NiO % 4,42 12. SO3 % 0,29 13. S % 0,12 14. Loss of Ignition (LoI) % 5,36

285

Tabel A.6. Komposisi kimia campuran semen dan bubuk slag nikel

Proporsi campuran (%) Komposisi kimia (%)

Kode semen Slag

nikel SiO2 CaO Al2O3 Fe2O3 MgO LOI

C100-0 100 0 21,20 64,90 6,96 3,10 1,20 0,90 C90-10 90 10 25,37 57,41 6,86 5,52 1,80 1,32 C85-15 85 15 27,94 53,35 6,39 6,63 2,39 1,65 C80-20 80 20 29,12 49,03 6,06 7,76 2,59 2,14 C70-30 70 30 31,34 42,34 5,79 9,95 3,14 2,47 C60-40 60 40 34,78 38,03 5,42 12,76 3,39 2,85 C50-50 50 50 37,26 35,45 5,03 15,14 5,62 3,22 C0-100 0 100 42,57 6,46 3,67 25,71 16,82 5,36

Tabel A.7. Komposisi bahan campuran per m3 beton untuk mutu fc’ = 25 MPa Batu Pecah (kg)

Kode Semen (kg)

Bubuk Slag (kg)

Air (kg)

SP (cc)

Pasir (kg)

φ2,4 -

φ4,8

φ4,8 -

φ9,5

φ9,5 -

φ19

φ19 -

φ25Non

Intrusif BNI25-0 BNI25-10 BNI25-12 BNI25-14 BNI25-16 BNI25-18 BNI25-20

345 310 304 297 290 283 276

0 35 41 48 55 62 69

228 228 228 228 228 228 228

4318387538003712362535383450

774 774 774 774 774 774 774

46 46 46 46 46 46 46

305 305 305 305 305 305 305

547 547 547 547 547 547 547

48 48 48 48 48 48 48

Intrusif BI25-0 BI25-10 BI25-12 BI25-14 BI25-16 BI25-18 BI25-20

345 310 304 297 290 283 276

0 35 41 48 55 62 69

228 228 228 228 228 228 228

4318387538003712362535383450

774 774 774 774 774 774 774

46 46 46 46 46 46 46

305 305 305 305 305 305 305

547 547 547 547 547 547 547

48 48 48 48 48 48 48

286

Tabel A.8. Komposisi bahan campuran per m3 beton untuk mutu fc’ = 40 MPa Batu Pecah (kg)

Kode Semen (kg)

Bubuk Slag (kg)

Air (kg)

SP (cc)

Pasir (kg)

φ2,4 -

φ4,8

φ4,8 -

φ9,5

φ9,5 -

φ19

φ19 -

φ25Non

Intrusif BNI40-0 BNI40-10 BNI40-12 BNI40-14 BNI40-16 BNI40-18 BNI40-20

493 444 434 424 414 404 394

0 49 59 69 79 89 99

226 226 226 226 226 226 226

6167555054255300517550504925

661 661 661 661 661 661 661

46 46 46 46 46 46 46

305 305 305 305 305 305 305

547 547 547 547 547 547 547

48 48 48 48 48 48 48

Intrusif BI40-0 BI40-10 BI40-12 BI40-14 BI40-16 BI40-18 BI40-20

493 444 434 424 414 404 394

0 49 59 69 79 89 99

226 226 226 226 226 226 226

6167555054255300517550504925

661 661 661 661 661 661 661

46 46 46 46 46 46 46

305 305 305 305 305 305 305

547 547 547 547 547 547 547

48 48 48 48 48 48 48

Tabel A.9. Komposisi bahan campuran per m3 beton untuk mutu fc’ = 60 MPa Batu Pecah (kg)

Kode Semen (kg)

Bubuk Slag (kg)

Air (kg)

SP (cc)

Pasir (kg)

φ2,4 -

φ4,8

φ4,8 -

φ9,5

φ9,5 -

φ19

φ19 -

φ25Non

Intrusif BNI60-0 BNI60-10 BNI60-12 BNI60-14 BNI60-16 BNI60-18 BNI60-20

565 508 497 486 474 463 452

0 57 68 79 91 102 113

201 201 201 201 201 201 201

7060635062126075592557875650

426 426 426 426 426 426 426

55 55 55 55 55 55 55

356 356 356 356 356 356 356

630 630 630 630 630 630 630

55 55 55 55 55 55 55

Intrusif BI60-0 BI60-10 BI60-12 BI60-14 BI60-16 BI60-18 BI60-20

565 492 481 470 460 449 438

0 57 68 79 91 102 113

201 201 201 201 201 201 201

7060635062126075592557875650

426 426 426 426 426 426 426

55 55 55 55 55 55 55

356 356 356 356 356 356 356

630 630 630 630 630 630 630

55 55 55 55 55 55 55

287

LAMPIRAN B

DATA SIFAT-SIFAT FISIS DAN MEKANIS BETON NONINTRUSI DAN TERINTRUSI

MIKROORGANISME

288

5

10

15

20

25

0 30 60 90 120 150 180 210 240 270 300 330

Umur (Hari)

Poro

sita

s (%

)

BNI25-0 BNI25-10 BNI25-12BNI25-14 BNI25-16 BNI25-18BNI25-20

(a). Beton dengan w/c = 0,57

5

10

15

20

0 30 60 90 120 150 180 210 240 270 300 330

Umur (Hari)

Poro

sita

s (%

)

BNI40-0 BNI40-10 BNI40-12BNI40-14 BNI40-16 BNI40-18BNI40-20

(b). Beton dengan w/c = 0,40

5

10

15

20

0 30 60 90 120 150 180 210 240 270 300 330

Umur (Hari)

Poro

sita

s (%

)

BNI60-0 BNI60-10 BNI60-12BNI60-14 BNI60-16 BNI60-18BNI60-20

(c). Beton dengan w/c = 0,30

Gambar B.1. Grafik hubungan porositas versus umur beton nonintrusi

mikroorganisme

289

5

10

15

20

25

30

0 30 60 90 120 150 180 210 240 270 300 330

Lama intrusi (Hari)

Poro

sita

s (%

)BI25-0 BI25-10 BI25-12BI25-14 BI25-16 BI25-18BI25-20

(a). Beton dengan w/c = 0,57

5

10

15

20

25

0 30 60 90 120 150 180 210 240 270 300 330

Lama intrusi (Hari)

Poro

sita

s (%

)

BI40-0 BI40-10 BI40-12BI40-14 BI40-16 BI40-18BI40-20

(b). Beton dengan w/c = 0,40

5

10

15

20

0 30 60 90 120 150 180 210 240 270 300 330

Lama intrusi (Hari)

Poro

sita

s (%

)

BI60-0 BI60-10 BI60-12BI60-14 BI60-16 BI60-18BI60-20

(c). Beton dengan w/c = 0,30

Gambar B.2. Grafik hubungan porositas versus lama intrusi mikroorganisme

290

5

10

15

20

25

0 30 60 90 120 150 180 210 240 270 300 330Umur/Lama intrusi (Hari)

Poro

sita

s (%

)

BNI25-0 BI25-0

0,0683,011 t.e −= e 0,0552,693 t.e e=

(a). Beton dengan w/c = 0,57

5

10

15

20

25

0 30 60 90 120 150 180 210 240 270 300 330Umur/Lama intrusi (Hari)

Poro

sita

s (%

)

BNI40-0 BI40-0

0,0942,925 t.e −= e 0,0202,607 t.e e=

(b). Beton dengan w/c = 0,40

5

10

15

20

0 30 60 90 120 150 180 210 240 270 300 330Umur/Lama intrusi (Hari)

Poro

sita

s (%

)

BNI60-0 BI60-0 0,0812,780 t.e −= e

0,0212,494 t.e e=

(c). Beton dengan w/c = 0,30

Gambar B.3. Grafik hubungan antara porositas versus umur/lama intrusi beton nonintrusi dan terintrusi mikroorganisme tanpa bubuk slag nikel

291

0

10

20

30

40

0 30 60 90 120 150 180 210 240 270 300 330Umur/Lama intrusi (Hari)

Poro

sita

s (%

)

BNI25-16 BI25-16

0,1993,265 t.e −= e -0,1262,996 t.e e=

(a). Beton dengan w/c = 0,57

5

10

15

20

25

0 30 60 90 120 150 180 210 240 270 300 330Umur/Lama intrusi (Hari)

Poro

sita

s (%

)

BNI40-16 BI40-16

0,1853,126 t.e −= e -0,1312,951 t.e e=

(b). Beton dengan w/c = 0,40

5

10

15

20

0 30 60 90 120 150 180 210 240 270 300 330Umur/Lama intrusi (Hari)

Poro

sita

s (%

)

BNI60-16 BI60-16

0,1903,032 t.e −= e -0,1502,909 t.e e=

(c). Beton dengan w/c = 0,30

Gambar B.4. Grafik hubungan antara porositas versus umur/lama intrusi beton nonintrusi dan terintrusi mikroorganisme dengan 16% bubuk slag nikel

292

4.0E-11

6.0E-11

8.0E-11

1.0E-10

0 30 60 90 120 150 180 210 240 270 300 330Umur (Hari)

Koe

f. pe

rmea

bilit

as (m

/dtk

) BNI25-0 BNI25-10 BNI25-12BNI25-14 BNI25-16 BNI25-18BNI25-20

(a). Beton dengan w/c = 0,57

1.0E-11

3.0E-11

5.0E-11

7.0E-11

9.0E-11

0 30 60 90 120 150 180 210 240 270 300 330Umur (Hari)

Koe

f. pe

rmea

bilit

as (m

/dtk

) BNI40-0 BNI40-10 BNI40-12BNI40-14 BNI40-16 BNI40-18BNI40-20

(b). Beton dengan w/c = 0,40

6.0E-12

1.6E-11

2.6E-11

3.6E-11

4.6E-11

0 30 60 90 120 150 180 210 240 270 300 330Umur (Hari)

Koe

f. pe

rmea

bilit

as (m

/dtk

) BNI60-0 BNI60-10 BNI60-12BNI60-14 BNI60-16 BNI60-18BNI60-20

(c). Beton dengan w/c = 0,30

Gambar B.5. Grafik hubungan antara koefisien permeabilitas versus umur beton

nonintrusi mikroorganisme

293

4.0E-11

6.0E-11

8.0E-11

1.0E-10

1.2E-10

0 30 60 90 120 150 180 210 240 270 300 330

Lama intrusi (Hari)

Koe

f. pe

rmea

bilit

as (m

/dtk

) BI25-0 BI25-10 BI25-12 BI25-14BI25-16 BI25-18 BI25-20

(a). Beton dengan w/c = 0,57

1.0E-11

3.0E-11

5.0E-11

7.0E-11

9.0E-11

1.1E-10

0 30 60 90 120 150 180 210 240 270 300 330

Lama intrusi (Hari)

Koe

f. pe

rmea

bilit

as (m

/dtk

) BI40-0 BI40-10 BI40-12 BI40-14BI40-16 BI40-18 BI40-20

(b). Beton dengan w/c = 0,40

5.0E-12

1.5E-11

2.5E-11

3.5E-11

4.5E-11

0 30 60 90 120 150 180 210 240 270 300 330

Lama intrusi (Hari)

Koe

f. pe

rmea

bilit

as (m

/dtk

) BI60-0 BI60-10 BI60-12 BI60-14BI60-16 BI60-18 BI60-20

(c). Beton dengan w/c = 0,30

Gambar B.6. Grafik hubungan antara koefisien permeabilitas versus lama intrusi

294

4.0E-11

6.0E-11

8.0E-11

1.0E-10

1.2E-10

0 30 60 90 120 150 180 210 240 270 300 330

Umur/Lama intrusi (Hari)

Koe

f. pe

rmea

bilit

as (m

/dtk

) BNI25-0

BI25-0

0.09222,949 tk −−= e

0.02623,258 tk −= e

(a). Beton dengan w/c = 0,57

1.0E-11

3.0E-11

5.0E-11

7.0E-11

9.0E-11

0 30 60 90 120 150 180 210 240 270 300 330

Umu/Lama intrusir (Hari)

Koe

f. pe

rmea

bilit

as (m

/dtk

)

BNI40-0

BI4-0 0.07623,309 tk −−= e

0.02123,547 tk −= e

(b). Beton dengan w/c = 0,40

6.0E-12

1.6E-11

2.6E-11

3.6E-11

4.6E-11

0 30 60 90 120 150 180 210 240 270 300 330

Umur/Lama intrusi (Hari)

Koe

f. pe

rmea

bilit

as (m

/dtk

)

BNI60-0

BI6-0 0.06524,020 tk −−= e0.02424,248 tk −= e

(c). Beton dengan w/c = 0,30

Gambar B.7. Grafik hubungan antara koefisien permeabilitas versus umur/lama intrusi beton nonintrusi dan terintrusi mikroorganisme tanpa bubuk slag nikel

295

4.0E-11

6.0E-11

8.0E-11

1.0E-10

0 30 60 90 120 150 180 210 240 270 300 330

Umur/Lama intrusi (Hari)

Koe

f. pe

rmea

bilit

as (m

/dtk

) BNI25-16

BI25-16

0.19422,656 tk −−= e

0.12222,918 tk −= e

(a). Beton dengan w/c = 0,57

1.0E-11

3.0E-11

5.0E-11

7.0E-11

9.0E-11

0 30 60 90 120 150 180 210 240 270 300 330

Umur/Lama intrusi (Hari)

Koe

f. pe

rmea

bilit

as (m

/dtk

) BNI40-16

BI40-16 0.35422,520 tk −−= e

0.25122,985 tk −= e

(b). Beton dengan w/c = 0,40

6.0E-12

1.6E-11

2.6E-11

3.6E-11

4.6E-11

0 30 60 90 120 150 180 210 240 270 300 330

Umur/Lama intrusi (Hari)

Koe

f. pe

rmea

bilit

as (m

/dtk

)

BNI60-16

BI6-16 0.41823,194 tk −−= e

0.23724,071 tk −= e

(c). Beton dengan w/c = 0,30

Gambar B.8. Grafik hubungan antara koefisien permeabilitas versus umur/lama intrusi beton nonintrusi dan terintrusi mikroorganisme dengan 16% bubuk slag nikel

296

0

10

20

30

40

0 30 60 90 120 150 180 210 240 270 300 330 360

Umur (Hari)

Kua

t tek

an (M

Pa)

BNI25-0 BNI25-10BNI25-12 BNI25-14BNI25-16 BNI25-18BNI25-20

(a). Beton dengan w/c = 0,57

0

10

20

30

40

50

60

0 30 60 90 120 150 180 210 240 270 300 330 360

Umur (Hari)

Kua

t tek

an (M

Pa)

BNI40-0 BNI40-10BNI40-12 BNI40-14BNI40-16 BNI40-18BNI40-20

(b). Beton dengan w/c = 0,40

01020304050607080

0 30 60 90 120 150 180 210 240 270 300 330 360

Umur (Hari)

Kua

t tek

an (M

Pa)

BNI60-0 BNI60-10BNI60-12 BNI60-14BNI60-16 BNI60-18BNI60-20

(c). Beton dengan w/c = 0,30

Gambar B.9. Grafik hubungan antara kuat tekan dan umur beton nonintrusi

mikroorganisme

297

10

15

20

25

30

0 30 60 90 120 150 180 210 240 270 300 330 360

Lama intrusi (Hari)

Kua

t tek

an (M

Pa)

BI25-0 BI25-10BI25-12 BI25-14BI25-16 BI25-18BI25-20

(a). Beton dengan w/c = 0,57

25

30

35

40

45

0 30 60 90 120 150 180 210 240 270 300 330 360

Lama intrusi (Hari)

Kua

t tek

an (M

Pa)

BI40-0 BI40-10BI40-12 BI40-14BI40-16 BI40-18BI40-20

(b). Beton dengan w/c = 0,40

40

45

50

55

60

65

0 30 60 90 120 150 180 210 240 270 300 330 360

Lama intrusi (Hari)

Kua

t tek

an (M

Pa)

BI60-0 BI60-10BI60-12 BI60-14BI60-16 BI60-18BI60-20

(c). Beton dengan w/c = 0,30

Gambar B.10. Grafik hubungan antara kuat tekan dan umur beton terintrusi

Mikroorganisme

298

0

10

20

30

40

0 30 60 90 120 150 180 210 240 270 300 330 360

Umur/Lama intrusi (Hari)

Kua

t tek

an (M

Pa)

BNI25-0BI25-0

⎟⎟⎠

⎞⎜⎜⎝

⎛+

=576,40,890t

t77,27fct0004,0

c ef 22,156−=

(a). w/c = 0,57

0

10

20

30

40

50

0 30 60 90 120 150 180 210 240 270 300 330 360

Umur/Lama intrusi (Hari)

Kua

t tek

an (M

Pa)

BNI40-0BI40-0

⎟⎟⎠

⎞⎜⎜⎝

⎛+

=199,30,913t

t23,41fc

t0002,0c e34,472 −=f

(b). w/c = 0,40

0

20

40

60

80

0 30 60 90 120 150 180 210 240 270 300 330 360

Umur/Lama intrusi (Hari)

Kua

t tek

an (M

Pa)

BNI60-0BI60-0

⎟⎟⎠

⎞⎜⎜⎝

⎛+

=651,20,921t

t32,61fct059E

c ef 53,475−−=

(c). w/c = 0,30

Gambar B.11. Grafik perbedaan kuat tekan beton nonintrusi dan terintrusi mikroorganisme tanpa menggunakan bubuk slag nikel

299

05

10152025303540

0 30 60 90 120 150 180 210 240 270 300 330 360

Umur/Lama intrusi (hari)

Kua

t tek

an (M

Pa)

BNI25-10 BI25-10

(a). w/c = 0,57

0

10

20

30

40

50

60

0 30 60 90 120 150 180 210 240 270 300 330 360

Umur/Lama intrusi (hari)

Kua

t tek

an (M

Pa)

BNI40-10 BI40-10

(b). w/c = 0,40

01020304050607080

0 30 60 90 120 150 180 210 240 270 300 330 360

Umur/Lama intrusi (hari)

Kua

t tek

an (M

Pa)

BNI60-10 BI60-10

(c). w/c = 0,30

Gambar B.12. Grafik perbedaan kuat tekan beton nonintrusi dan terintrusi

mikroorganisme untuk 10% bubuk slag nikel

300

05

10152025303540

0 30 60 90 120 150 180 210 240 270 300 330 360

Umur/Lama intrusi (hari)

Kua

t tek

an (M

Pa)

BNI25-12 BI25-12

(a). W/c = 0,57

0

10

20

30

40

50

60

0 30 60 90 120 150 180 210 240 270 300 330 360

Umur/Lama intrusi (hari)

Kua

t tek

an (M

Pa)

BNI40-12 BI40-12

(b). w/c = 0,40

01020304050607080

0 30 60 90 120 150 180 210 240 270 300 330 360

Umur/Lama intrusi (hari)

Kua

t tek

an (M

Pa)

BNI60-12 BI60-12

(c). w/c = 0,30

Gambar B.13. Grafik perbedaan kuat tekan beton nonintrusi dan terintrusi

mikroorganisme untuk 12% bubuk slag nikel

301

05

10152025303540

0 30 60 90 120 150 180 210 240 270 300 330 360

Umur/Lama intrusi (hari)

Kua

t tek

an (M

Pa)

BNI25-14 BI25-14

(a). w/c = 0,57

0

10

20

30

40

50

60

0 30 60 90 120 150 180 210 240 270 300 330 360

Umur/Lama intrusi (hari)

Kua

t tek

an (M

Pa)

BNI40-14 BI40-14

(b). w/c = 0,40

01020304050607080

0 30 60 90 120 150 180 210 240 270 300 330 360

Umur/Lama intrusi (hari)

Kua

t tek

an (M

Pa)

BNI60-14 BI60-14

(c). w/c = 0,30

Gambar B.14. Grafik perbedaan kuat tekan beton nonintrusi dan terintrusi

mikroorganisme untuk 14% bubuk slag nikel

302

0

10

20

30

40

0 30 60 90 120 150 180 210 240 270 300 330 360

Umur/Lama intrusi (Hari)

Kua

t tek

an (M

Pa)

BNI25-16

BI25-16⎟⎟⎠

⎞⎜⎜⎝

⎛+

=527,70,843t

t75,28f c

⎟⎟⎠

⎞⎜⎜⎝

⎛+

=151,10,713t

t49,19fc

(a). w/c = 0,57

0

10

20

30

40

50

60

0 30 60 90 120 150 180 210 240 270 300 330 360

Umur/Lama intrusi (Hari)

Kua

t tek

an (M

Pa)

BNI40-16

BI40-16

⎟⎟⎠

⎞⎜⎜⎝

⎛+

=032,60,848t

t17,42fc

⎟⎟⎠

⎞⎜⎜⎝

⎛+

=298,10,796t

t78,32fc

(b). w/c = 0,40

0

20

40

60

80

0 30 60 90 120 150 180 210 240 270 300 330 360

Umur/Lama intrusi (Hari)

Kua

t tek

an (M

Pa)

BNI60-16

BI60-16

⎟⎟⎠

⎞⎜⎜⎝

⎛+

=999,20,907t

t21,62fc ⎟⎟⎠

⎞⎜⎜⎝

⎛+

=957,00,892t

t09,56fc

(c). w/c = 0,30

Gambar B.15. Grafik perbedaan kuat tekan beton nonintrusi dan terintrusi mikroorganisme untuk 16% bubuk slag nikel

303

0

5

10

1520

25

30

35

0 30 60 90 120 150 180 210 240 270 300 330 360

Umur/Lama intrusi (hari)

Kua

t tek

an (M

Pa)

BNI25-18 BI25-18

(a). w/c = 0,57

0

10

20

30

40

50

60

0 30 60 90 120 150 180 210 240 270 300 330 360

Umur/Lama intrusi (hari)

Kua

t tek

an (M

Pa)

BNI40-18 BI40-18

(b). w/c = 0,40

01020304050607080

0 30 60 90 120 150 180 210 240 270 300 330 360

Umur/Lama intrusi (hari)

Kua

t tek

an (M

Pa)

BNI60-18 BI60-18

(c). w/c = 0,30

Gambar B.16. Grafik perbedaan kuat tekan beton nonintrusi dan terintrusi

mikroorganisme untuk 18% bubuk slag nikel

304

0

5

10

1520

25

30

35

0 30 60 90 120 150 180 210 240 270 300 330 360

Umur/Lama intrusi (hari)

Kua

t tek

an (M

Pa)

BNI25-20 BI25-20

(a). w/c = 0,57

0

10

20

30

40

50

60

0 30 60 90 120 150 180 210 240 270 300 330 360

Umur/Lama intrusi (hari)

Kua

t tek

an (M

Pa)

BNI40-20 BI40-20

(a). w/c = 0,40

01020304050607080

0 30 60 90 120 150 180 210 240 270 300 330 360

Umur/Lama intrusi (hari)

Kua

t tek

an (M

Pa)

BNI60-20 BI60-20

(c). w/c = 0,30

Gambar B.17. Grafik perbedaan kuat tekan beton nonintrusi dan terintrusi

mikroorganisme untuk 20% bubuk slag nikel

305

y = -0.0101x2 + 0.2812x + 22.18R2 = 0.5774

y = -0.0069x2 + 0.1461x + 27.691R2 = 0.4871

20

25

30

0 5 10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

Nonintrusi Terintrusi

(a). Beton dengan w/c = 0,57

y = -0.0131x2 + 0.2374x + 41.108R2 = 0.5461

y = -0.0184x2 + 0.4115x + 34.528R2 = 0.5849

34

37

40

43

0 5 10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

Nonintrusi Terintrusi

(b). Beton dengan w/c = 0,40

y = -0.0044x2 + 0.1024x + 61.23R2 = 0.2929

y = -0.0235x2 + 0.6085x + 53.157R2 = 0.5912

48

53

58

63

0 5 10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

Nonintrusi Terintrusi

(c). Beton dengan w/c = 0,30

Gambar B.18. Grafik hubungan antara kuat tekan beton dengan prosentase bubuk slag nikel pada umur 28 hari

306

y = -0.0066x2 + 0.1889x + 28.414R2 = 0.6517

y = -0.0125x2 + 0.4063x + 21.441R2 = 0.8201

20

25

30

35

0 5 10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

Nonintrusi Terintrusi

(a). Beton dengan w/c = 0,57

y = -0.0059x2 + 0.1511x + 42.911R2 = 0.433

y = -0.0182x2 + 0.5173x + 34.322R2 = 0.8223

32

36

40

44

48

0 5 10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

Nonintrusi Terintrusi

(b). Beton dengan w/c = 0,40

y = -0.016x2 + 0.3425x + 62.989R2 = 0.7238

y = -0.0356x2 + 0.9522x + 53R2 = 0.8253

52

56

60

64

68

0 5 10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

Nonintrusi Terintrusi

(c). Beton dengan w/c = 0,30

Gambar B.19. Grafik hubungan antara kuat tekan beton dengan prosentase bubuk slag nikel pada umur 56 hari

307

(a). Beton dengan w/c = 0,57

y = -0.0099x2 + 0.259x + 28.772R2 = 0.7735

y = -0.0162x2 + 0.4976x + 21.254R2 = 0.8262

20

25

30

35

0 5 10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

Nonintrusi Terintrusi

(b). Beton dengan w/c = 0,40

y = -0.0065x2 + 0.2137x + 43.039R2 = 0.694

y = -0.0201x2 + 0.5977x + 34.066R2 = 0.8708

32

36

40

44

48

0 5 10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

Nonintrusi Terintrusi

(c). Beton dengan w/c = 0,30

y = -0.0138x2 + 0.3038x + 63.559R2 = 0.7369

y = -0.0377x2 + 1.0156x + 52.82R2 = 0.835

52

56

60

64

68

0 5 10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

Nonintrusi Terintrusi

Gambar B.20. Grafik hubungan antara kuat tekan beton dengan prosentase bubuk

slag nikel pada umur 90 hari

308

(a). Beton dengan w/c = 0,57

y = -0.0093x2 + 0.2505x + 29.283R2 = 0.7336

y = -0.018x2 + 0.5576x + 21.086R2 = 0.8535

20

25

30

35

0 5 10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

Nonintrusi Terintrusi

(b). Beton dengan w/c = 0,40

y = -0.0036x2 + 0.1603x + 43.786R2 = 0.6197

y = -0.0243x2 + 0.7005x + 33.864R2 = 0.8577

32

36

40

44

48

0 5 10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

Nonintrusi Terintrusi

(c). Beton dengan w/c = 0,30

y = -0.0112x2 + 0.27x + 64.056R2 = 0.8253

y = -0.0377x2 + 1.0395x + 52.69R2 = 0.8382

52

56

60

64

68

0 5 10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

Nonintrusi Terintrusi

Gambar B.21. Grafik hubungan antara kuat tekan beton dengan prosentase bubuk

slag nikel pada umur 120 hari

309

(a). Beton dengan w/c = 0,57

y = -0.0103x2 + 0.2789x + 29.605R2 = 0.808

y = -0.0186x2 + 0.5961x + 20.964R2 = 0.8852

20

25

30

35

0 5

Nonintrusi Terintrusi

10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

y = -0.0045x2 + 0.1887x + 44.259R2 = 0.6895

y = -0.0123x2 + 0.5745x + 33.765R2 = 0.9578

32

36

40

44

48

0 5

Nonintrusi Terintrusi

10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

(b). Beton dengan w/c = 0,40

y = -0.0098x2 + 0.2332x + 64.658R2 = 0.9359

y = -0.039x2 + 1.083x + 52.564R2 = 0.8468

52

56

60

64

68

0 5

Nonintrusi Terintrusi

10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

(c). Beton dengan w/c = 0,30

Gambar B.22. Grafik hubungan antara kuat tekan beton dengan prosentase bubuk slag nikel pada umur 150 hari

310

y = -0.0113x2 + 0.3x + 29.954R2 = 0.8007

y = -0.0214x2 + 0.6734x + 20.723R2 = 0.9125

20

25

30

35

0 5 10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

Nonintrusi Terintrusi

(a). Beton dengan w/c = 0,57

y = -0.0073x2 + 0.2606x + 44.44R2 = 0.78

y = -0.0291x2 + 0.856x + 33.469R2 = 0.8944

32

36

40

44

48

0 5 10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

Nonintrusi Terintrusi

(b). Beton dengan w/c = 0,40

y = -0.0102x2 + 0.2358x + 65.167R2 = 0.7914

y = -0.0394x2 + 1.1095x + 52.392R2 = 0.8574

52

56

60

64

68

0 5 10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

Nonintrusi Terintrusi Poly. (Nonintrusi) Poly. (Terintrusi)

(c). Beton dengan w/c = 0,30

Gambar B.23. Grafik hubungan antara kuat tekan beton dengan prosentase bubuk slag nikel pada umur 180 hari

311

y = -0.0129x2 + 0.3388x + 30.199R2 = 0.833

y = -0.0235x2 + 0.7363x + 20.574R2 = 0.9118

20

25

30

35

0 5 10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

Nonintrusi Terintrusi

(a). Beton dengan w/c = 0,57

y = -0.0115x2 + 0.3445x + 44.67R2 = 0.8722

y = -0.0308x2 + 0.9168x + 33.308R2 = 0.917

32

36

40

44

48

52

0 5 10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

Nonintrusi Terintrusi

(a). Beton dengan w/c = 0,40

y = -0.0093x2 + 0.2468x + 65.341R2 = 0.8887

y = -0.0407x2 + 1.1517x + 52.265R2 = 0.8694

52

56

60

64

68

72

0 5 10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

Nonintrusi Terintrusi

(a). Beton dengan w/c = 0,30

Gambar B.24. Grafik hubungan antara kuat tekan beton dengan prosentase bubuk slag nikel pada umur 210 hari

312

y = -0.0157x2 + 0.395x + 30.442R2 = 0.8238

y = -0.0253x2 + 0.7874x + 20.44R2 = 0.9088

20

25

30

35

0 5 10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

Nonintrusi Terintrusi

(a). Beton dengan w/c = 0,57 e

y = -0.0103x2 + 0.3788x + 44.792R2 = 0.9252

y = -0.0339x2 + 0.999x + 33.119R2 = 0.9125

32

36

40

44

48

52

0 5 10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

Nonintrusi Terintrusi

(b). Beton dengan w/c = 0,40

y = -0.0105x2 + 0.2758x + 65.689R2 = 0.75

y = -0.0416x2 + 1.1822x + 52.177R2 = 0.8773

50

54

58

62

66

70

0 5 10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

Nonintrusi Terintrusi Poly. (Nonintrusi) Poly. (Terintrusi)

(c). Beton dengan w/c = 0,30 Gambar B.25. Grafik hubungan antara kuat tekan beton dengan prosentase bubuk

slag nikel pada umur 240 hari

313

y = -0.0175x2 + 0.429x + 30.611R2 = 0.8336

y = -0.0262x2 + 0.8209x + 20.273R2 = 0.9176

15

20

25

30

35

40

0 5 10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

Nonintrusi Terintrusi

(a). Beton dengan w/c = 0,57

y = -0.009x2 + 0.3651x + 44.998R2 = 0.9241

y = -0.0355x2 + 1.047x + 32.905R2 = 0.9184

30

34

38

42

46

50

0 5 10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

Nonintrusi Terintrusi

(b). Beton dengan w/c = 0,40

y = -0.0082x2 + 0.2342x + 66.145R2 = 0.6866

y = -0.0429x2 + 1.2219x + 52.043R2 = 0.8896

50

54

58

62

66

70

0 5 10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

Nonintrusi Terintrusi

(c). Beton dengan w/c = 0,30 Gambar B.26. Grafik hubungan antara kuat tekan beton dengan prosentase bubuk

slag nikel pada umur 270 hari

314

y = -0.0211x2 + 0.4906x + 30.858R2 = 0.8195

y = -0.0282x2 + 0.8835x + 19.853R2 = 0.932

15

20

25

30

35

40

0 5 10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

Nonintrusi Terintrusi

(a). Beton dengan w/c = 0,57

y = -0.0107x2 + 0.4015x + 45.183R2 = 0.9373

y = -0.0365x2 + 1.0817x + 32.7R2 = 0.9285

30

34

38

42

46

50

0 5 10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

Nonintrusi Terintrusi

(b). Beton dengan w/c = 0,40

y = -0.0106x2 + 0.2888x + 66.33R2 = 0.6791

y = -0.0437x2 + 1.2461x + 51.954R2 = 0.8919

50

54

58

62

66

70

0 5 10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

Nonintrusi Terintrusi

(c). Beton dengan w/c = 0,30

Gambar B.27. Grafik hubungan antara kuat tekan beton dengan prosentase bubuk slag nikel pada umur 300 hari

315

y = -0.022x2 + 0.4955x + 31.191R2 = 0.7723

y = -0.0303x2 + 0.9442x + 19.476R2 = 0.943

15

20

25

30

35

40

0 5 10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

Nonintrusi Terintrusi

(a). Beton dengan w/c = 0,57

y = -0.0114x2 + 0.4089x + 45.43R2 = 0.9225

y = -0.0379x2 + 1.1244x + 32.452R2 = 0.9359

30

34

38

42

46

50

0 5 10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

Nonintrusi Terintrusi

(b). Beton dengan w/c = 0,57

y = -0.01x2 + 0.2624x + 66.813R2 = 0.6841

y = -0.0444x2 + 1.2664x + 51.87R2 = 0.8965

50

54

58

62

66

70

0 5 10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

Nonintrusi Terintrusi

(c). Beton dengan w/c = 0,57

Gambar B.28. Grafik hubungan antara kuat tekan beton dengan prosentase bubuk slag nikel pada umur 330 hari

316

y = -0.0221x2 + 0.4872x + 31.485R2 = 0.7517

y = -0.0315x2 + 0.9871x + 19.185R2 = 0.9502

15

20

25

30

35

40

0 5 10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

Nonintrusi Terintrusi

(a). Beton dengan w/c = 0,57

y = -0.0129x2 + 0.4264x + 45.752R2 = 0.9494

y = -0.0389x2 + 1.1532x + 32.284R2 = 0.9403

30

34

38

42

46

50

54

0 5 10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

Nonintrusi Terintrusi

(b). Beton dengan w/c = 0,40

y = -0.0107x2 + 0.2757x + 66.915R2 = 0.7632

y = -0.0453x2 + 1.2951x + 51.705R2 = 0.9041

50

54

58

62

66

70

0 5 10 15 20

Bubuk slag nikel (%)

Kua

t tek

an (M

Pa)

Nonintrusi Terintrusi

(c). Beton dengan w/c = 0,30 Gambar B.29. Grafik hubungan antara kuat tekan beton dengan prosentase bubuk

slag nikel pada umur 360 hari

317

1.E+00

1.E+02

1.E+04

1.E+06

14 42 70 98 126 154 182 210 238 266 294 322 350Lama intrusi (hari)

C/b

inde

r (cf

u/gr

)

D = 0 - 25 mm D = 25 - 50 mm D = 50 - 75 mm

Gambar B.30. Grafik hubungan antara total koloni mikroorganisme versus

lama intrusi untuk BI25-0

1.E+00

1.E+02

1.E+04

1.E+06

14 42 70 98 126 154 182 210 238 266 294 322 350Lama intrusi (hari)

C/bi

nder

(cfu

/gr)

D = 0 - 25 mm D = 25 - 50 mm D = 50 - 75 mm

Gambar B.31. Grafik hubungan antara total koloni mikroorganisme versus

lama intrusi untuk BI25-10

1.E+00

1.E+02

1.E+04

1.E+06

14 42 70 98 126 154 182 210 238 266 294 322 350Lama intrusi (hari)

C/b

inde

r (cf

u/gr

)

D = 0 - 25 mm D = 25 - 50 mm D = 50 - 75 mm

Gambar B.32. Grafik hubungan antara total koloni mikroorganisme versus

lama intrusi untuk BI25-12

318

1.E+00

1.E+02

1.E+04

1.E+06

14 42 70 98 126 154 182 210 238 266 294 322 350Lama intrusi (hari)

C/b

inde

r (cf

u/gr

)

D = 0 - 25 mm D = 25 - 50 mm D = 50 - 75 mm

Gambar B.33. Grafik hubungan antara total koloni mikroorganisme versus

lama intrusi untuk BI25-14

1.E+00

1.E+02

1.E+04

1.E+06

14 42 70 98 126 154 182 210 238 266 294 322 350Lama intrusi (hari)

C/b

inde

r (cf

u/gr

)

D = 0 - 25 mm D = 25 - 50 mm D = 50 - 75 mm

Gambar B.34. Grafik hubungan antara total koloni mikroorganisme versus

lama intrusi untuk BI25-16

1.E+00

1.E+02

1.E+04

1.E+06

14 42 70 98 126 154 182 210 238 266 294 322 350Lama intrusi (hari)

C/b

inde

r (cf

u/gr

)

D = 0 - 25 mm D = 25 - 50 mm D = 50 - 75 mm

Gambar B.35. Grafik hubungan antara total koloni mikroorganisme versus

lama intrusi untuk BI25-18

319

1.E+00

1.E+02

1.E+04

1.E+06

14 42 70 98 126 154 182 210 238 266 294 322 350Lama intrusi (hari)

C/b

inde

r (cf

u/gr

)

D = 0 - 25 mm D = 25 - 50 mm D = 50 - 75 mm

Gambar B.36. Grafik hubungan antara total koloni mikroorganisme versus

lama intrusi untuk BI25-20

1.E+00

1.E+02

1.E+04

1.E+06

14 42 70 98 126 154 182 210 238 266 294 322 350Lama intrusi (hari)

C/b

inde

r (cf

u/gr

)

D = 0 - 25 mm D = 25 - 50 mm D = 50 - 75 mm

Gambar B.37. Grafik hubungan antara total koloni mikroorganisme versus

lama intrusi untuk BI40-0

1.E+00

1.E+02

1.E+04

1.E+06

14 42 70 98 126 154 182 210 238 266 294 322 350Lama intrusi (hari)

C/b

inde

r (cf

u/gr

)

D = 0 - 25 mm D = 25 - 50 mm D = 50 - 75 mm

Gambar B.38. Grafik hubungan antara total koloni mikroorganisme versus

lama intrusi untuk BI40-10

320

1.0E+00

1.0E+02

1.0E+04

1.0E+06

14 42 70 98 126 154 182 210 238 266 294 322 350Lama intrusi (hari)

C/b

inde

r (cf

u/gr

)

D = 0 - 25 mm D = 25 - 50 mm D = 50 - 75 mm

Gambar B.39. Grafik hubungan antara total koloni mikroorganisme versus

lama intrusi untuk BI40-12

1.0E+00

1.0E+02

1.0E+04

1.0E+06

14 42 70 98 126 154 182 210 238 266 294 322 350Lama intrusi (hari)

C/b

inde

r (cf

u/gr

)

D = 0 - 25 mm D = 25 - 50 mm D = 50 - 75 mm

Gambar B.40. Grafik hubungan antara total koloni mikroorganisme versus

lama intrusi untuk BI40-14

1.E+00

1.E+02

1.E+04

1.E+06

14 42 70 98 126 154 182 210 238 266 294 322 350Lama intrusi (hari)

C/b

inde

r (cf

u/gr

)

D = 0 - 25 mm D = 25 - 50 mm D = 50 - 75 mm

Gambar B.41. Grafik hubungan antara total koloni mikroorganisme versus

lama intrusi untuk BI40-16

321

1.E+00

1.E+02

1.E+04

1.E+06

14 42 70 98 126 154 182 210 238 266 294 322 350Lama intrusi (hari)

C/b

inde

r (cf

u/gr

)

D = 0 - 25 mm D = 25 - 50 mm D = 50 - 75 mm

Gambar B.42. Grafik hubungan antara total koloni mikroorganisme versus

lama intrusi untuk BI40-18

1.E+00

1.E+02

1.E+04

1.E+06

14 42 70 98 126 154 182 210 238 266 294 322 350Lama intrusi (hari)

C/b

inde

r (cf

u/gr

)

D = 0 - 25 mm D = 25 - 50 mm D = 50 - 75 mm

Gambar B.43. Grafik hubungan antara total koloni mikroorganisme versus

lama intrusi untuk BI40-20

1.E+00

1.E+02

1.E+04

1.E+06

14 42 70 98 126 154 182 210 238 266 294 322 350Lama intrusi (hari)

C/b

inde

r (cf

u/gr

)

D = 0 - 25 mm D = 25 - 50 mm D = 50 - 75 mm

Gambar B.44. Grafik hubungan antara total koloni mikroorganisme versus

lama intrusi untuk BI60-0

322

1.E+00

1.E+02

1.E+04

1.E+06

14 42 70 98 126 154 182 210 238 266 294 322 350Lama intrusi (hari)

C/b

inde

r (cf

u/gr

)

D = 0 - 25 mm D = 25 - 50 mm D = 50 - 75 mm

Gambar B.45. Grafik hubungan antara total koloni mikroorganisme versus

lama intrusi untuk BI60-10

1.E+00

1.E+02

1.E+04

1.E+06

14 42 70 98 126 154 182 210 238 266 294 322 350Lama intrusi (hari)

C/b

inde

r (cf

u/gr

)

D = 0 - 25 mm D = 25 - 50 mm D = 50 - 75 mm

Gambar B.46. Grafik hubungan antara total koloni mikroorganisme versus

lama intrusi untuk BI60-12

1.E+00

1.E+02

1.E+04

1.E+06

14 42 70 98 126 154 182 210 238 266 294 322 350Lama intrusi (hari)

C/b

inde

r (cf

u/gr

)

D = 0 - 25 mm D = 25 - 50 mm D = 50 - 75 mm

Gambar B.47. Grafik hubungan antara total koloni mikroorganisme versus

lama intrusi untuk BI60-14

323

1.E+00

1.E+02

1.E+04

1.E+06

14 42 70 98 126 154 182 210 238 266 294 322 350Lama intrusi (hari)

C/b

inde

r (cf

u/gr

)

D = 0 - 25 mm D = 25 - 50 mm D = 50 - 75 mm

Gambar B.48. Grafik hubungan antara total koloni mikroorganisme versus

lama intrusi untuk BI60-16

1.E+00

1.E+02

1.E+04

1.E+06

14 42 70 98 126 154 182 210 238 266 294 322 350Lama intrusi (hari)

C/b

inde

r (cf

u/gr

)

D = 0 - 25 mm D = 25 - 50 mm D = 50 - 75 mm

Gambar B.49. Grafik hubungan antara total koloni mikroorganisme versus

lama intrusi untuk BI60-18

1.E+00

1.E+02

1.E+04

1.E+06

14 42 70 98 126 154 182 210 238 266 294 322 350Lama intrusi (hari)

C/b

inde

r (cf

u/gr

)

D = 0 - 25 mm D = 25 - 50 mm D = 50 - 75 mm

Gambar B.50. Grafik hubungan antara total koloni mikroorganisme versus

lama intrusi untuk BI60-20

324

9

10

11

12

13

14

14 42 70 98 126 154 182 210 238 266 294 322 350

Waktu (hari)

pH b

eton

BI25-0 BI25-10 BI25-12 BI25-14BI25-16 BI25-18 BI25-20

(a). D = 0 – 25 mm

10

11

12

13

14

14 42 70 98 126 154 182 210 238 266 294 322 350Waktu (hari)

pH b

eton

BI25-0 BI25-10 BI25-12 BI25-14BI25-16 BI25-18 BI25-20

(b). D = 25 – 50 mm

10

11

12

13

14

14 42 70 98 126 154 182 210 238 266 294 322 350Waktu (hari)

pH b

eton

BI25-0 BI25-10 BI25-12 BI25-14BI25-16 BI25-18 BI25-20

(c). D = 50 – 75 mm

Gambar B.51. Perubahan pH akibat intrusi mikroorganisme pada beton dengan

w/c = 0,57

325

10

11

12

13

14

14 42 70 98 126 154 182 210 238 266 294 322 350Waktu (hari)

pH b

eton

BI40-0 BI40-10 BI40-12 BI40-14BI40-16 BI40-18 BI40-20

(a). D = 0 – 25 mm

11

12

13

14

14 42 70 98 126 154 182 210 238 266 294 322 350Waktu (hari)

pH b

eton

BI40-0 BI40-10 BI40-12 BI40-14BI40-16 BI40-18 BI40-20

(b). D = 25 – 50 mm

11

12

13

14

14 42 70 98 126 154 182 210 238 266 294 322 350Waktu (hari)

pH b

eton

BI40-0 BI40-10 BI40-12 BI40-14BI40-16 BI40-18 BI40-20

(c). D = 50 – 75 mm

Gambar B.52. Perubahan pH akibat intrusi mikroorganisme pada beton dengan

w/c = 0,57

326

11

12

13

14

14 42 70 98 126 154 182 210 238 266 294 322 350Waktu (hari)

pH b

eton

BI60-0 BI60-10 BI60-12 BI60-14BI60-16 BI25-18 BI60-20

(a). D = 0 – 25 mm

11

12

13

14

14 42 70 98 126 154 182 210 238 266 294 322 350Waktu (hari)

pH b

eton

BI60-0 BI60-10 BI60-12 BI60-14BI60-16 BI60-18 BI60-20

(b). D = 25 – 50 mm

11

12

13

14

14 42 70 98 126 154 182 210 238 266 294 322 350Waktu (hari)

pH b

eton

BI60-0 BI60-10 BI60-12 BI60-14BI60-16 BI60-18 BI60-20

(c). D = 50 – 75 mm

Gambar B.53. Perubahan pH akibat intrusi mikroorganisme pada beton dengan

w/c = 0,57

327

2.0

3.0

4.0

5.0

6.0

0 2 4 6 8 10 12 14 16 18 20

Bubuk slag nikel (%)

Kua

t tar

ik b

elah

, T (M

Pa) w/c = 0,57 w/c = 0,40 w/c = 0,30

(a). Beton nonintrusi mikroorganisme

2.0

3.0

4.0

5.0

6.0

0 2 4 6 8 10 12 14 16 18 20

Bubuk slag nikel (%)

Kua

t tar

ik b

elah

, T (M

Pa) w/c = 0,57 w/c = 0,40 w/c = 0,30

(b). Beton terintrusi mikroorganisme

Gambar B.54. Grafik hubungan kuat tarik belah versus prosentase bubuk slag

nikel pada umur 28 hari

328

2.0

2.5

3.0

3.5

0 2 4 6 8 10 12 14 16 18 20Bubuk slag nikel (%)

Kua

t tar

ik b

elah

, T (M

Pa) Nonintrusif Intrusif

(a). Beton dengan w/c = 0,57

3.0

3.5

4.0

4.5

0 2 4 6 8 10 12 14 16 18 2Bubuk slag nikel (%)

Kua

t tar

ik b

elah

, T (M

Pa

0

) Nonintrusif Intrusif

(b). Beton dengan w/c = 0,40

4.0

4.5

5.0

5.5

0 2 4 6 8 10 12 14 16 18 20Bubuk slag nikel (%)

Kua

t tar

ik b

elah

, T (M

Pa) Nonintrusif Intrusif

(c). Beton dengan w/c = 0,30

Gambar B.55. Perbedaan kuat tarik belah antara beton nonintrusi dan terintrusi

Mikroorganisme

329

3.0

4.0

5.0

6.0

7.0

8.0

0 2 4 6 8 10 12 14 16 18 20Bubuk slag nikel (%)

Kua

t tar

ik le

ntur

, R (M

Pa) w/c = 0,57 w/c = 0,40 w/c = 0,30

(a). Beton nonintrusi mikroorganisme

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0 2 4 6 8 10 12 14 16 18 20Bubuk slag nikel (%)

Kua

t tar

ik le

ntur

, R (M

Pa) w/c = 0,57 w/c = 0,40 w/c = 0,30

(b). Beton terintrusi mikroorganisme

Gambar B.56. Grafik hubungan kuat tarik lentur versus prosentase bubuk slag

nikel pada umur 28 hari

330

2.0

2.5

3.0

3.5

4.0

4.5

0 2 4 6 8 10 12 14 16 18 2Bubuk slag nikel (%)

Kua

t tar

ik le

ntur

, R (M

Pa

0

)Nonintrusif Intrusif

(a). Beton dengan w/c = 0,57

3.0

3.5

4.0

4.5

5.0

5.5

0 2 4 6 8 10 12 14 16 18 20Bubuk slag nikel (%)

Kua

t tar

ik le

ntur

, R (M

Pa)

Nonintrusif Intrusif

(b). Beton dengan w/c = 0,40

5.0

5.5

6.0

6.5

7.0

0 2 4 6 8 10 12 14 16 18 20Bubuk slag nikel (%)

Kua

t tar

ik le

ntr,

R (M

Pa) Nonintrusif Intrusif

(c). Beton dengan w/c = 0,30

Gambar B.57. Perbedaan kuat tarik lentur antara beton nonintrusi dan terintrusi

mikroorganisme

331

0

5

10

15

20

25

30

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007Regangan (mm/mm)

Tega

ngan

(M

Pa)

BNI25-0

BNI25-16

(a). Beton dengan w/c = 0,57

05

101520253035404550

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007Regangan (mm/mm)

Tega

ngan

(M

Pa)

BNI40-0

BNI40-16

(b). Beton dengan w/c = 0,40

0

10

20

30

40

50

60

70

0.000 0.001 0.002 0.003 0.004 0.005 0.006Regangan (mm/mm)

Tega

ngan

(M

Pa)

BNI60-0

BNI60-16

(c). Beton dengan w/c = 0,30

Gambar B.58. Grafik hubungan tegangan-regangan beton nonintrusi

mikroorganisme tanpa dan dengan 16% bubuk slag nikel

332

0

5

10

15

20

25

30

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007Regangan (mm/mm)

Tega

ngan

(M

Pa)

BI25-0

BI25-16

(a). Beton dengan w/c = 0,57

05

1015202530354045

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007Regangan (mm/mm)

Tega

ngan

(M

Pa)

BI40-0

BI40-16

(b). Beton dengan w/c = 0,40

0

10

20

30

40

50

60

70

0.000 0.001 0.002 0.003 0.004 0.005 0.006Regangan (mm/mm)

Tega

ngan

(M

Pa)

BI60-0

BI60-16

(c). Beton dengan w/c = 0,30

Gambar B.59. Grafik hubungan tegangan-regangan beton terintrusi

mikroorganisme tanpa dan dengan 16% bubuk slag nikel

333

0

5

10

15

20

25

30

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

Regangan (mm/mm)

Tega

ngan

(M

Pa)

DataThorenfeldtModifikasiHognestad

(a). Beton dengan w/c = 0,57 (BNI25-0)

05

1015202530354045

0.000 0.001 0.002 0.003 0.004 0.005 0.006Regangan (mm/mm)

Tega

ngan

(M

Pa)

DataThorenfeldtModifikasiHognestad

(b). Beton dengan w/c = 0,40 (BNI40-0)

0

10

20

30

40

50

60

70

0.000 0.001 0.002 0.003 0.004 0.005

Regangan (mm/mm)

Tega

ngan

(M

Pa)

DataThorenfeldtModifikasiHognestad

(c). Beton dengan w/c = 0,30 (BNI60-0)

Gambar B.60. Model konstitutif hubungan tegangan-regangan beton

nonintrusi mikroorganisme tanpa bubuk slag nikel

334

0

5

10

15

20

25

30

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007

Regangan (mm/mm)

Tega

ngan

(M

Pa)

DataThorenfeldtModifikasiHognestad

(a). Beton dengan w/c = 0,57 (BNI25-16)

05

101520253035404550

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007

Regangan (mm/mm)

Tega

ngan

(M

Pa)

DataThorenfeldtModifikasiHognestad

(b). Beton dengan w/c = 0,40 (BNI40-16)

0

10

20

30

40

50

60

70

0.000 0.001 0.002 0.003 0.004 0.005

Regangan (mm/mm)

Tega

ngan

(M

Pa)

DataThorenfeldtModifikasiHognestad

(c). Beton dengan w/c = 0,30 (BNI60-16)

Gambar B.61. Model konstitutif hubungan tegangan-regangan beton

nonintrusi mikroorganisme dengan 16% bubuk slag nikel

335

0

5

10

15

20

25

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

Regangan (mm/mm)

Tega

ngan

(M

Pa)

DataThorenfeldtModifikasiHognestad

(a). Beton dengan w/c = 0,57 (BI25-0)

05

1015202530

3540

0.000 0.001 0.002 0.003 0.004 0.005 0.006

Regangan (mm/mm)

Tega

ngan

(M

Pa)

DataThorenfeldtModifikasiHognestad

(b). Beton dengan w/c = 0,40 (BI40-0)

0

10

20

30

40

50

60

70

0.000 0.001 0.002 0.003 0.004 0.005

Regangan (mm/mm)

Tega

ngan

(M

Pa)

DataThorenfeldtModifikasiHognestad

(c). Beton dengan w/c = 0,30 (BI60-0)

Gambar B.62. Model konstitutif hubungan tegangan-regangan beton

terintrusi mikroorganisme tanpa bubuk slag nikel

336

0

5

10

15

20

25

30

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007

Regangan (mm/mm)

Tega

ngan

(M

Pa)

DataThorenfeldtModifikasiHognestad

(a). Beton dengan w/c = 0,57 (BI25-0)

05

101520253035404550

0.000 0.001 0.002 0.003 0.004 0.005 0.006

Regangan (mm/mm)

Tega

ngan

(M

Pa)

DataThorenfeldtModifikasiHognestad

(b). Beton dengan w/c = 0,40 (BI40-0)

0

10

20

30

40

50

60

70

0.000 0.001 0.002 0.003 0.004 0.005

Regangan (mm/mm)

Tega

ngan

(M

Pa)

DataThorenfeldtModifikasiHognestad

(c). Beton dengan w/c = 0,30 (BI60-0)

Gambar B.63. Model konstitutif hubungan tegangan-regangan beton

terintrusi mikroorganisme dengan 16% bubuk slag nikel

337

5.0E+03

1.5E+04

2.5E+04

3.5E+04

4.5E+04

0 5 10 15 20Bubuk slag nikel (%)

Mod

ulus

ela

stisit

as, E

c (M

Pa) w/c=0,57 w/c=0,40 w/c=0,30

(a). Beton nonintrusi mikroorganisme

5.0E+03

1.5E+04

2.5E+04

3.5E+04

4.5E+04

0 5 10 15 20Bubuk slag nikel (%)

Mod

ulus

ela

stisit

as, E

c (M

Pa)

w/c=0,57 w/c=0,40 w/c=0,30

(b). Beton terintrusi mikroorganisme

Gambar B.64. Grafik hubungan antara modulus elastisitas beton dengan

prosentase bubuk slag nikel

19.2117.21

11.129.85

4.015.41

0

5

10

15

20

25

w/c=0,66 w/c=0,46 w/c=0,35Rasio air semen (w/c)

Penu

runa

n m

odul

us e

lasti

sitas

(%)

Tanpa bubuk slag nikel 16% bubuk slag nikel

Gambar B.65. Grafik penurunan modulus elastisitas akibat intrusi

mikroorganisme

338

LAMPIRAN C

DATA PENGUJIAN X-RAY DIFFARCTION

339

35

45

55

65

75

14 42 70 98 126 154 182

Umur (hari)

CSH

(%)

BNI25-0 BNI25-10BNI25-16 BNI25-18

(a). D = 0 – 25 mm

30

40

50

60

70

80

14 42 70 98 126 154 182

Umur (hari)

CSH

(%)

BNI25-0 BNI25-10BNI25-16 BNI25-18

(b). D = 25 – 50 mm

30

40

50

60

70

80

14 42 70 98 126 154 182

Umur (hari)

CSH

(%)

BNI25-0 BNI25-10BNI25-16 BNI25-18

(c). D = 50 – 75 mm

Gambar C.1. Grafik hubungan CSH versus umur beton nonintrusi

mikroorganisme untuk w/c = 0,57

340

30

40

50

60

70

80

0 28 56 84 112 140 168

Lama intrusi (hari)

CSH

(%)

BI25-0 BI25-10BI25-16 BI25-18

(a). D = 0 – 25 mm

30

40

50

60

70

80

0 28 56 84 112 140 168

Lama intrusi (hari)

CSH

(%)

BI25-0 BI25-10BI25-16 BI25-18

(b). D = 25 – 50 mm

30

40

50

60

70

80

0 28 56 84 112 140

Lama intrusi (hari)

CSH

(%)

168

BI25-0 BI25-10BI25-16 BI25-18

(c). D = 50 – 75 mm

Gambar C.2. Grafik hubungan CSH versus lama intrusi untuk beton

w/c = 0,57

341

30

40

50

60

70

80

14 42 70 98 126 154 182

Umur (hari)

CSH

(%)

BNI40-0 BNI40-10BNI40-16 BNI40-18

(a). D = 0 – 25 mm

30

40

50

60

70

80

14 42 70 98 126 154 182

Umur (hari)

CSH

(%)

BNI40-0 BNI40-10BNI40-16 BNI40-18

(b). D = 25 – 50 mm

40

50

60

70

80

14 42 70 98 126 154 182

Umur (hari)

CSH

(%)

BNI40-0 BNI40-10BNI40-16 BNI40-18

(c). d = 50 – 75 mm

Gambar C.3. Grafik hubungan CSH versus umur beton nonintrusi

mikroorganisme untuk w/c = 0,40

342

35

45

55

65

75

0 28 56 84 112 140 168

Lama intrusi (hari)

CSH

(%)

BI40-0 BI40-10

BI40-16 BI40-18

(a). D = 0 – 25 mm

30

40

50

60

70

80

0 28 56 84 112 140 168

Lama intrusi (hari)

CSH

(%)

BI40-0 BI40-10BI40-16 BI40-18

(b). D = 25 – 50 mm

40

50

60

70

80

0 28 56 84 112 140 168

Lama intrusi (hari)

CSH

(%)

BI40-0 BI40-10BI40-16 BI40-18

(c). D = 50 – 75 mm

Gambar C.4. Grafik hubungan CSH versus lama intrusi untuk beton

w/c = 0,40

343

40

50

60

70

80

14 42 70 98 126 154 182

Umur (hari)

CSH

(%)

BNI60-0 BNI60-10BNI60-16 BNI60-18

(a). D = 0 – 25 mm

40

50

60

70

80

14 42 70 98 126 154 182

Umur (hari)

CSH

(%)

BNI60-0 BNI60-10BNI60-16 BNI60-18

(b). D = 25 – 50 mm

35

45

55

65

75

14 42 70 98 126 154 182

Umur (hari)

CSH

(%)

BNI60-0 BNI60-10BNI60-16 BNI60-18

(c). D = 50 – 75 mm

Gambar C.5. Grafik hubungan CSH versus umur beton nonintrusi

mikroorganisme untuk w/c = 0,30

344

40

50

60

70

80

0 28 56 84 112 140 168

Lama intrusi (hari)

CSH

(%)

BI60-0 BI60-10BI60-16 BI60-18

(a). D = 0 – 25 mm

40

50

60

70

80

0 28 56 84 112 140 168

Lama intruis (hari)

CSH

(%)

BI60-0 BI60-10BI60-16 BI60-18

(b). D = 25 – 50 mm

40

50

60

70

80

0 28 56 84 112 140 168

Lama intrusi (hari)

CSH

(%)

BI60-0 BI60-10BI60-16 BI60-18

(c). D = 50 – 75 mm

Gambar C.6. Grafik hubungan CSH versus lama intrusi untuk beton

w/c = 0,30

345

10

20

30

40

14 42 70 98 126 154 182

Umur (hari)

CH

(%)

BNI25-0 BNI25-10BNI25-16 BNI25-18

(a). D = 0 – 25 mm

10

20

30

40

14 42 70 98 126 154 182

Umur (hari)

CH

(%)

BNI25-0 BNI25-10BNI25-16 BNI25-18

(b). D = 25 – 50 mm

10

20

30

40

14 42 70 98 126 154 182

Umur (hari)

CH

(%)

BNI25-0 BNI25-10BNI25-16 BNI25-18

(c). D = 50 – 75 mm

Gambar C.7. Grafik hubungan CH versus umur beton nonintrusi

mikroorganisme untuk w/c = 0,57

346

10

20

30

40

14 42 70 98 126 154 182

Umur (hari)

CH

(%)

BNI40-0 BNI40-10BNI40-16 BNI40-18

(a). D = 0 – 25 mm

10

20

30

40

14 42 70 98 126 154 182

Umur (hari)

CH

(%)

BNI40-0 BNI40-10BNI40-16 BNI40-18

(b). D = 25 – 50 mm

10

20

30

40

14 42 70 98 126 154 182

Umur (hari)

CH

(%)

BNI40-0 BNI40-10BNI40-16 BNI40-18

(c). D = 50 – 75 mm

Gambar C.8. Grafik hubungan CH versus umur beton nonintrusi

mikroorganisme untuk w/c = 0,40

347

10

20

30

40

14 42 70 98 126 154 182

Umur (hari)

CH

(%)

BNI60-0 BNI60-10BNI60-16 BNI60-18

(a). D = 0 – 25 mm

10

20

30

40

14 42 70 98 126 154 182

Umur (hari)

CH

(%)

BNI60-0 BNI60-10

BNI60-16 BNI60-18

(b). D = 25 – 50 mm

10

20

30

40

14 42 70 98 126 154 182

Umur (hari)

CH

(%)

BNI60-0 BNI60-10BNI60-16 BNI60-18

(c). D = 50 – 75 mm

Gambar C.9. Grafik hubungan CH versus umur beton nonintrusi

mikroorganisme untuk w/c = 0,30

348

0

10

20

30

0 28 56 84 112 140 168

Lama intrusi (hari)

CH

(%)

BI25-0 BI25-10BI25-16 BI25-18

(a). D = 0 – 25 mm

0

10

20

30

40

0 28 56 84 112 140 168

Lama intrusi (hari)

CH

(%)

BI25-0 BI25-10BI25-16 BI25-18

(b). D = 25 – 50 mm

0

10

20

30

40

0 28 56 84 112 140 168

Lama intrusi (hari)

CH

(%)

BI25-0 BI25-10BI25-16 BI25-18

(c). D = 50 – 75 mm

Gambar C.10. Grafik hubungan CH versus lama intrusi mikroorganisme

untuk beton w/c = 0,57

349

0

10

20

30

0 28 56 84 112 140 168

Lama intrusi (hari)

CH

(%)

BI40-0 BI40-10BI40-16 BI40-18

(a). D = 0 – 25 mm

0

10

20

30

40

0 28 56 84 112 140 168

Lama intrusi (hari)

CH

(%)

BI40-0 BI40-10BI40-16 BI40-18

(b). D = 25 – 50 mm

0

10

20

30

0 28 56 84 112 140 168

Lama intrusi (hari)

CH

(%)

BI40-0 BI40-10BI40-16 BI40-18

(c). D = 50 – 75 mm

Gambar C.11. Grafik hubungan CH versus lama intrusi mikroorganisme

untuk beton w/c = 0,40

350

0

10

20

30

0 28 56 84 112 140 168

Lama intrusi (hari)

CH

(%)

BI60-0 BI60-10BI60-16 BI60-18

(a). D = 0 – 25 mm

0

10

20

30

0 28 56 84 112 140 168

Lama intrusi (hari)

CH

(%)

BI60-0 BI60-10BI60-16 BI60-18

(b). D = 25 – 50 mm

0

10

20

30

0 28 56 84 112 140 168

Lama intrusi (hari)

CH

(%)

BI60-0 BI60-10BI6-16 BI60-18

(c). D = 50 – 75 mm

Gambar C.12. Grafik hubungan CH versus lama intrusi mikroorganisme

untuk beton w/c = 0,30

351

0

2

4

6

8

14 42 70 98 126 154 182

Umur (hari)

Cal

cite

(%)

BNI25-0 BNI25-10BNI25-16 BNI25-18

(a). D = 0 – 25 mm

0

2

4

6

8

14 42 70 98 126 154 182

Umur (hari)

Cal

cite

(%)

BNI25-0 BNI25-10BNI25-16 BNI25-18

(b). D = 25 – 50 mm

0

2

4

6

8

14 42 70 98 126 154 182

Umur (hari)

Cal

cite

(%)

BNI25-0 BNI25-10BNI25-16 BNI25-18

(c). D = 50 – 75 mm

Gambar C.13. Grafik hubungan Calcite versus umur beton nonintrusi

mikroorganisme untuk w/c = 0,57

352

0

2

4

6

8

14 42 70 98 126 154 182

Umur (hari)

Cal

cite

(%)

BNI40-0 BNI40-10BNI40-16 BNI40-18

(a). D = 0 – 25 mm

0

2

4

6

8

14 42 70 98 126 154 182

Umur (hari)

Cal

cite

(%)

BNI40-0 BNI40-10BNI40-16 BNI40-18

(b). D = 25 – 50 mm

0

2

4

6

14 42 70 98 126 154 182

Umur (hari)

Cal

cite

(%)

BNI40-0 BNI40-10BNI40-16 BNI40-18

(c). D = 50 – 75 mm

Gambar C.14. Grafik hubungan Calcite versus umur beton nonintrusi

mikroorganisme untuk w/c = 0,40

353

0

2

4

6

8

14 42 70 98 126 154 182

Umur (hari)

Cal

cite

(%)

BNI60-0 BNI60-10BNI60-16 BNI60-18

(a). D = 0 – 25 mm

0

2

4

6

8

14 42 70 98 126 154 182

Umur (hari)

Cal

cite

(%)

BNI60-0 BNI60-10BNI60-16 BNI60-18

(b). D = 25 – 50 mm

0

2

4

6

8

14 42 70 98 126 154 182

Umur (hari)

Cal

cite

(%)

BNI60-0 BNI60-10BNI60-16 BNI60-18

(c). D = 50 – 75 mm

Gambar C.15. Grafik hubungan Calcite versus umur beton nonintrusi

mikroorganisme untuk w/c = 0,30

354

4

6

8

10

0 28 56 84 112 140 168

Lama intrusi (hari)

Cal

cite

(%)

BI25-0 BI25-10BI25-16 BI25-18

(a). D = 0 – 25 mm

4

5

6

7

8

0 28 56 84 112 140 168

Lama intrusi (hari)

Cal

cite

(%)

BI25-0 BI25-10BI25-16 BI25-18

(b). D = 25 – 50 mm

4

5

6

7

0 28 56 84 112 140 168

Lama intrusi (hari)

Cal

cite

(%)

BI25-0 BI25-10BI25-16 BI25-18

(c). D = 50 – 75 mm

Gambar C.16. Grafik hubungan Calcite versus lama intrusi mikroorganisme

untuk beton w/c = 0,57

355

4

5

6

7

8

0 28 56 84 112 140 168

Lama intrusi (hari)

Cal

cite

(%)

BI40-0 BI40-10BI40-16 BI40-18

(a). D = 0 – 25 mm

4

5

6

7

8

0 28 56 84 112 140 168

Lama intrusi (hari)

Cal

cite

(%)

BI40-0 BI40-10BI40-16 BI40-18

(b). D = 25 – 50 mm

3

4

5

6

7

0 28 56 84 112 140 168

Lama intrusi (hari)

Cal

cite

(%)

BI40-0 BI40-10BI40-16 BI40-18

(c). D = 50 – 75 mm

Gambar C.17. Grafik hubungan Calcite versus lama intrusi mikroorganisme

untuk beton w/c = 0,40

356

4

5

6

7

8

0 28 56 84 112 140 168

Lama intrusi (hari)

Cal

cite

(%)

BI60-0 BI60-10BI60-16 BI60-18

(a). D = 0 – 25 mm

3

5

7

9

0 28 56 84 112 140 168

Lama intrusi (hari)

Cal

cite

(%)

BI60-0 BI60-10BI60-16 BI60-18

(b). D = 25 – 50 mm

3

4

5

6

7

0 28 56 84 112 140 168

Lama intrusi (hari)

Cal

cite

(%)

BI60-0 BI60-10BI60-16 BI60-18

(c). D = 50 – 75 mm

Gambar C.18. Grafik hubungan Calcite versus lama intrusi mikroorganisme

untuk beton w/c = 0,30

357

0

4

8

12

16

14 42 70 98 126 154 182

Umur (hari)

Ettri

ngite

(%) BNI25-0 BNI25-10

BNI25-16 BNI25-18

(a). D = 0 – 25 mm

0

5

10

15

14 42 70 98 126 154 182

Umur (hari)

Ettri

ngite

(%)

BNI25-0 BNI25-10BNI25-16 BNI25-18

(b). D = 25 – 50 mm

3

6

9

12

14 42 70 98 126 154 182

Umur (hari)

Ettri

ngite

(%)

BNI25-0 BNI25-10BNI25-16 BNI25-18

(c). D = 50 – 75 mm

Gambar C.19. Grafik hubungan Ettringite versus umur beton nonintrusi

mikroorganisme untuk w/c = 0,57

358

3

6

9

12

15

14 42 70 98 126 154 182

Umur (hari)

Ettri

ngite

(%)

BNI40-0 BNI40-10BNI40-16 BNI40-18

(a). D = 0 – 25 mm

4

6

8

10

12

14 42 70 98 126 154 182

Umur (hari)

Ettri

ngite

(%)

BNI40-0 BNI40-10BNI40-16 BNI40-18

(b). D = 25 – 50 mm

4

7

10

13

14 42 70 98 126 154 182

Umur (hari)

Ettri

ngite

(%)

BNI40-0 BNI40-10

BNI40-16 BNI40-18

(c). D = 50 – 75 mm

Gambar C.20. Grafik hubungan Ettringite versus umur beton nonintrusi

mikroorganisme untuk w/c = 0,40

359

3

6

9

12

15

14 42 70 98 126 154 182

Umur (hari)

Ettri

ngite

(%)

BNI60-0 BNI60-10BNI60-16 BNI60-18

(a). D = 0 – 25 mm

3

6

9

12

15

14 42 70 98 126 154 182

Umur (hari)

Ettri

ngite

(%)

BNI60-0 BNI60-10BNI60-16 BNI60-18

(b). D = 25 – 50 mm

3

6

9

12

15

14 42 70 98 126 154 182

Umur (hari)

Ettri

ngite

(%)

BNI60-0 BNI60-10BNI60-16 BNI60-18

(c). D = 50 – 75 mm

Gambar C.21. Grafik hubungan Ettringite versus umur beton nonintrusi

mikroorganisme untuk w/c = 0,30

360

5

10

15

20

0 28 56 84 112 140 168

Lama intrusi (hari)

Ettri

ngite

(%)

BI25-0 BI25-10BI25-16 BI25-18

(a). D = 0 – 25 mm

0

5

10

15

20

0 28 56 84 112 140 168

Lama intrusi (hari)

Ettri

ngite

(%)

BI25-0 BI25-10BI25-16 BI25-18

(b). D = 25 – 50 mm

6

8

10

12

14

0 28 56 84 112 140 168

Lama intrusi (hari)

Ettri

ngite

(%)

BI25-0 BI25-10BI25-16 BI25-18

(c). D = 50 – 75 mm

Gambar C.22. Grafik hubungan Ettringite versus lama intrusi mikroorganisme

untuk beton w/c = 0,57

361

7

9

11

13

15

0 28 56 84 112 140 168

Lama intrusi (hari)

Ettri

ngite

(%)

BI40-0 BI40-10BI40-16 BI40-18

(a). D = 0 – 25 mm

8

10

12

14

0 28 56 84 112 140 168

Lama intrusi (hari)

Ettri

ngite

(%)

BI40-0 BI40-10BI40-16 BI40-18

(b). D = 25 – 50 mm

6

8

10

12

14

0 28 56 84 112 140 168

Lama intrusi (hari)

Ettri

ngite

(%)

BI40-0 BI40-10BI40-16 BI40-18

(c). D = 50 – 75 mm

Gambar C.23. Grafik hubungan Ettringite versus lama intrusi mikroorganisme

untuk beton w/c = 0,40

362

8

10

12

14

16

0 28 56 84 112 140 168

Lama intrusi (hari)

Ettri

ngite

(%)

BI60-0 BI60-10

BI60-16 BI60-18

(a). D = 0 – 25 mm

4

7

10

13

16

0 28 56 84 112 140 168

Lama intrusi (hari)

Ettri

ngite

(%)

BI60-0 BI60-10BI60-16 BI60-18

(b). D = 25 – 50 mm

8

10

12

14

0 28 56 84 112 140 168

Lama intrusi (hari)

Ettri

ngite

(%)

BI60-0 BI60-10BI60-16 BI60-18

(c). D = 50 – 75 mm

Gambar C.24. Grafik hubungan Ettringite versus lama intrusi mikroorganisme

untuk beton w/c = 0,30

363

Tabel C.1.a. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton nonintrusi mikroorganisme tanpa bubuk slag nikel (BNI25-0) pada kedalaman 0–25 mm

Kuat

tekan CH CSH Calc CMA E SiO2 Q A T R H(hari (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

1 14 18.30 26.0 44.2 6.3 7.4 12.5 0.0 0.0 0.0 3.6 0.0 0.02 28 22.08 28.2 48.8 5.1 7.2 8.5 0.0 0.0 0.0 2.2 0.0 0.03 56 27.77 29.1 52.1 4.2 5.2 7.4 0.0 0.0 0.0 1.9 0.0 0.04 90 28.49 30.1 55.0 3.6 3.8 5.9 0.0 0.0 0.0 1.6 0.0 0.05 120 28.83 31.0 56.6 3.3 2.9 4.8 0.0 0.0 0.0 1.4 0.0 0.06 180 29.98 31.4 57.9 2.8 2.5 4.2 0.0 0.0 0.0 1.2 0.0 0.0

UmurNoIdentifikasi X-Ray Diffraction

Tabel C.1.b. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton nonintrusi mikroorganisme tanpa bubuk slag nikel (BNI25-0) pada kedalaman 25–50 mm

Kuattekan CH CSH Calc CMA E SiO2 Q A T R H

(hari (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)1 14 18.30 26.2 44.7 6.0 7.7 11.5 0.0 0.0 0.0 3.8 0.0 0.02 28 22.08 27.8 48.7 5.3 7.2 7.3 0.0 1.4 0.0 2.3 0.0 0.03 56 27.77 28.8 52.8 4.2 5.6 6.9 0.0 0.0 0.0 1.7 0.0 0.04 90 28.49 29.5 55.4 3.1 4.6 6.2 0.0 0.0 0.0 1.2 0.0 0.05 120 28.83 30.7 56.9 2.6 3.7 4.9 0.0 0.0 0.0 1.2 0.0 0.06 180 29.98 31.1 57.7 2.3 3.3 4.5 0.0 0.0 0.0 1.1 0.0 0.0

No UmurIdentifikasi X-Ray Diffraction

Tabel C.1.c. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton nonintrusi mikroorganisme tanpa bubuk slag nikel (BNI25-0) pada kedalaman 50–75 mm

Kuattekan CH CSH Calc CMA E SiO2 Q A T R H

(hari (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)1 14 18.30 27.0 45.1 5.2 8.1 10.1 0.0 0.0 0.0 2.5 0.0 0.02 28 22.08 27.7 49.1 4.6 6.5 8.7 0.0 1.2 0.0 2.2 0.0 0.03 56 27.77 29.1 53.0 3.9 5.4 7.0 0.0 0.0 0.0 1.5 0.0 0.04 90 28.49 29.2 56.0 3.0 4.2 6.4 0.0 0.0 0.0 1.2 0.0 0.05 120 28.83 30.4 56.7 2.4 3.3 6.0 0.0 0.0 0.0 1.2 0.0 0.06 180 29.98 31.3 57.2 2.1 2.7 5.5 0.0 0.0 0.0 1.1 0.0 0.0

No UmurIdentifikasi X-Ray Diffraction

Tabel C.2.a. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton nonintrusi mikroorganisme dengan 16% bubuk slag nikel (BNI25-16) pada kedalaman 0–25 mm

Kuat

tekan CH CSH Calc CMA E SiO2 Q A T R H(hari (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

1 14 14.27 14.9 58.6 5.8 5.8 9.7 0.0 2.1 1.7 0.0 1.4 0.02 28 19.49 15.9 60.6 4.5 5.5 8.0 0.0 2.6 1.5 0.0 0.0 1.53 56 28.75 16.3 64.4 3.2 4.8 6.8 0.0 3.1 0.0 0.0 0.0 1.44 90 30.11 16.9 67.2 2.7 3.4 5.7 0.0 2.9 0.0 0.0 0.0 1.25 120 30.79 17.5 68.9 2.3 3.2 4.9 0.0 2.3 0.0 0.0 0.0 0.96 180 32.06 17.8 69.8 2.2 2.6 4.5 0.0 2.1 0.0 0.0 0.0 1.0

No UmurIdentifikasi X-Ray Diffraction

364

Tabel C.2.b. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton nonintrusi mikroorganisme dengan 16% bubuk slag nikel (BNI25-16) pada kedalaman 25–50 mm

Kuattekan CH CSH Calc CMA E SiO2 Q A T R H

(hari (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)1 14 14.27 15.0 59.1 5.6 5.1 8.8 0.0 2.6 0.0 1.9 0.0 1.92 28 19.49 16.1 61.5 5.0 4.8 8.3 0.0 2.5 0.0 1.8 0.0 0.03 56 28.75 16.6 64.2 3.5 4.5 6.0 0.0 2.6 0.0 1.4 0.0 1.24 90 30.11 17.2 66.8 2.6 3.7 5.8 0.0 2.6 0.0 1.3 0.0 0.05 120 30.79 17.7 68.3 1.9 3.2 4.2 0.0 2.2 0.0 0.8 0.0 0.06 180 32.06 17.9 70.0 1.8 3.2 4.1 0.0 2.1 0.0 0.8 0.0 0.0

No UmurIdentifikasi X-Ray Diffraction

Tabel C.2.c. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton nonintrusi mikroorganisme dengan 16% bubuk slag nikel (BNI25-16) pada kedalaman 50–75 mm

Kuattekan CH CSH Calc CMA E SiO2 Q A T R H

(hari (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)1 14 14.27 15.6 59.2 4.8 7.5 9.0 0.0 3.8 0.0 0.0 0.0 0.02 28 19.49 16.9 61.6 4.3 6.8 8.3 0.0 0.0 0.0 2.1 0.0 0.03 56 28.75 17.2 63.6 2.6 5.7 6.9 0.0 2.0 0.0 1.8 0.0 0.04 90 30.11 17.9 67.7 2.4 3.9 5.2 0.0 1.3 0.0 1.7 0.0 0.05 120 30.79 18.2 68.5 1.8 3.7 5.2 0.0 1.2 0.0 1.5 0.0 0.06 180 32.06 17.2 70.1 1.8 3.5 4.9 0.0 1.0 0.0 1.4 0.0 0.0

No UmurIdentifikasi X-Ray Diffraction

Tabel C.3.a. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton terintrusi mikroorganisme tanpa bubuk slag nikel (BI25-0) pada kedalaman 0–25 mm

Lama Total Kuat

intrusi koloni tekan CH CSH Calc CMA E SiO2 Q A T R H(hari) (cfu/gr) Cairan Beton (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

1 0 0.0E+00 22.08 26.0 44.2 6.3 7.4 12.5 0.0 0.0 0.0 3.6 0.0 0.02 14 7.0E+01 3.7 12.4 22.34 21.8 44.9 6.8 9.5 12.5 0.0 0.0 0.0 0.0 4.5 0.03 42 2.6E+02 3.6 12.3 21.57 18.4 46.1 6.8 10.1 12.8 0.0 0.9 0.0 0.0 4.8 0.04 76 9.8E+02 3.8 12.1 21.40 15.9 47.7 7.0 10.2 12.9 0.0 1.1 0.0 0.0 5.2 0.05 106 2.1E+03 3.7 11.9 21.23 13.7 49.6 7.4 10.6 13.1 0.0 0.0 0.0 0.0 5.6 0.06 136 4.7E+03 3.5 11.6 21.10 11.7 50.5 7.5 10.6 13.2 0.0 0.9 0.0 0.0 5.7 0.07 166 3.1E+04 3.6 11.3 20.85 10.3 51.2 7.8 11.1 13.6 0.0 0.0 0.0 0.0 5.9 0.0

Identifikasi X-Ray DiffractionNo pH

Tabel C.3.b. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton terintrusi mikroorganisme tanpa bubuk slag nikel (BI25-0) pada kedalaman 25–50 mm

Lama Total Kuatintrusi koloni tekan CH CSH Calc CMA E SiO2 Q A T R H(hari) (cfu/gr) Cairan Beton (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

1 0 0.0E+00 22.08 26.2 44.7 6.0 7.7 11.5 0.0 0.0 0.0 3.8 0.0 0.02 14 3.0E+01 3.7 12.6 22.34 23.0 46.6 6.1 8.0 12.0 0.0 0.0 0.0 0.0 4.3 0.03 42 8.0E+01 3.6 12.5 21.57 20.0 48.8 6.2 8.4 12.2 0.0 0.0 0.0 0.0 4.4 0.04 76 1.5E+02 3.8 12.4 21.40 17.2 50.0 6.3 8.5 12.3 0.0 1.3 0.0 0.0 4.5 0.05 106 3.7E+02 3.7 12.2 21.23 15.3 52.0 6.4 8.7 12.7 0.0 0.0 0.0 0.0 4.9 0.06 136 8.1E+02 3.5 12.0 21.10 13.2 53.4 6.5 8.9 12.9 0.0 0.0 0.0 0.0 5.1 0.07 166 1.6E+03 3.6 11.8 20.85 11.3 54.6 6.7 9.0 13.1 0.0 0.0 0.0 0.0 5.3 0.0

No pHIdentifikasi X-Ray Diffraction

365

Tabel C.3.c. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton terintrusi mikroorganisme tanpa bubuk slag nikel (BI25-0) pada kedalaman 50–75 mm

Lama Total Kuatintrusi koloni tekan CH CSH Calc CMA E SiO2 Q A T R H(hari) (cfu/gr) Cairan Beton (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

1 0 0.0E+00 22.08 27.0 45.1 5.2 8.1 10.1 0.0 0.0 0.0 2.5 0.0 0.02 14 0.0E+00 3.7 12.8 22.34 25.3 47.1 5.4 8.3 10.2 0.0 0.0 0.0 0.0 3.7 0.03 42 0.0E+00 3.6 12.8 21.57 21.4 50.2 5.5 8.5 10.5 0.0 0.0 0.0 0.0 3.8 0.04 76 0.0E+00 3.8 12.7 21.40 17.7 51.6 5.6 8.6 10.7 0.0 1.8 0.0 0.0 4.0 0.05 106 3.2E+01 3.7 12.6 21.23 16.7 53.7 5.7 8.8 10.9 0.0 0.0 0.0 0.0 4.1 0.06 136 6.0E+01 3.5 12.3 21.10 14.5 55.2 5.9 9.0 11.1 0.0 0.0 0.0 0.0 4.3 0.07 166 1.7E+02 3.6 12.0 20.85 12.6 55.4 6.2 9.5 11.7 0.0 0.0 0.0 0.0 4.5 0.0

No pHIdentifikasi X-Ray Diffraction

Tabel C.4.a. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton terintrusi mikroorganisme dengan 16% bubuk slag nikel (BI25-16) pada kedalaman 0–25 mm

Lama Total Kuat

intrusi koloni tekan CH CSH Calc CMA E SiO2 Q A T R H(hari) (cfu/gr) Cairan Beton (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

1 0 0.0E+00 19.49 14.9 58.6 5.8 5.8 9.7 0.0 2.1 1.7 0.0 1.4 0.02 14 0.0E+00 4.0 13.1 24.93 13.4 59.8 5.9 6.0 9.4 1.1 1.1 0.0 0.0 2.1 1.13 42 3.0E+01 4.0 13.1 25.52 10.7 61.8 5.9 5.9 9.2 1.0 1.2 1.1 0.0 2.2 1.04 76 1.4E+02 3.9 13.1 25.94 9.7 64.1 6.4 6.5 9.4 0.0 0.0 0.0 0.0 2.4 1.45 106 3.6E+02 3.9 12.8 26.28 7.9 66.5 6.1 6.1 8.1 0.9 0.9 0.0 0.0 2.5 1.16 136 3.3E+02 3.9 12.7 26.54 6.2 67.9 6.4 6.3 7.8 0.9 0.8 0.0 0.0 2.6 1.07 166 1.7E+03 3.8 12.5 26.75 5.5 68.5 6.3 6.4 7.8 0.9 0.9 0.0 0.0 2.7 1.0

pHIdentifikasi X-Ray Diffraction

No

Tabel C.4.b. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton terintrusi mikroorganisme dengan 16% bubuk slag nikel (BI25-16) pada kedalaman 25–50 mm

Lama Total Kuatintrusi koloni tekan CH CSH Calc CMA E SiO2 Q A T R H(hari) (cfu/gr) Cairan Beton (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

1 0 0.0E+00 19.49 15.0 59.1 5.6 5.1 8.8 0.0 2.6 0.0 1.9 0.0 1.92 14 0.0E+00 4.0 13.2 24.93 14.6 61.0 5.7 5.9 8.8 0.0 2.0 0.0 0.0 2.0 0.03 42 0.0E+00 4.0 13.2 25.52 12.6 63.0 5.8 5.9 8.6 0.0 1.8 0.0 0.0 2.3 0.04 76 0.0E+00 3.9 13.2 25.94 10.0 65.2 6.1 6.3 8.2 0.0 0.0 0.8 0.0 2.4 0.95 106 2.0E+01 3.9 13.0 26.28 7.8 67.3 6.1 6.1 7.5 1.3 1.5 0.0 0.0 2.4 0.06 136 6.0E+01 3.9 13.0 26.54 6.9 68.4 6.1 6.2 7.3 1.2 1.4 0.0 0.0 2.5 0.07 166 2.6E+02 3.8 12.8 26.75 6.2 69.1 6.2 6.3 7.2 1.1 1.2 0.0 0.0 2.6 0.0

No pHIdentifikasi X-Ray Diffraction

Tabel C.4.c. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton terintrusi mikroorganisme dengan 16% bubuk slag nikel (BI25-16) pada kedalaman 50–75 mm

Lama Total Kuatintrusi koloni tekan CH CSH Calc CMA E SiO2 Q A T R H(hari) (cfu/gr) Cairan Beton (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

1 0 0.0E+00 19.49 15.6 59.2 4.8 7.5 9.0 0.0 3.8 0.0 0.0 0.0 0.02 14 0.0E+00 4.0 13.2 24.93 14.5 61.3 4.8 6.6 8.5 1.5 1.0 0.0 0.0 1.8 0.03 42 0.0E+00 4.0 13.2 25.52 13.3 63.1 5.4 7.2 8.9 0.0 0.0 0.0 0.0 2.2 0.04 76 0.0E+00 3.9 13.2 25.94 9.6 66.4 5.5 7.1 8.3 0.0 0.0 0.0 0.0 2.2 0.85 106 0.0E+00 3.9 13.1 26.28 8.5 67.6 5.6 7.3 7.8 0.0 1.0 0.0 0.0 2.3 0.06 136 0.0E+00 3.9 13.0 26.54 7.2 68.1 5.7 7.6 7.4 0.8 0.9 0.0 0.0 2.4 0.07 166 0.0E+00 3.8 12.8 26.75 6.2 69.5 5.6 7.5 6.6 0.8 0.7 0.8 0.0 2.4 0.0

No pHIdentifikasi X-Ray Diffraction

366

Tabel C.5.a. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton nonintrusi mikroorganisme tanpa bubuk slag nikel (BNI40-0) pada kedalaman 0–25 mm

Kuattekan CH CSH Calc CMA E SiO2 Q A T R H

(hari (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)1 14 28.41 24.5 45.7 6.0 6.9 11.6 0.0 5.2 0.0 0.0 0.0 0.02 28 33.59 27.7 49.3 4.6 5.1 9.9 0.0 3.5 0.0 0.0 0.0 0.03 56 41.23 28.8 52.4 3.7 4.5 8.3 0.0 2.4 0.0 0.0 0.0 0.04 90 43.01 29.2 55.5 2.8 3.7 6.8 0.0 1.9 0.0 0.0 0.0 0.05 120 43.14 29.8 56.8 2.5 3.3 6.3 0.0 1.4 0.0 0.0 0.0 0.06 180 44.54 30.2 58.3 2.2 3.1 5.0 0.0 1.2 0.0 0.0 0.0 0.0

UmurIdentifikasi X-Ray Diffraction

No

Tabel C.5.b. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton nonintrusi mikroorganisme tanpa bubuk slag nikel (BNI40-0) pada kedalaman 25–50 mm

Kuattekan CH CSH Calc CMA E SiO2 Q A T R H

(hari (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)1 14 28.41 25.2 46.9 5.5 6.6 10.7 0.0 5.1 0.0 0.0 0.0 0.02 28 33.59 28.2 49.4 4.0 6.1 10.3 0.0 1.9 0.0 0.0 0.0 0.03 56 41.23 28.6 52.7 3.1 4.7 9.2 0.0 1.6 0.0 0.0 0.0 0.04 90 43.01 29.0 56.2 2.3 3.8 6.6 0.0 1.0 0.0 0.0 1.1 0.05 120 43.14 29.5 57.0 2.0 3.5 5.9 0.0 0.9 0.0 0.0 1.1 0.06 180 44.54 29.7 57.8 1.9 3.3 5.4 0.0 0.8 0.0 0.0 1.1 0.0

UmurIdentifikasi X-Ray Diffraction

No

Tabel C.5.c. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton nonintrusi mikroorganisme tanpa bubuk slag nikel (BNI40-0) pada kedalaman 50–75 mm

Kuattekan CH CSH Calc CMA E SiO2 Q A T R H

(hari (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)1 14 28.41 25.9 46.7 5.2 8.6 11.8 0.0 1.8 0.0 0.0 0.0 0.02 28 33.59 28.0 50.1 3.8 5.8 10.1 0.0 1.1 0.0 0.0 1.1 0.03 56 41.23 29.1 53.3 2.9 5.6 9.1 0.0 0.0 0.0 0.0 0.0 0.04 90 43.01 29.2 56.7 2.0 3.8 6.8 0.0 0.7 0.0 0.0 0.7 0.05 120 43.14 29.7 57.6 1.9 3.7 5.8 0.0 0.7 0.0 0.0 0.7 0.06 180 44.54 30.0 58.0 1.8 3.5 5.2 0.0 0.7 0.0 0.0 0.7 0.0

No UmurIdentifikasi X-Ray Diffraction

Tabel C.6.a. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton nonintrusi mikroorganisme dengan 16% bubuk slag nikel (BNI40-16) pada kedalaman 0–25 mm

Kuattekan CH CSH Calc CMA E SiO2 Q A T R H

(hari (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)1 14 23.82 15.3 59.4 5.2 8.5 9.9 0.0 0.0 1.9 0.0 0.0 0.02 28 32.78 15.7 61.3 4.1 7.4 8.4 1.7 1.3 0.0 0.0 0.0 0.03 56 42.17 16.4 66.1 3.2 5.7 7.1 1.6 0.0 0.0 0.0 0.0 0.04 90 44.37 17.0 67.9 2.9 3.9 7.0 1.4 0.0 0.0 0.0 0.0 0.05 120 45.39 17.9 70.3 2.4 3.2 5.0 1.2 0.0 0.0 0.0 0.0 0.06 180 47.18 18.4 71.0 2.2 2.9 4.4 1.1 0.0 0.0 0.0 0.0 0.0

No UmurIdentifikasi X-Ray Diffraction

367

Tabel C.6.b. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton nonintrusi mikroorganisme dengan 16% bubuk slag nikel (BNI40-16) pada kedalaman 25–50 mm

Kuattekan CH CSH Calc CMA E SiO2 Q A T R H

(hari (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)1 14 23.82 15.9 59.8 4.7 7.7 10.0 0.0 0.0 1.9 0.0 0.0 0.02 28 32.78 16.4 61.8 3.8 7.3 9.3 1.5 0.0 0.0 0.0 0.0 0.03 56 42.17 16.7 65.5 3.0 6.3 8.4 0.0 0.0 0.0 0.0 0.0 0.04 90 44.37 17.1 67.3 2.9 4.3 7.3 1.2 0.0 0.0 0.0 0.0 0.05 120 45.39 17.5 69.2 2.3 3.5 6.4 1.0 0.0 0.0 0.0 0.0 0.06 180 47.18 18.0 70.7 2.2 3.2 5.9 0.0 0.0 0.0 0.0 0.0 0.0

UmurIdentifikasi X-Ray Diffraction

No

Tabel C.6.c. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton nonintrusi mikroorganisme dengan 16% bubuk slag nikel (BNI40-16) pada kedalaman 50–75 mm

Kuattekan CH CSH Calc CMA E SiO2 Q A T R H

(hari (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)1 14 23.82 16.4 60.3 4.2 8.0 11.0 0.0 0.0 0.0 0.0 0.0 0.02 28 32.78 16.9 62.2 3.5 6.8 9.0 1.6 0.0 0.0 0.0 0.0 0.03 56 42.17 17.3 65.5 2.9 5.8 8.5 0.0 0.0 0.0 0.0 0.0 0.04 90 44.37 17.8 66.1 2.6 5.0 7.4 1.0 0.0 0.0 0.0 0.0 0.05 120 45.39 18.0 68.2 2.0 4.3 6.4 1.0 0.0 0.0 0.0 0.0 0.06 180 47.18 18.8 70.1 2.0 3.3 5.9 0.0 0.0 0.0 0.0 0.0 0.0

No UmurIdentifikasi X-Ray Diffraction

Tabel C.7.a. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton terintrusi mikroorganisme tanpa bubuk slag nikel (BI40-0) pada kedalaman 0–25 mm

Lama Total Kuatintrusi koloni tekan CH CSH Calc CMA E SiO2 Q A T R H(hari) (cfu) Cairan Beton (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

1 0 0.0E+00 33.59 24.5 45.7 6.0 6.9 11.6 0.0 5.2 0.0 0.0 0.0 0.02 14 5.2E+01 3.8 12.63 34.69 20.8 47.6 6.3 7.9 11.7 0.0 1.9 0.0 0.0 3.8 0.03 42 1.1E+02 3.8 12.52 34.48 16.9 50.6 6.5 8.0 11.9 0.0 2.2 0.0 0.0 3.9 0.04 76 4.0E+02 3.7 12.34 34.23 15.7 53.7 6.6 8.1 12.0 0.0 0.0 0.0 0.0 3.9 0.05 106 9.0E+02 3.7 12.08 34.06 12.6 54.2 6.7 8.3 12.1 0.0 2.1 0.0 0.0 3.9 0.06 136 4.5E+03 3.6 11.85 33.84 10.3 55.5 6.8 8.4 12.2 0.0 2.0 0.8 0.0 4.0 0.07 166 1.0E+04 3.5 11.68 33.67 9.4 56.2 6.9 8.5 12.3 0.0 1.1 0.8 0.0 4.1 0.6

No pHIdentifikasi X-Ray Diffraction

Tabel C.7.b. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton terintrusi mikroorganisme tanpa bubuk slag nikel (BI40-0) pada kedalaman 25–50 mm

Lama Total Kuatintrusi koloni tekan CH CSH Calc CMA E SiO2 Q A T R H(hari) (cfu) Cairan Beton (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

1 0 0.0E+00 33.59 25.2 46.9 5.5 6.6 10.7 0.0 5.1 0.0 0.0 0.0 0.02 14 1.8E+01 3.8 12.7 34.69 22.3 48.4 5.7 6.7 10.8 0.0 2.7 0.0 0.0 3.4 0.03 42 2.5E+01 3.8 12.6 34.48 19.1 51.0 6.0 7.0 11.2 0.0 2.3 0.0 0.0 3.5 0.04 76 7.0E+01 3.7 12.5 34.23 17.5 54.4 6.1 7.2 11.3 0.0 0.0 0.0 0.0 3.6 0.05 106 1.6E+02 3.7 12.4 34.06 14.4 54.9 6.2 7.4 11.5 0.0 1.9 0.0 0.0 3.7 0.06 136 4.5E+02 3.6 12.2 33.84 12.4 56.1 6.4 7.7 11.8 0.0 1.9 0.0 0.0 3.8 0.07 166 1.0E+03 3.5 12.1 33.67 10.3 56.9 6.5 7.7 11.9 0.0 1.7 0.0 0.0 3.9 1.2

No pHIdentifikasi X-Ray Diffraction

368

Tabel C.7.c. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton terintrusi mikroorganisme tanpa bubuk slag nikel (BI40-0) pada kedalaman 50–75 mm

Lama Total Kuatintrusi koloni tekan CH CSH Calc CMA E SiO2 Q A T R H(hari) (cfu) Cairan Beton (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

1 0 0.0E+00 33.59 25.9 46.7 5.2 8.6 11.8 0.0 1.8 0.0 0.0 0.0 0.02 14 0.0E+00 3.8 12.81 34.69 21.0 48.8 5.3 8.7 12.0 0.0 1.4 0.0 0.0 2.9 0.03 42 0.0E+00 3.8 12.75 34.48 17.5 51.8 5.4 8.8 12.2 0.0 1.2 0.0 0.0 3.0 0.04 76 0.0E+00 3.7 12.65 34.23 15.3 54.9 5.5 8.9 12.3 0.0 0.0 0.0 0.0 3.2 0.05 106 1.8E+01 3.7 12.54 34.06 13.1 55.6 5.6 9.1 12.4 0.0 0.9 0.0 0.0 3.3 0.06 136 3.5E+01 3.6 12.36 33.84 12.1 56.2 5.7 9.2 12.5 0.0 1.0 0.0 0.0 3.3 0.07 166 8.3E+01 3.5 12.17 33.67 10.0 57.3 5.8 9.3 12.6 0.0 0.9 0.0 0.0 3.4 0.8

No pHIdentifikasi X-Ray Diffraction

Tabel C.8.a. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton terintrusi mikroorganisme dengan 16% bubuk slag nikel (BI40-16) pada kedalaman 0–25 mm

Lama Total Kuatintrusi koloni tekan CH CSH Calc CMA E SiO2 Q A T R H(hari) (cfu) Cairan Beton (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

1 0 0.0E+00 32.78 15.3 59.4 5.2 8.5 9.9 0.0 0.0 1.9 0.0 0.0 0.02 14 0.0E+00 4.6 13.3 37.37 13.1 60.8 5.3 8.6 9.7 0.0 0.0 0.0 0.0 2.4 0.03 42 0.0E+00 4.4 13.2 38.64 8.1 65.0 5.4 8.7 9.6 0.0 0.7 0.0 0.0 2.5 0.04 76 0.0E+00 4.4 13.1 39.24 5.7 67.0 5.4 8.7 8.9 0.0 0.8 0.5 0.5 2.6 0.05 106 1.7E+02 4.2 12.9 39.79 4.5 69.3 5.5 8.7 8.4 0.0 0.6 0.5 0.0 2.7 0.06 136 2.5E+02 4.0 12.8 40.47 4.4 69.7 5.6 8.7 8.0 0.0 0.6 0.4 0.0 2.7 0.07 166 1.8E+03 3.9 12.6 40.72 3.9 70.0 5.7 8.8 7.5 0.0 0.5 0.3 0.5 2.8 0.0

No pHIdentifikasi X-Ray Diffraction

Tabel C.8.b. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton terintrusi mikroorganisme dengan 16% bubuk slag nikel (BI40-16) pada kedalaman 25–50 mm

Lama Total Kuatintrusi koloni tekan CH CSH Calc CMA E SiO2 Q A T R H(hari) (cfu) Cairan Beton (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

1 0 0.0E+00 32.78 15.9 59.8 4.7 7.7 10.0 0.0 0.0 1.9 0.0 0.0 0.02 14 0.0E+00 4.6 13.4 37.37 13.9 61.0 4.9 7.8 9.9 0.0 0.0 0.0 0.0 2.6 0.03 42 0.0E+00 4.4 13.3 38.64 10.3 64.4 5.0 7.9 9.7 0.0 0.0 0.0 0.0 2.7 0.04 76 0.0E+00 4.4 13.3 39.24 6.4 66.4 5.1 8.0 9.2 0.0 0.7 0.7 0.7 2.8 0.05 106 0.0E+00 4.2 13.1 39.79 5.8 68.5 5.3 8.3 9.1 0.0 0.0 0.0 0.0 3.0 0.06 136 0.0E+00 4.0 13.0 40.47 5.3 68.8 5.4 8.3 9.0 0.0 0.0 0.0 0.0 3.1 0.07 166 1.4E+02 3.9 12.9 40.72 3.9 69.6 5.5 8.4 8.7 0.0 0.0 0.0 0.7 3.1 0.0

No pHIdentifikasi X-Ray Diffraction

Tabel C.8.c. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton terintrusi mikroorganisme dengan 16% bubuk slag nikel (BI40-16) pada kedalaman 50–75 mm

Lama Total Kuatintrusi koloni tekan CH CSH Calc CMA E SiO2 Q A T R H(hari) (cfu) Cairan Beton (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

1 0 0.0E+00 32.78 16.4 60.3 4.2 8.0 11.0 0.0 0.0 0.0 0.0 0.0 0.02 14 0.0E+00 4.6 13.6 37.37 12.2 61.8 4.3 8.3 10.8 0.0 0.0 0.0 0.0 2.5 0.03 42 0.0E+00 4.4 13.5 38.64 8.7 64.4 4.4 8.4 10.4 0.0 0.4 0.0 0.7 2.6 0.04 76 0.0E+00 4.4 13.4 39.24 7.0 65.1 4.5 8.5 10.1 0.0 0.6 0.8 0.7 2.7 0.05 106 0.0E+00 4.2 13.3 39.79 6.2 67.5 4.5 8.5 9.7 0.0 0.0 0.0 0.8 2.7 0.06 136 0.0E+00 4.0 13.1 40.47 5.6 68.3 4.6 8.6 9.5 0.0 0.0 0.0 0.6 2.7 0.07 166 0.0E+00 3.9 13.0 40.72 5.0 69.6 4.6 8.7 9.3 0.0 0.0 0.0 0.0 2.7 0.0

No pHIdentifikasi X-Ray Diffraction

369

Tabel C.9.a. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton nonintrusi mikroorganisme tanpa bubuk slag nikel (BNI60-0) pada kedalaman 0–25 mm

Kuattekan CH CSH Calc CMA E SiO2 Q A T R H

(hari (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)1 14 49.89 24.1 46.8 6.1 8.3 12.4 0.0 2.3 0.0 0.0 0.0 0.02 28 56.09 26.2 50.1 5.4 7.3 11.0 0.0 0.0 0.0 0.0 0.0 0.03 56 61.32 26.9 52.3 4.6 6.5 8.9 0.0 0.7 0.0 0.0 0.0 0.04 90 63.10 27.5 55.4 4.2 5.5 7.4 0.0 0.0 0.0 0.0 0.0 0.05 120 63.65 28.2 57.1 3.7 4.2 6.3 0.0 0.6 0.0 0.0 0.0 0.06 180 65.22 28.9 58.0 3.4 3.6 5.4 0.0 0.6 0.0 0.0 0.0 0.0

No UmurIdentifikasi X-Ray Diffraction

Tabel C.9.b. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton nonintrusi mikroorganisme tanpa bubuk slag nikel (BNI60-0) pada kedalaman 25–50 mm

Kuattekan CH CSH Calc CMA E SiO2 Q A T R H

(hari (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)1 14 49.89 25.0 47.1 5.9 9.0 13.0 0.0 0.0 0.0 0.0 0.0 0.02 28 56.09 26.7 49.5 4.7 7.6 11.5 0.0 0.0 0.0 0.0 0.0 0.03 56 61.32 27.1 52.8 4.3 6.6 9.3 0.0 0.0 0.0 0.0 0.0 0.04 90 63.10 28.0 55.2 3.7 5.7 7.5 0.0 0.0 0.0 0.0 0.0 0.05 120 63.65 28.1 57.6 3.2 4.5 6.5 0.0 0.0 0.0 0.0 0.0 0.06 180 65.22 28.4 58.3 3.0 4.4 5.8 0.0 0.0 0.0 0.0 0.0 0.0

No UmurIdentifikasi X-Ray Diffraction

Tabel C.9.c. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton nonintrusi mikroorganisme tanpa bubuk slag nikel (BNI60-0) pada kedalaman 50–75 mm

Kuattekan CH CSH Calc CMA E SiO2 Q A T R H

(hari (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)1 14 49.89 25.7 47.8 5.1 8.6 11.0 0.0 1.8 0.0 0.0 0.0 0.02 28 56.09 26.7 50.1 4.4 8.2 10.6 0.0 0.0 0.0 0.0 0.0 0.03 56 61.32 27.1 52.2 3.9 7.1 9.7 0.0 0.0 0.0 0.0 0.0 0.04 90 63.10 27.5 54.4 3.3 5.8 8.9 0.0 0.0 0.0 0.0 0.0 0.05 120 63.65 28.0 56.8 2.7 5.0 7.6 0.0 0.0 0.0 0.0 0.0 0.06 180 65.22 28.2 57.9 2.4 4.7 6.8 0.0 0.0 0.0 0.0 0.0 0.0

No UmurIdentifikasi X-Ray Diffraction

Tabel C.10.a. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton nonintrusi mikroorganisme dengan 16% bubuk slag nikel (BNI60-16) pada kedalaman 0–25 mm

Kuattekan CH CSH Calc CMA E SiO2 Q A T R H

(hari (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)1 14 45.39 15.9 59.8 5.0 6.9 10.1 1.1 0.0 1.3 0.0 0.0 0.02 28 56.09 16.4 61.8 4.4 6.0 9.4 0.0 0.8 0.0 0.0 1.3 0.03 56 62.21 16.9 66.3 3.5 4.3 7.2 0.0 0.8 1.1 0.0 0.0 0.04 90 65.01 17.2 67.2 3.2 4.0 6.6 0.0 0.7 0.0 0.0 1.1 0.05 120 65.39 17.5 69.3 2.9 3.4 5.7 0.0 0.5 0.7 0.0 0.0 0.06 180 66.71 17.6 70.5 2.5 3.0 5.3 0.0 0.5 0.6 0.0 0.0 0.0

No UmurIdentifikasi X-Ray Diffraction

370

Tabel C.10.b. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton nonintrusi mikroorganisme dengan 16% bubuk slag nikel (BNI60-16) pada kedalaman 25–50 mm

Kuattekan CH CSH Calc CMA E SiO2 Q A T R H

(hari (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)1 14 45.39 16.5 60.6 4.4 7.1 10.3 0.0 0.0 1.1 0.0 0.0 0.02 28 56.09 16.9 62.4 3.9 6.1 8.9 0.0 0.9 0.9 0.0 0.0 0.03 56 62.21 17.5 66.0 3.0 4.3 7.5 0.0 0.8 0.8 0.0 0.0 0.04 90 65.01 17.6 67.7 2.8 3.7 6.6 0.0 0.8 0.8 0.0 0.0 0.05 120 65.39 17.8 69.0 2.6 3.1 6.0 0.0 0.7 0.8 0.0 0.0 0.06 180 66.71 18.2 70.0 2.2 3.0 5.8 0.0 0.0 0.8 0.0 0.0 0.0

No UmurIdentifikasi X-Ray Diffraction

Tabel C.10.c. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton nonintrusi mikroorganisme dengan 16% bubuk slag nikel (BNI60-16) pada kedalaman 50–75 mm

Kuattekan CH CSH Calc CMA E SiO2 Q A T R H

(hari (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)1 14 45.39 16.4 60.0 4.3 8.1 10.2 0.0 0.0 0.9 0.0 0.0 0.02 28 56.09 16.6 61.6 3.6 7.2 9.1 0.0 1.0 0.9 0.0 0.0 0.03 56 62.21 17.0 65.3 2.7 6.1 7.5 0.0 0.7 0.8 0.0 0.0 0.04 90 65.01 17.1 66.9 2.5 5.3 6.8 0.0 0.6 0.7 0.0 0.0 0.05 120 65.39 17.6 68.4 2.4 4.7 6.1 0.0 0.0 0.7 0.0 0.0 0.06 180 66.71 17.6 69.4 2.2 4.1 5.9 0.0 0.0 0.8 0.0 0.0 0.0

No UmurIdentifikasi X-Ray Diffraction

Tabel C.11.a. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton terintrusi mikroorganisme tanpa bubuk slag nikel (BI60-0) pada kedalaman 0–25 mm

Lama Total Kuatintrusi koloni tekan CH CSH Calc CMA E SiO2 Q A T R H(hari) (cfu) Cairan Beton (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

1 0 0.0E+00 53.76 24.1 46.8 6.1 8.3 12.4 0.0 2.3 0.0 0.0 0.0 0.02 14 2.5E+01 3.9 12.84 53.42 20.6 48.5 6.3 8.4 12.5 0.0 0.9 0.0 0.0 2.9 0.03 42 3.4E+01 3.7 12.79 53.21 17.3 50.6 6.4 8.5 12.6 0.0 0.7 0.0 0.9 3.0 0.04 76 2.5E+02 3.7 12.66 53.04 14.8 54.0 6.6 8.7 12.8 0.0 0.0 0.0 0.0 3.1 0.05 106 5.1E+02 3.8 12.55 52.91 11.9 55.7 6.7 8.8 12.9 0.0 0.7 0.0 0.0 3.2 0.06 136 2.0E+03 3.7 12.34 52.78 10.6 56.5 6.8 8.9 12.9 0.0 1.2 0.0 0.0 3.2 0.07 166 7.2E+03 3.4 12.14 52.61 9.1 57.3 6.9 9.1 13.1 0.0 1.3 0.0 0.0 3.3 0.0

No pHIdentifikasi X-Ray Diffraction

Tabel C.11.b. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton terintrusi mikroorganisme tanpa bubuk slag nikel (BI60-0) pada kedalaman 25–50 mm

Lama Total Kuatintrusi koloni tekan CH CSH Calc CMA E SiO2 Q A T R H(hari) (cfu) Cairan Beton (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

1 0 0.0E+00 53.76 25.0 47.1 5.9 9.0 13.0 0.0 0.0 0.0 0.0 0.0 0.02 14 1.2E+01 3.9 13.0 53.42 20.3 48.0 6.0 9.1 13.0 0.0 0.7 0.0 0.0 2.8 0.03 42 1.1E+01 3.7 12.9 53.21 16.8 51.0 6.1 9.2 13.1 0.0 0.8 0.0 0.0 2.9 0.04 76 3.3E+01 3.7 12.9 53.04 14.5 53.8 6.2 9.3 13.2 0.0 0.0 0.0 0.0 3.0 0.05 106 7.8E+01 3.8 12.7 52.91 11.2 56.2 6.3 9.4 13.3 0.0 0.5 0.0 0.0 3.1 0.06 136 2.2E+02 3.7 12.6 52.78 9.8 56.7 6.4 9.5 13.3 0.0 1.1 0.0 0.0 3.2 0.07 166 6.0E+02 3.4 12.5 52.61 8.9 57.6 6.5 9.6 13.4 0.0 0.8 0.0 0.0 3.2 0.0

No pHIdentifikasi X-Ray Diffraction

371

Tabel C.11.c. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton terintrusi mikroorganisme tanpa bubuk slag nikel (BI60-0) pada kedalaman 50–75 mm

Lama Total Kuatintrusi koloni tekan CH CSH Calc CMA E SiO2 Q A T R H(hari) (cfu) Cairan Beton (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

1 0 0.0E+00 53.76 25.7 47.8 5.1 8.6 11.0 0.0 1.8 0.0 0.0 0.0 0.02 14 0.0E+00 3.9 13.0 53.42 22.6 48.7 5.2 8.7 11.1 0.0 1.1 0.0 0.0 2.6 0.03 42 0.0E+00 3.7 12.9 53.21 20.0 50.6 5.4 8.8 11.2 0.0 1.3 0.0 0.0 2.7 0.04 76 0.0E+00 3.7 12.9 53.04 18.5 52.9 5.6 9.0 11.3 0.0 0.0 0.0 0.0 2.8 0.05 106 1.2E+01 3.8 12.8 52.91 14.6 55.1 5.8 9.2 11.4 0.0 0.9 0.0 0.0 2.9 0.06 136 2.1E+01 3.7 12.7 52.78 13.3 56.1 5.9 9.3 11.5 0.0 0.9 0.0 0.0 3.0 0.07 166 3.7E+01 3.4 12.5 52.61 11.9 57.1 6.1 9.5 11.6 0.0 0.8 0.0 0.0 3.0 0.0

No pHIdentifikasi X-Ray Diffraction

Tabel C.12.a. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton terintrusi mikroorganisme dengan 16% bubuk slag nikel (BI60-16) pada kedalaman 0–25 mm

Lama Total Kuatintrusi koloni tekan CH CSH Calc CMA E SiO2 Q A T R H(hari) (cfu) Cairan Beton (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

1 0 0.0E+00 56.09 15.9 59.8 5.0 6.9 10.1 1.1 0.0 1.3 0.0 0.0 0.02 14 0.0E+00 4.3 13.3 58.51 11.9 61.2 5.1 6.9 9.6 0.0 1.5 0.0 0.0 2.6 1.13 42 0.0E+00 4.0 13.1 61.27 8.2 65.2 5.2 7.0 9.3 0.0 1.1 0.0 0.0 2.7 1.34 76 0.0E+00 4.0 13.0 61.61 7.2 66.6 5.3 7.2 9.1 0.0 1.8 0.0 0.0 2.8 0.05 106 9.2E+01 3.8 12.9 61.95 5.7 68.5 5.4 7.3 8.8 0.0 1.4 0.0 0.0 2.9 0.06 136 2.9E+02 3.8 12.8 62.21 4.6 68.9 5.5 7.4 8.5 0.0 1.2 0.0 0.0 3.0 1.07 166 1.6E+03 3.6 12.7 62.34 4.3 70.0 5.6 7.5 8.4 0.0 1.3 0.0 0.0 3.0 0.0

No pHIdentifikasi X-Ray Diffraction

Tabel C.12.b. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton terintrusi mikroorganisme dengan 16% bubuk slag nikel (BI60-16) pada kedalaman 25–50 mm

Lama Total Kuatintrusi koloni tekan CH CSH Calc CMA E SiO2 Q A T R H(hari) (cfu) Cairan Beton (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

1 0 0.0E+00 56.09 16.5 60.6 4.4 7.1 10.3 0.0 0.0 1.1 0.0 0.0 0.02 14 0.0E+00 4.3 13.5 58.51 12.4 61.4 4.5 7.2 10.2 0.0 1.7 0.0 0.0 2.5 0.03 42 0.0E+00 4.0 13.4 61.27 8.9 64.8 4.6 7.3 10.1 0.0 1.7 0.0 0.0 2.6 0.04 76 0.0E+00 4.0 13.3 61.61 7.5 66.7 4.7 7.4 9.7 0.0 1.3 0.0 0.0 2.7 0.05 106 0.0E+00 3.8 13.2 61.95 5.7 68.1 4.8 7.5 9.4 0.0 1.7 0.0 0.0 2.8 0.06 136 0.0E+00 3.8 13.1 62.21 5.0 68.9 4.9 7.6 9.1 0.0 1.5 0.0 0.0 2.9 0.07 166 8.2E+01 3.6 13.0 62.34 4.4 69.4 5.1 7.7 9.0 0.0 1.4 0.0 0.0 3.0 0.0

No pHIdentifikasi X-Ray Diffraction

Tabel C.12.c. Hasil identifikasi dan analisis senyawa kimia X-Ray Diffraction untuk beton terintrusi mikroorganisme dengan 16% bubuk slag nikel (BI60-16) pada kedalaman 50–75 mm

Lama Total Kuatintrusi koloni tekan CH CSH Calc CMA E SiO2 Q A T R H(hari) (cfu) Cairan Beton (MPa) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

1 0 0.0E+00 56.09 16.4 60.0 4.3 8.1 10.2 0.0 0.0 0.9 0.0 0.0 0.02 14 0.0E+00 4.3 13.6 58.51 12.1 61.0 4.5 8.2 10.1 0.0 1.5 0.0 0.0 2.6 0.03 42 0.0E+00 4.0 13.5 61.27 9.1 64.2 4.6 8.3 9.8 0.0 1.3 0.0 0.0 2.7 0.04 76 0.0E+00 4.0 13.4 61.61 7.4 66.0 4.7 8.4 9.5 0.0 1.2 0.0 0.0 2.8 0.05 106 0.0E+00 3.8 13.3 61.95 6.2 67.6 4.8 8.6 9.2 0.0 0.8 0.0 0.0 2.9 0.06 136 0.0E+00 3.8 13.2 62.21 5.1 68.1 4.9 8.8 9.0 0.0 1.2 0.0 0.0 3.0 0.07 166 0.0E+00 3.6 13.1 62.34 3.8 69.0 5.0 8.9 8.9 0.0 1.2 0.0 0.0 3.1 0.0

No pHIdentifikasi X-Ray Diffraction

372