16
D3.2.2: Guidelines for predictive differential irrigation scheduling and water application WP3.2 – Upscaling VRT for nutrient and water efficiency and yield optimization Alfonso Calera, Julio Villodre, Jesús Garrido, José González (UCLM) First version – M12 This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 633945. Ref. Ares(2016)1002521 - 28/02/2016

D3.2.2:Guidelines&forpredictive …fatima-h2020.eu/wp-content/uploads/2015/07/633945_D3.2.2_Guideli… · D3.2.2:Guidelines&forpredictive differentialirrigationschedulingand water&application&

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  •  

     

     

     

     

    D3.2.2:  Guidelines  for  predictive  differential  irrigation  scheduling  and  

    water  application  WP3.2  –  Upscaling  VRT  for  nutrient  and  water  efficiency  and  yield  

    optimization  

     

    Alfonso  Calera,  Julio  Villodre,  Jesús  Garrido,  José  González  (UCLM)    

     

     

    First  version  –  M12    

     

     

     

    This  project  has  received  funding  from  the  European  Union’s  Horizon  2020  research  and  innovation  programme  under  grant  agreement  No  633945.  

    Ref. Ares(2016)1002521 - 28/02/2016

  • D3.2.2  Guidelines  for  predictive  irrigation  scheduling   26/02/2016   v01    

       2  |  16  

    Document  Information  Grant  Agreement  Number   633945   Acronym   FATIMA  Full  Title  of  Project   Farming  Tools  for  external  nutrient  inputs  and  water  Management  Horizon  2020  Call   SFS-‐02a-‐2014:  External  nutrient  inputs  (Research  and  innovation  Action)  Start  Date   1  March  2015   Duration   36  months  Project  website   www.fatima-‐h2020.eu  Document  URL   (insert  URL  if  document  is  publicly  available  online)  REA  Project  Officer   Aneta  RYNIAK  Project  Coordinator   Anna  Osann  Deliverable   D2.1.1  FATIMA  webGIS  conceptual  design  document    Work  Package   WP3.2  –  Upscaling  VRT  for  nutrient  and  water  efficiency  and  yield  Date  of  Delivery   Contractual   1  March  2016     Actual   29  Feb  2016  Nature   R  -‐  Report   Dissemination  Level   CO  Lead  Beneficiary   01_UCLM  Lead  Author   Alfonso  Calera  (UCLM)   Email   [email protected]  Contributions  from    Internal  Reviewer  1   Francesco  Vuolo  (BOKU)  Internal  Reviewer  2   Carlo  de  Michele  (Ariespace)  Objective  of  document   Rationale   and   operation   of   predictive   differential   irrigation   scheduling  

    and  water  application  Readership/Distribution   All   FATIMA   Regional   Teams;     All   WP   leaders   and   other   FATIMA   team  

    members;    European  Commission  /  REA  

    Keywords   webGIS,  user  requirements,  conceptual  design,  co-‐creation  Document  History  

    Version   Issue  Date   Stage   Changes   Contributor  Draft  v00   22/02/2016   Draft                

                       

     

     

     

     

    Disclaimer  

    Any  dissemination  of  results  reflects  only  the  authors’  view  and  the  European  Commission  is  not  responsible  for  any  use  that  may  be  made  of  the  information  it  contains.  

    Copyright  

    ©  FATIMA  Consortium,  2015  This  deliverable  contains  original  unpublished  work  except  where  clearly  indicated  otherwise.  Acknowledgement  of  previously  published  material  and  of  the  work  of  others  has  been  made  through  appropriate  citation,  quotation  or  

    both.  Reproduction  is  authorised  provided  the  source  is  acknowledged.  Creative  Commons  licensing  level    

  • D3.2.2  Guidelines  for  predictive  irrigation  scheduling   26/02/2016   v01    

       3  |  16  

    Executive  summary    

    Currently  operative  use  of  dense   time  series  of  multispectral   imagery  at  high  spatial   resolution   is  able   to  monitor  crop  development  across  its  growing  season  at  a  suitable  time  and  spatial  scales.  Crop  growing  cycle  is  described  through  reflectance  and  Vegetation  Indices  providing  spatial  distribution  of  crop  growth.      These   time   series  of   images,   jointly  with  meteorological   data   are   able   to  provide  accurate  maps  of  daily  transpiration  and  so  crop  water  requirements  by  using  the  remote  sensing-‐based  approach  crop  coefficient,  Kc,   and   reference   evapotranspiration,   ETo,  where   Kc   is   derived   from   spectral   reflectances   and   ETo   from  meteorological   data.   A   water   balance   in   the   root   soil   layer   enables   us   to   calculate   irrigation   water  requirements  at  appropriate  scale  for  monitoring  water  management  near-‐  real  time.  This  approach  could  be  coupled  to  the  remote  sensing-‐based  surface  energy  balance  which  uses  surface  temperature  as  primary  input.      But   according   users   requirement,   what   we   could   call   “remote   sensing-‐driven   crop   water   management”  requires  at  least  two  steps  more  to  be  placed  into  the  day-‐to-‐day  routine  on  farming  irrigation:  On  the  one  hand,   for   planning   irrigation   the   users   require   the   forecasting   of   crop  water   requirements   for   the  week  ahead;  it  can  be  achieved  by  extrapolating  crop  coefficient  trend  and  by  using  weather  forecasting  for  ETo  estimation.  On  the  other  hand,  decision  makers  in  charge  of  irrigation  require  access  to  this  information  in  an  easy-‐to-‐use  way  on  real  time.  It  can  be  achieved  through  leading  edge  webGIS  tools,  which  facilitates  co-‐creation  and  collaboration  with  stakeholders.    In  this  deliverable  we  describe  a  modular  system  based  on  the  integration  of  Earth  observation  (EO)  remote  sensing  (from  satellites  and  ultralights),  soil  wireless  sensor  networks  (WSN),  and  weather  observations  and  forecasting  into  a  webGIS,  in  order  to  monitor  plant  growth  status  and  to  determine  their  water  requirements  a  week   ahead.   By   using   SPIDERwebGIS   tool,   this   information   is   brought   to   the  users   in   a   timely  way   for  practice.            The  current  version  (v01)  reflects  the  status  of  M12,  with  the  basic  methodology  available  and  functioning.  The  integration  of  other  similar  approaches  as  well  as  further  calibration  and  validation  will  lead  to  updated  methodologies,  which  will  be  documented  in  a  subsequent  document  version.  

       Key  words:  crop  water  management,  remote  sensing,  weather  forecasting,  webGIS  

  • D3.2.2  Guidelines  for  predictive  irrigation  scheduling   26/02/2016   v01    

       4  |  16  

    Table  of  Contents  Executive  summary  ...........................................................................................................................................  3  

    1   Guidelines  for  predictive  differential  irrigation  scheduling  and  water  application  ...................................  5  

    2   Remote  Sensing  for  Irrigation  Water  Management  ..................................................................................  6  

      Monitoring  crop  development  at  right  spatial  and  temporal  scale  ..................................................  6  

      Remote  sensing-‐based  estimates  of  Irrigation  Water  Requirements  ...............................................  7  

    2.2.1   The  remote  sensing-‐based  crop  coefficient  ..............................................................................  8  

    2.2.2   Remote  sensing  surface  energy  balance  .................................................................................  11  

    2.2.3   Summary  of  remote  sensing-‐based  evapotranspiration  estimates  .........................................  11  

    3   Predictive  differential  crop  water  requirements  .....................................................................................  13  

      Planning  irrigation  for  the  next  week  ..............................................................................................  13  

    3.1.1   Extrapolating  reflectance-‐based  basal  crop  coefficient  ..........................................................  14  

    3.1.2   Forecasting  reference  evapotranspiration  ETo  .......................................................................  14  

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

  • D3.2.2  Guidelines  for  predictive  irrigation  scheduling   26/02/2016   v01    

       5  |  16  

    1   Guidelines  for  predictive  differential  irrigation  scheduling  and  water  application  

    This  Deliverable  D3.2.2  addresses  the  optimization  and  fine  tuning  of  irrigation  water  supply  to  the  demands  of  growing  crops  across  space  and  time  to  obtain  the  maximum  yield,  by  using  time  series  of  spectral  imagery.  It   describes   how   these   time   series   of   images   enable   determination   of   spatial   variability   of   irrigation  requirements  at  intra-‐plot  scale.  Moreover,  forecasting  of  crop  water  requirements  a  week  ahead  is  a  key  for  sustainable  water  management  practices  according  users  requirement.  

    The  current  version  (v01)  reflects  the  status  of  M12,  with  the  basic  methodology  available  and  functioning.  The  integration  of  other  similar  approaches  as  well  as  further  calibration  and  validation  will  lead  to  updated  methodologies,  which  will  be  documented  in  a  subsequent  document  version.  

    We  propose  a  modular   system  based  on   the   integration  of  Earth  observation   (EO)   remote   sensing   (from  satellites   and   drones),   crop   and   soil   wireless   sensor   networks   (WSN),   and   weather   observations   and  forecasting  into  a  webGIS,  in  order  to  monitor  plant  growth  status  and  to  determine  their  differential  water  requirements  a  week  ahead.  Therefore,  irrigation  scheduling  and  water  application  could  be  tailored  to  the  crop  demands  if  variable  doses  rate  of  water  can  be  applied,  or  optimized  according  the  available  irrigation  system.  The  WSN  provides  essential  in-‐situ  information  from  soil  moisture  sensors,  complementary  to  the  EO-‐based   data.   By   this   way   farmers   can   address   short-‐term   management   strategies   for   irrigation  management,  what   is  a  central  product   in  FATIMA  portfolio,  as   is  showed   in  Table  1  about  basic  FATIMA  products  to  be  delivered  to  stakeholders.  

       

    Table  1.-‐  Summary  of  FATIMA  products  based  on  the  users  requirements  

    Time  frame  

    Decisions  to  make   Products  Delivery  of  products  

    Short  term  

    Crop  Monitoring  

    How  much  water  next  week?  

    How  much  nutrients  and  its  spatial  distribution?  

    Time  series  of  images  +  ground  sensors  +  weather  

    Maps  of  crop  water  requirements  next  week  

    Maps  of  crop  nutrients  requirements  

    webGIS  

    Midterm/  

    Long  term  

    Cropping  system/crop  rotation/no  tillage/organic  and  conservation  agriculture  

    Planning  the  crop:  Seed/  Density/  Main  labors/  Climate,  Water  and  Nutrients/Manure  management  

    Assessment  for  optimum  yield  through  economic  analysis  including  policies  and  environmental  constraints  

     

    Reports/  

    Manuals  

    webGIS  

     

    Multispectral  time  series  of  images,  jointly  with  meteorological  data  are  able  to  provide  accurate  maps  of  daily   transpiration   and   so   crop   water   requirements   by   using   the   remote   sensing-‐based   approach   crop  coefficient,  Kc,  and  reference  evapotranspiration,  ETo.  Where  Kc  is  derived  from  spectral  reflectances  and  ETo  from  meteorological  data.  A  water  balance  in  the  root  soil  layer  enables  us  to  calculate  irrigation  water  

  • D3.2.2  Guidelines  for  predictive  irrigation  scheduling   26/02/2016   v01    

       6  |  16  

    requirements  at  appropriate  scale  for  monitoring  water  management  near-‐  real  time.  This  approach  could  be  coupled  to  the  remote  sensing-‐based  surface  energy  balance  which  uses  surface  temperature  as  primary  input.  But  what  we  could  call  “remote  sensing-‐driven  crop  water  management”  requires  at  least  two  steps  more  to  be  placed  into  the  day-‐to-‐day  routine  on  farming  irrigation:  On  the  one  hand,  for  planning  irrigation  the  users   require   the   forecasting  of   crop  water   requirements   for   the  week  ahead;   it   can  be  achieved  by  extrapolating  crop  coefficient  trend  and  by  using  weather  forecasting  for  ETo  estimation.  On  the  other  hand,  decision  makers  in  charge  of  irrigation  require  access  to  this  information  in  an  easy-‐to-‐use  way  on  real  time.  It  can  be  achieved  through  leading  edge  webGIS  tools,  which  facilitates  co-‐creation  and  collaboration  with  stakeholders.    

    To  answer  to  the  question  how  much  water  to  apply  and  where,  maps  of  crop  water  requirements,  CWR,  for  the  next  week  will  be  used.  They  will  be  generated  by  combining  weather  forecast  and  extrapolation  of  basal  crop   coefficient   from   the   trend   of   the   plot   as   is   described   by   VI_EO     time   series.   Predictive   CWR   under  controlled  deficit  irrigation  (case  of  wine  grape  is  an  example)  will  be  performed  by  using  soil  water  balance.  Ground   truth   from  soil  moisture   sensors  will   assess   the  quality  of  prediction.    CWR  map  will  provide   the  diagnosis  tool  about  the  spatial  variability  at  the  pixel  size  scale,  although  specific  VRT  devices  for  differential  spatial  water  application  are  less  developed  than  for  nutrients.  Options  for  the  latter  will  be  explored.    

    By  this  way  we  contribute  to  increasing  farmers’  competitiveness  through  the  reduction  of  production  cost  and  providing  a  reliable  and  up-‐to  date  tool  for  land  and  water  management  and  policy-‐making.    

    The  EO  methodology  for  mapping  crop  water  requirements  in  a  pixel  by  pixel  basis  is  mature  and  operational  (Calera  et  al  2013,  D’Urso  et  al  2013)  by  using  FAO56  and  soil  water  balance  model,   in  combination  with  biophysical  crop  parameters  and  ground-‐based  meteorological  data.  Consolidation  of  this  approach  will  be  the  first  step  to  do,  including  the  implementation  of  two-‐source  model  for  separating  soil  evaporation  and  canopy  transpiration.  Exploitation  of  the  improved  spectral  resolution  of  new  generation  of  sensors  will  be  exploited  to  enhance  existing  methodologies.  

    The  forward  step  is  to  produce  the  map  of  crop  water  requirements  predictions  for  the  next  week,  which  is  a  very  practical  product  for  users  in  addition  to  estimates  for  the  past  week.  To  this  aim,  distributed  short  term  forecasting  of  relevant  meteorological  data  (from  high-‐resolution  or  local  weather  prediction  models)  will   be   used   as   input   in   the   above  mentioned  models.   From   the   knowledge   of   crop  water   requirement,  irrigation   can   be   supplied   either   to   satisfy   full   requirements,   either   to   manage   under   deficit   controlled  irrigation.  Ground  data  of  soil  moisture  will  provide  the  required  ground  truth  to  verify  through  the  soil  water  balance  the  quality  of  the  products.    

    2   Remote  Sensing  for  Irrigation  Water  Management    

      Monitoring  crop  development  at  right  spatial  and  temporal  scale  

    Currently  monitoring   crop  development  across   its   growing   season  at  a   suitable   time  and   spatial   scales   is  possible  throughout  use  of  dense  time  series  of  multispectral  imagery  at  high  spatial  resolution.  Given  the  crops   canopy   evolves   rapidly   in  mostly   cases,   single   satellite   sensors   or   platforms   cannot   address   these  changes  at  high  spatial  resolution  (5-‐30  m)  due  to  the  underlying  limitations  of  data  availability,   including  cloudiness,   and   tradeoffs(eg   in   the   case  of   Landsat8   the   revisit   time   is   16  days).  Virtual   constellations  of  planned   and   existing   satellite   sensors   may   help   to   overcome   this   limitation   by   combining   existing  observations   to  mitigate   limitations   of   any   one   particular   sensor.   Virtual   constellation   is   defined   by   the  Committee   on   Earth   Observation   Satellites   (CEOS)   as   “a   set   of   space   and   ground   segment   capabilities  operating  together  in  a  coordinated  manner,  in  effect  a  virtual  system  that  overlaps  in  coverage  in  order  to  

  • D3.2.2  Guidelines  for  predictive  irrigation  scheduling   26/02/2016   v01    

       7  |  16  

    meet  a  combined  and  common  set  of  Earth  observation  requirements.  The  individual  satellites  and  ground  segments  can  belong  to  a  single  or  multiple  owners”.      

    Deliverables   D2.2.1   “Methodology   for   dense   high-‐resolution   EO   time   series,   gap   filled”   and   D2.2.2  “Methodology   for  EO-‐based  crop  water   requirements   forecast”  describe   the  basis  of  virtual   constellation  used   in   FATIMA.   It   principally   combines   sensors  with   similar   spatial,   spectral,   temporal,   and   radiometric  characteristics   to   describe   canopy   evolution  with   a   frequency   approaching  one   image  per  week.   It   takes  advantage   of   free   and   open   access   to   satellite   imagery   and   value-‐added   data   products,   currently   those  images  acquired  by  Landsat8  and  Sentinel2a  and  released  via  web  by  USGS  and  ESA  respectively,  what  have  revolutionized  the  role  of  remote  sensing  in  Earth  system  science  and  practice.  

     

      Remote  sensing-‐based  estimates  of  Irrigation  Water  Requirements  

    Irrigation  water  requirements  are  usually  estimated  by  applying  a  water  mass  balance  in  the  soil  explored  by  roots  which  accounts  for  evapotranspiration,  precipitation,  run-‐off,  deep  drainage  and  soil  water  storage.  Evapotranspiration  of   crop   stand,   ET,   is   the  exchange  of  water   vapor  between   the  atmosphere  and   land  surface  shaped  by  crop  canopy  and  soil  beneath.  ET  is  the  crop  water  consumption  and  its  variability  across  space  is  the  key  to  determine  variability  of  irrigation  water  requirements.    

    Physics  of  evapotranspiration  from  land  surfaces  is  well  described  by  the  Penmann-‐Monteith  equation  which  relies  on  the  surface  energy  balance  and  the  resistances  approach  for  describing  transport  of  water  vapor,  distinguishing   between   bulk   surface   and   aerodynamics   (Monteith   and   Unsworth,1990).   Bulk   surface  resistance   includes   stomatal   resistance   which   drives   the   transpiration   process,   and   so   the   physiological  control  on  ET  by  plants  is  introduced.    

    Remote  sensing  approaches  for  ET  estimation  have  been  following  two  main  models  streams  based  on  either  surface  energy  balance  or  either  reflectance-‐based  crop  coefficient  (Allen  et  al.,AWM,  2011);  some  attempts  to  apply  directly   remote   sensing-‐based  parameters   into  Penmann-‐Monteith  equation  have  been  done  as  well.   The   Figure   1   shows   a   general   overview   of   remote   sensing-‐based   different   approaches.   Spatial   and  temporal  spatial  resolution  of  so  elaborated  maps  of  ET  and  irrigation  water  requirements  is  depending  on  the  pixel  size  of  utilized  input  imagery.  For  those  based  on  reflectance-‐based  crop  coefficient,  which  relies  on  VIS-‐NIR  imagery,  the  pixel  size  ranges  usually  5-‐30  m,  and  a  lot  of  commercial  [  World  View,  Rapid  Eye,  DMC,  Deimos,…]  and  free  [L8  and  Sentinel2a]  sensors  are  currently  in  orbit,  which  warranty  their  use  for  the  next  years.  For  those  based  on  surface  temperatures,  the  pixel  size  ranges  from  100  m  for  thermal  sensor  on  board  of  L8  to  1000  m  for  MODIS  and  Sentinel3.

  • D3.2.2  Guidelines  for  predictive  irrigation  scheduling   26/02/2016   v01    

       8  |  16  

    Figure   1.-‐   Overview   of   remote   sensing-‐based   approaches   for   estimates   of   ET   and   Irrigation   Water  Requirements.  The  spatial  scale  of  so  elaborated  maps  is  related  with  the  pixel  size  of  utilized  imagery.  

     

    2.2.1   The  remote  sensing-‐based  crop  coefficient    

    In  the  seventies  of  past  century  a  practical  approach  for  the  ET  estimation  was  developed,  assuming  that  ET  could   be   estimated   like   a   product   of   two   factors,   so   giving   the   known   Penman-‐Monteith   “two-‐step”  procedure  (Allen  et  al.,  1998),  usually  termed  crop-‐coefficient  approach.  The  first  factor  is  the  evaporative  power  of  the  atmosphere,  or  reference  evapotranspiration,  ETo,  which  is  obtained  from  meteorology.  The  second  factor  is  the  crop  coefficient,  Kc,adj  ,  which  parameterizes  the  characteristics  of  the  actual  canopy  relative  to  that  of  the  an  ideal  reference  surface  (ideal  grass  or  alfalfa).  The  coefficient  Kc,adj  includes    (a)    the  water  stress  coefficient,  depending  on  the  soil  water  content   in  the  root  soil   layer,   (b)  the  basal  crop  coefficient,  Kcb,  and  (c)  the  evaporative  component  of  the  bare  soil  fraction,  Ke.    

    The  relationship  between  basal  crop  coefficient  and  spectral  reflectance  through  a  spectral  vegetation  index  (SVI)  is  the  key  to  introduce  remote  sensing  in  the  application  of  the  Penman-‐Monteith  equation  by  the  “two-‐step”  procedure  described  above.  This  relationship   is  empirically  supported  in  many  crops  (Bausch  1993);  (Hunsaker  et  al.  2003);   (Neale  et  al.  1989);   (Gonzalez-‐Dugo  y  Mateos,  2008)   (Gonzalez-‐Dugo  et  al.,  2009)  (Campos  et  al.,  2010)  (DÚrso  et  al.,  2010)  and  physically-‐based  (Gonzalez,  2008)  (Choudhury  et  al.,  1994).  The  well-‐known  capability  of  SVI  to  describe  the  fraction  of  absorbed  photosynthetic  active  radiation,  fAPAR,  at  canopy  level  is  related  with  the  physics  that  underlies  the  reflectance-‐based  basal  crop  coefficient  (Asrar,  1989)  (Seller,  1989)  (Seller  et  al.,  1997):  this  ability  of  SVI  enables  to  describe  the  photosynthetic  size  of  the  canopy  (Wiegand  and  Richardson,  1990)  (Calera  et  al.,2004).    

    So,   these   theoretical   and   empirical   bases   provide   support   to   consider   that   reflectance-‐based   basal   crop  coefficient  Kcb  represents  the  “potential”  or  maximum  ratio  between  transpiration  and  reference  ET  for  the  canopy,  what  happens  in  the  case  of  an  unstressed  canopy,  such  as  is  defined  basal  crop  coefficient  concept.  A  relationship    is    

    It  means  that  the  product  Kcb*ETo  provides  a  measure  of  potential  transpiration  T  of  the  canopy.  Potential  transpiration  means   transpiration   of   the   plant   stand  without   any   type   of   stress,   due   to  water   shortage,  atmospheric  conditions  or  other  causes,  that  produces  stomatal  control.    

  • D3.2.2  Guidelines  for  predictive  irrigation  scheduling   26/02/2016   v01    

       9  |  16  

    When  the  potential  energy  of  the  soil  water  drops  below  a  crop-‐dependent  threshold  value,  the  transpiration  rate  drops  below   the  maximum  value  and   stoma  closure  happens,   even  before  external   changes  on   leaf  chlorophyll  (typical  yellowing)  appear.  The  lowering  coefficient  of  maximum  ET  is  called  the  stress  coefficient  that  ranges  between  0  and  1.  In  the  water  balance  approach,  the  stress  coefficient  is  calculated  usually  from  the  ratio  between  actual  soil  water  content  and  a  determined  threshold  value  (Allen  et  al.  1998).  When  water  stress   appears,   current   transpiration   is   calculated   from   the   product   of   three   factors:   reference   ET,  reflectance–based  crop  coefficient  and  stress  coefficient,  according  Eq.1.  

    VI-‐Kcb   relationships  doesn’t   capture  evaporation   from  bare   soil.   Then   to  estimate   crop   coefficient,   Kc,   is  required  to  estimate  the  evaporative  coefficient  Ke  that  is  depending  of  cover  fraction,  irrigation  system,  and  frequency  of  irrigation,  as  is  described  in  Allen  et  al.,  (1998).  

     

      Figure  2.-‐    (a)  Basal  crop  coefficient  as  was  measured  by  Wright    (1982)  for  wheat  and  corn  against  reference  evapotranspitration  alfalfa-‐based  (b)  typical  NDVI  curves  for  the  same  crops  from  selected  plots  of  top  yield  in  La  Mancha  area.  Both  figures  display  the  same  behavior  across  time.    

    2.2.1.1   Integrating  reflectance-‐based  Kcb  into  FAO56  procedure  

    Basal  crop  coefficient  as  it  is  derived  from  multispectral  imagery  is  a  basic  input  in  the  widely  used  FAO56  model  (Allen  et  al.,  1998)  for  crop  evapotranspiration  calculation,  involving  root  soil  water  balance.  Equation  1  shows  the  calculation  process.  

     

                                                                                                   ET=  Ks  Kc  ETo  =  (Ks  Kcb+  Ke)  ETo                                                                    (1)  where  ET:  evapotranpiration  of  the  plant  stand  Kcb:   Basal   crop   coefficient,   derived   from   multispectral   imagery,   is   defined   as   the   ratio   of   the   unstressed   crop  transpiration  over  the  reference  evapotranspiration.  Analogous  to  a  transpiration  coefficient  (dimensionless)  Ks:  Water  stress  coefficient,  which  is  calculated  on  the  basis  of  soil  water  balance  in  the  root  layer  (dimensionless)  Ke:  Bare   soil   evaporation  component,  which   is   calculated  on   the  basis  of   soil  water  balance   in   the  upper   soil   layer  (dimensionless)  ETo   is  the  evaporative  power  of  atmosphere,  or  reference  crop  evapotranspiration,  determined  from  meteorological  data;  it  is  defined  [FAO56]  like  the  evapotranspiration  of  "A  hypothetical  reference  crop  with  an  assumed  crop  height  of  0.12  m,  a  fixed  surface  resistance  of  70  s  m-‐1  and  an  albedo  of  0.23”    

     According  eq.  1,  the  product  Kcb  ETo  represents  the  maximum  of  potential  transpiration  of  an  unstressed  canopy,  the  product  Ks  Kcb  ETo,  represents  the  actual  transpiration  of  a  canopy,  and  the  product  Ke  ETo  is  the  evaporation  from  bare  soil  fraction.      

  • D3.2.2  Guidelines  for  predictive  irrigation  scheduling   26/02/2016   v01    

       10  |  16  

    Calculation  of  reflectance-‐based  basal  crop  coefficient  can  be  done  using  the  eq.  2  (Campos  et  al.,  2010).  This  equation  was  derived  according  TM  and  ETM+  spectral  bands.  Values  of  NDVI  need  to  be  atmospherically  corrected.  Updating  required  to  use  atmospherically  corrected  L8-‐OLI  and  Sentinel2a  data  is  on  going.      

    Kcb*=  1.44·∙NDVI  –  0.1  where  Kcb*    reflectance-‐based  basal  crop  coefficient  [0.15  –  1.15],    NDVI,  calculated  from  surface  reflectances  on  TM  and  ETM+  bands.  [Typical  range  values:  bare  soil  0.12-‐0.16;  maximum  NDVI  value  for  very  dense  green  vegetation,  0.91]    Components  of  mass   soil  water  balance  and  main  elements  of   soil  water   content  available  by  plants  are  showed  in  Figure  3.    Running  a  daily  soil  water  balance  where  evapotranspiration  is  calculated  using  as  input  the  reflectance-‐based  basal  crop  coefficient,  and  assuming  other  components  of  water  balance  are  known,  we   are   able   to   calculate   soil   water   content.   Ground   information   about   soil   hydraulics   characteristics,  precipitation,   irrigation  system  and   frequency  of  water  application   increases   the  modelling  accuracy.  The  water   stress   coefficient   is   calculated   from  the   ratio  between  actual   soil  water   content  and  a  determined  threshold  value  crop  dependent.  A  similar  procedure  is  made  in  the  top  soil  layer,  typically  the  first  10-‐15  cm  of  soil,  to  calculate  the  bare  soil  evaporation  component  Ke.      Detailed   Excel   spreadsheets   incorporating   this   procedure   could   be   accessed   through   the     URL    http://extension.uidaho.edu/kimberly/2013/04/spreadsheets-‐supporting-‐fao-‐56-‐example-‐calculations/.    To  perform   the   satellite-‐driven   FAO56   soil   water   balance   it   is   needed   to   introduce   as   input   the   value   of  reflectance-‐based  Kcb  obtained  from  multispectral  imagery.      So,  the  satellite-‐driven  FAO56  soil  water  balance  enables  to  calculate  irrigation  water  requirements  in  a  pixel  by   pixel   basis.   In  many   cases   the   amount   of   irrigation   is   calculated   avoiding   stress.   It   is   also   possible   to  calculate  irrigation  water  requirements  under  water  stress,  as  is  commonly  desired  either  in  controlled  deficit  irrigation   either   in   supplemental   irrigation.   Knowledge   of   desired  water   stress   degree   is   required,  which  needs  local  calibration.      The  software  Hidromore+,  available  from  UCLM,  is  able  to  perform  the  described  the  satellite-‐driven  FAO56  soil  water  balance  in  a  spatially  distributed  way.  In  this  case,  the  required  inputs  for  calculation  are  maps.  So,  Hidromore+   incorporates  directly  the  maps  of  reflectance-‐based  basal  crop  coefficient   from  multispectral  imagery.        

             Figure  3.-‐  Components  of  mass  soil  water  balance  and  main  elements  of  soil  water  content  available  by  plants  to  perform  the  FAO56  soil  water  balance.  Input  of  evapotranspiration  at  pixel  scale  by  using  the  reflectance-‐based  basal  crop  coefficient  enables  calculation  of   Irrigation  water  requirements   in  a  spatially  distributed  way.      

  • D3.2.2  Guidelines  for  predictive  irrigation  scheduling   26/02/2016   v01    

       11  |  16  

    2.2.2    Remote  sensing  surface  energy  balance    

    This  approach  computes  land  surface  evapotranspiration  directly.  It  partitions  available  energy  in  the  land  surface  using  the  radiometric  surface  temperature  (TR),  derived  from  thermal  band  imagery,  to  constrain  the  sensible  heat  flux,  computing  latent  heat  as  a  residual  to  the  surface  energy  balance  (e.g.,  Moran  et  al.,  1994;  Kustas  and  Norman,  1996;  Gillies  et  al,  1997;  Bastiaanssen  et  al.,  1998).  

    Successful  applications  of  the  surface  temperature  approach  must  address  the  fact  that  TR  differs  from  the  aerodynamic  temperature,  To,  needed  to  compute  sensible  heat,  particularly  for  partial  vegetation  covered  surfaces  (Kustas,  1990).  TR  and  To  are  clearly  related  (Norman  and  Becker,  1995),  but  its  relationship  is  highly  complex,  since  TR  depends  on  the  temperature  of  the  different  elements  that  occupied  the  radiometer  view,  while   To   depends   on   surface   aerodynamic   roughness,   wind   speed   and   the   coupling   of   soil   and   canopy  elements  to  the  atmosphere.  Several  schemes  of  varying  levels  of  complexity  and  input  requirements  have  been  formulated  to  deal  with  this  difference.  Some  employ  empirical/semi-‐empirical  methods  for  adjusting  TR  to  To,  tuned  to  account  for  spatial  variability  in  the  roughness  lengths  for  heat  and  momentum  transport  (eg.   Kustas   et   al.,   1989;   Lhomme   et   al.,   1994;   Chehbouni   et   al.,   1996;  Mahrt   and   Vickers,   2004).  When  calibrated   with   field   data,   empirical   relationships   have   provided   accurate   results   (Chavez   et   al.,   2005);  however,  such  relationships  are  typically  crop  or  vegetation  specific  and  are  not  likely  to  function  correctly  when  applied  to  different  crop  types  or  landscapes.    

    A  class  of  internally  calibrated  surface  temperature  schemes  avoids  the  problem  of  specifying  To  by  instead  modeling  the  vertical  near-‐surface  air  gradient  TA-‐To.    These  methods  are  based  on  selecting  pixels  in  the  satellite  image  representing  the  extreme  heat  and  moisture  exchanging  surfaces  (i.e.,  a  dry  non-‐transpiring  surface  where   ET=0   and   a  wet   surface  where   ET   is   at   potential)   and   calculating   the   spatially   distributed  sensible  heat  flux  assuming  a  linear  relationship  between  TR  and  the  near-‐surface  air  temperature  gradient  across   the   image   (Bastiaanssen   et   al.,   1998)   (Allen   et   al.,   2007).   This   approach   reduces   the   need   for  atmospheric   correction   of   TR,   which   is   a   cumbersome   and   error-‐prone   process,   but   it   arises   new  uncertainties  associated  with  “choosing  the  end  point”  and  assuming  the  linear  relation  between  TR  and  TA-‐To.  

    Other   TR-‐based   approaches  model   the  effects   of   partial   vegetation   cover  on   To  using   two-‐source  model  parameterizations   (Shuttleworth   and  Wallace,   1985;  Norman  et   al.,   1995),  which  partition   surface   fluxes  between  the  soil  and  canopy  components  of  the  scene.  This  more  physically  based  approach  does  not  require  in-‐situ  calibration,  although  most  implementations  do  require  accurate  radiometric  temperature  retrievals.  A   comparison   between   a   two-‐source  model   and   an   internally   calibrated  model   over     herbaceous   crops  (Gonzalez-‐Dugo   et   al.,   2009)   showed   a   reasonable   agreement   with   tower   measurements;   however  Timmermans   et   al.   (2007)   found   significant   discrepancies   in   the   heat   flux   maps   generated   by   the   two  approaches,  particularly  for  bare  soil  and  sparse  canopy  covered  areas.    

    Anderson   et   al   (1997)   proposed   an   improvement   of   a   two-‐source   scheme   by   incorporating   a   simple  description  of  planetary  boundary  layer  dynamics.  The  resulting    Atmosphere-‐Land  Exchange  Inverse  (ALEXI)  and  an  associated  flux  disaggregation  technique  (DisALEXI)  is  a  multi-‐sensor  TIR  approach  to  ET  mapping  that  reduces  the  need  of  ancillary  data  input  and  is  able  to  deal  with  errors  in  TR  remote  estimation  by  partially  working  in  time-‐differencing  mode  (Anderson  et  al.  2010).  

    2.2.3   Summary  of  remote  sensing-‐based  evapotranspiration  estimates  

    A  summary  of  ET  estimates  by  using  remote  sensing  approaches  in  an  operative  way  could  be:  

  • D3.2.2  Guidelines  for  predictive  irrigation  scheduling   26/02/2016   v01    

       12  |  16  

    Ø   Time  series  of  NDVI  maps,  or  other  VI  indices,  can  be  converted,  either  through  a  linear  relationship  either  through  more  complex  models,  into  maps  of  basal  crop  coefficient.    Gap  filling  to  obtain  daily  Kcb  maps  can  be  applied  to  dense  time  series  of  multispectral  imagery  to  avoid  cloudiness  and  lacking  images.  This  time  series  would  be  provided  by  virtual  multisensor  constellation.  

     Ø   The  product  of  daily  basal  crop  coefficient  maps  and  reference  evapotranspiration  maps  provides  

    directly  the  daily  potential  transpiration  in  a  pixel  by  pixel  basis.  Reference  evapotranspiration  ETo  maps  would  be  obtained  by  predictive  meteorological  models  or  from  agro-‐meteorological  station.    

    Ø   Basal  crop  coefficient  as  it  is  derived  from  multispectral  imagery  is  a  basic  input  in  the  widely  used  FAO56   model   for   crop   evapotranspiration   calculation,   involving   soil   water   balance.   Ground  information  about  soil  hydraulics  characteristics,  precipitation,   irrigation  system  and  frequency  of  water  application  increases  the  modelling  accuracy.    

    Ø   The  EO-‐driven  soil  water  balance,  that  a  scheme  is  shown  in  Figure  5,  enables  to  calculate  irrigation  water  requirements  in  a  pixel  by  pixel  basis.  According  FAO56  procedures  it  is  possible  to  calculate  irrigation  water  requirements  under  water  stress,  as  is  used  either  in  controlled  deficit  irrigation  or  in  supplemental  irrigation.  Knowledge  of  desired  water  stress  degree  is  required,  which  needs  local  calibration.    

    Ø   Remote   sensing   of   evapotranspiration   can   also   be   calculated   from   temperature   images   by   using  other  techniques  like  those  based  on  surface  energy  balance.  One  of  the  main  constraint  of  its  use  is  the  spatial  scale  of  temperature  surface  data.  The  best  spatial  resolution  has  the  value  of  100  m  pixel  size,  provided  by  Landsat8  sensor  with  a  revisit  time  of  16  days.  Other  surface  temperature  maps  have  lower  spatial  resolution,  like  those  provided  daily  by  sensors  onboard  of  MODIS,  Sentinel3,…  They   are   too   coarse   for   typical   agricultural   plots   management.   Therefore   this   procedure   is  complementary   with   that   previously   described,   providing   an   independent   quality   control   in   the  suitable  areas.    

     

    Figure  4.-‐  Scheme  of  FATIMA  modular  system  based  on  the  integration  of  Earth  observation  (EO),  soil  wireless  sensor  networks  (WSN),  and  weather  observations  and  forecasting   into  a  webGIS,  to  provide  users  about  differential  irrigation  scheduling,  matching  water  supply  to  crop  water  demands.  

     

  • D3.2.2  Guidelines  for  predictive  irrigation  scheduling   26/02/2016   v01    

       13  |  16  

    3   Predictive  differential  crop  water  requirements  Previous   sections   have   described   the  way  we   can   use   remote   sensing  multispectral   imagery   to   estimate  spatially  distributed  crop  water  requirements  and  irrigation  requirements.  But  according  users  requirement,  what  we  could  call  “remote  sensing-‐driven  crop  water  management”  requires  two  steps  more  to  be  placed  into  the  day-‐to-‐day  routine  on  farming  irrigation:  On  the  one  hand,  for  planning  irrigation  the  users  require  the  forecasting  of  crop  water  requirements  for  the  week  ahead;  On  the  other  hand,  decision  makers  in  charge  of  irrigation  require  access  to  this  information  in  an  easy-‐to-‐use  way  on  real  time.  It  can  be  achieved  through  leading  edge  webGIS  tools,  which  facilitates  co-‐creation  and  collaboration  with  stakeholders.    

      Planning  irrigation  for  the  next  week  

    Users  need  to  know  the  crop  water  requirement  CWR  for  the  next  week  to  planning  water  application  in  order   to   fulfill   the   water   requirements   of   crop,   according   their   irrigation   system,   electric   rates,   water  availability,  precipitation  if  happens,  …,  and  their  own  personal  availability  to  do  the  task.    CWR   for   the   next   week   can   be   achieved   by   extrapolating   crop   coefficient   trend   and   by   using   weather  forecasting  for  ETo  estimation.  This  approach  has  been  tested  last  years  in  the  pilot  area  of  La  Mancha  and  is  currently  operational.  Differential  CWR  maps  have  been  elaborated  week  to  week.  Figure  5  shows  a  CWR  maps.  Usually  the  irrigation  system  doesn’t  allow  to  apply  differential  irrigation,  then  an  aggregated  value  for  the  entire  plot  has  been  produced;  Figure  6  shows  one  of  the  case  study  followed  last  campaign.    Gained  experience   indicates   that   prediction   need   to   be   corrected   with   observation,   both   Kcb   and   ETo.   Then   a  simplified  water  balance  is  running  in  parallel  to  correct  the  bias  that  prediction  could  introduce.    

     

  • D3.2.2  Guidelines  for  predictive  irrigation  scheduling   26/02/2016   v01    

       14  |  16  

    Figure   5.-‐   Aspect   of   Crop  Water   Requirement  map   for   the   next  week   as   can   be   seen   in   SPIDER  webGIS  platform.  Color  is  associated  with  weekly  CWR  according  the  displayed  legend.  Vector  lines  delimit  plot  under  monitoring  

     Figure  6.-‐  Prediction  of  crop  water  requirements  for  the  next  week.  Case  study  for  barley,  2015  campaign.  Time  trajectory  of  NDVI  describes  temporal  evolution  of  crop,  showing  a  typical  smooth  curve.      

    3.1.1   Extrapolating  reflectance-‐based  basal  crop  coefficient  

    Extrapolation  of  reflectance-‐based  basal  crop  coefficient  Kcb  take  advantage  of  that  Kcb  time  trajectories  for  crops,  derived  from  NDVI,  are  usually  smooth  curves,  see  Figure  2.  Therefore,  the  Kcb  time  trajectories  are  suitable  to  be  extrapolated  with  the  scope  of  one  week  by  using  previous  dates  to  perform  the  prediction.  Currently  we  are  performing  a  lineal  extrapolation  based  on  values  of  at  least  two  previous  images  without  clouds.  Accuracy  of  this  extrapolation  depends  strongly  of  the  closeness  of  previous  images  to  the  weekly  forecasting  window.  Turning  points   are   critical   in   the   linear  extrapolation;  hence   the   limit  of   value  1.2   is  imposed  in  the  maximum  values  that  Kcb  can  reach.    

    3.1.2   Forecasting  reference  evapotranspiration  ETo  

    Reference   evapotranspiración   ETo   is   calculated   from   meteorological   data,   therefore   is   suitable   to   be  calculated  from  meteorological  models  utilized  for  forecasting.  Two  complementary  methods  with  different  spatial  scope  and  accuracy  have  been  tested.  The  first  one  is  to  use  the  full  power  of  meteorological  models  for  forecasting  the  variables  required  to  compute  ETo  according  FAO56  for  the  next  week.  The  second  one  is  based  in  daily  temperature  forecasting  by  using  it  as  input  into  Hargreaves&Samani  equation  to  calculate  ETo  (Allen   et   al.,   1998).   The   last   method   provide   low   accuracy   and   it   should   be   restricted   to   areas   where  Hargreaves&Samani  equation  woks  well  (no  windy,  no  coastal  areas)  and  no  forecasting  of  other  variables  than  temperature  are  available.    Computing   ETo   according   FAO56   from   weekly   forecasting   models   is   the   selected   option.   The   Spanish  Meteorological  Agency,  AEMET  (Agencia  Estatal  de  Meteorología)  provides  routinely  the  map  forecasted  ETo  product  calculated  from  the  HIRLAM  model.  The  spatial  scope  of  this  product  is  the  Iberian  Peninsula,  as  it  is  

  • D3.2.2  Guidelines  for  predictive  irrigation  scheduling   26/02/2016   v01    

       15  |  16  

    showed  in  Figure  7,  and  the  spatial  resolution  of  the  raster  map  is  5  km  pixel  size.  Moreover,  AEMET  also  provides   the   observed   ETo.   Then,   the   observed   ETo   is   also   displayed   in   SPIDER.   Figure   8   shows   the  comparison  ETo_forecast  and  ETo_observ  from  the  last  months.    Comparison  of  both  products  is  displayed  in  Figure  8;  comparison  against  local  meteo  station  also  has  been  made  in  the  Spanish  pilot  area  with  good  results.    

     

    Figure  7.-‐  Weekly  reference  evapotranspiration  ETo  forecasting  performed  by  AEMET  and  displayed  by  the  system  SPIDER  webGIS.  

     

    Figure  8._  Comparison  of  weekly  ETo_observ  and  ETo_forecast,  both  time  series  provided  by  AEMET  for  the  last  months  and  displayed  by  the  system  SPIDERwebGIS.    

     

     

  • D3.2.2  Guidelines  for  predictive  irrigation  scheduling   26/02/2016   v01    

       16  |  16  

    References  

     

     

    Michael  A.Wulder,  Thomas  Hilker,  Joanne  C.White,  Nicholas  C.  Coops,  Jeffrey  G.  Masek,  Dirk  Pflugmacher,  Yves  Crevier.    Virtual   constellations   for  global   terrestrial  monitoring  Remote  Sensing  of  Environment  170  (2015)  62–76;  http://dx.doi.org/10.1016/j.rse.2015.09.001  

     

    CEOS  (2013).  The  CEOS  virtual  constellation  concept.  Virtual  constellations  process  paper  (updated  2013).  http://old.ceos.org/index.php?option=com_content&view=category&id=347&Itemid=480;Accessed  October,  30th,  2015,