D2 1_LCA Tool Adaptation to Pharmaceutical Processes

Embed Size (px)

Citation preview

  • 8/2/2019 D2 1_LCA Tool Adaptation to Pharmaceutical Processes

    1/39

    1

    D2.1LCATOOLADAPTATIONTOPHARMACEUTICAL PROCESSES

    INDEX

    Summary...................................................................................................................................................... 3

    1 Introduction......................................................................................................................................... 4

    LCAToolAdaptationto

    Pharmaceutical

    ProcessesManualtouseintheCluster

    January2010

    Martins,M.L.;Mata,T.M.; Martins, A.A.; Neto, B.; Costa,C.A.V,Salcedo,R.L.R.

    FacultyofEngineeringUniversityofPorto

    RuaDr.RobertoFrias,s/n

    4200465Porto,Portugal

  • 8/2/2019 D2 1_LCA Tool Adaptation to Pharmaceutical Processes

    2/39

    LCAToolAdaptationtoPharmaceutical Processes

    2

    1.1 BackgroundandMotivation....................................................................................................... 4

    1.2 StudyObjectives....................................................................................................................... 11

    2 ProductionofLyophilizedProductsviaRecombinantBiotechnology...............................................12

    2.1 APIProduction.......................................................................................................................... 12

    2.1.1 PreparationofRawMaterialsforFermentation.................................................................. 13

    2.1.2 InoculationandFermentation.............................................................................................. 14

    2.1.3 ProductConcentrationandChromatographic Purification.................................................. 16

    2.1.4 FilterSterilization andAPIConditioning............................................................................... 18

    2.2 MedicineProduction................................................................................................................. 20

    2.2.1 APIandExcipientsWeightingandProductFormulation...................................................... 21

    2.2.2 FreezeDrying........................................................................................................................ 23

    2.2.3 StopperingandFinalProductStorage.................................................................................. 25

    2.2.4 StabilityTests,QualityControlandQuarantine................................................................... 26

    2.3 AuxiliaryProcesses.................................................................................................................... 31

    2.3.1 PureWaterTreatmentSystem............................................................................................. 31

    2.3.2 HeatSterilizationofWastes................................................................................................. 32

    2.3.3 Trigeneration:PureSteamgenerationandIndustrialSteam..............................................32

    3 LCAToolDescription.......................................................................................................................... 33

    3.1 LCAToolOutline....................................................................................................................... 33

    3.2 ImpactEvaluation..................................................................................................................... 34

    3.2.1 Methodology........................................................................................................................ 34

    References.................................................................................................................................................. 37

  • 8/2/2019 D2 1_LCA Tool Adaptation to Pharmaceutical Processes

    3/39

    LCAToolAdaptationtoPharmaceutical Processes

    3

    Summary

    Thisreport,donewithinthescopeoftheCIPEIPEcoinnovation2008projectECOPHARMABUILDING

    EcoInnovationofPharmaceutical BuildingsSupportinginSustainableLCATools(ECO/08/239082), has

    among other objectives to identify, describe and present a detailed description of the PRAXIS

    Pharmaceutical S.A.productionprocesses.Theproductionprocessesof thispharmaceutical company

    willbeusedasacasestudyforthedevelopment,withinthisproject,ofanopensourceLCAtoolthat

    canultimatelybeusedbyeachpharmaceuticalcompanytoanalyzetheirprocesses.ThisLCAtoolcanbe

    used to perform an inputoutput analysis of pharmaceutical processes, to evaluate their potential

    environmental impacts, toperforma sustainability assessment,andalso to identifyopportunities for

    improvement.

    Therefore,thisreportisstructuredintwochapters.Thefirstchapterisasmallintroduction,describing

    themotivationforthecreationoftheLCAtoolandasummaryoftheLCAmethodology,accordingtothe

    ISO14040 (2006).Thesecondchapterdescribes theproductionprocessesof lyophilizedproductsvia

    recombinant biotechnology, obtained from open literature, which are similar to the ones used byPRAXISpharmaceutical. Thisdescription isan important step in theunderstandingof theproduction

    processesinvolvedinordertoallowfortheidentificationoftherelevantinputsandoutputsofmaterials

    and energy that enter and exit each manufacturing process. For each stage of the primary and

    secondaryprocessing, someof themain inputsandoutputsare identified,whichneed tobe further

    refinedandcompleted inordertobeused intheLCAtooldevelopment.The inventorydataobtained

    fromPRAXIScanbe laterused,duringthedevelopmentoftheLCAtool, inordertobepresentedasa

    casestudywithquantifieddata.

  • 8/2/2019 D2 1_LCA Tool Adaptation to Pharmaceutical Processes

    4/39

    LCAToolAdaptationtoPharmaceutical Processes

    4

    1 Introduction

    1.1 BACKGROUNDANDMOTIVATIONLifeCycleAssessment(LCA)isamethodologythatcanbeusedtoperformasystematicevaluationofthe

    potentialenvironmentalimpactsofamaterial,product,process,activityorserviceacrossallstagesofits

    life cycle, from rawmaterialacquisition,productmanufacturing, transportation, sale,use,endoflife

    treatment and disposal (i.e. in a cradletograve, cradletogate, gate to gate or gatetograve

    perspective). This methodology is described by the international standards ISO 14040:2006

    (Environmentalmanagement Lifecycleassessment Principlesandframework)andISO14044:2006

    (Environmentalmanagement Lifecycleassessment Requirementsandguidelines).

    The first LCA studies (known as ecobalances) emerged in the late 1960s to support corporate

    environmentalstrategies,suchastoreducematerialandenergyconsumptionassociatedwithproducts.

    By the time of the energy crisis, in the middle 1970s, the use of ecobalance studies by companies

    becamemorewidespread,mainlyforthepurposeofperformingenergyassessmentsandevaluatingthe

    efficiency of specific energy sources. More recently, new concepts related to other environmental

    problems have emerged, including for example, natural resources depletion, atmospheric emissions,

    wastewaterandsolidwastesgeneration.

    Insummary,thedetailedknowledgeofasystem,providedwhenperforminganLCAstudy,allowsoneto

    (Gainzaetal.,2009): Assistanorganizationtoimprovetheirlevelofenvironmentalperformanceevenifthereareno

    limitsforpollutantemissionsdefinedinexistingenvironmental regulationsandlaws;

    Rapidlyrespondtoanyenvironmentalissue,e.g.setupbyanewenvironmentalstandard; Obtain precise data that may be used for ecodesign purposes and also, to report reliable

    environmentaldata;

    Informthepublicabouttheenvironmentalaspectsofanorganizationproductsandprocesses,inordertobuildaresponsiblecorporateenvironmental image.

    FewstudiesarepublishedconcerningLCAofpharmaceutical processes.Forexample,JimnezGonzlez

    et al. (2004) performed an LCA study for analyzing and identifying the cradletogate environmentalimpacts of a typical Active Pharmaceutical Ingredient (API) synthesis, concluding that solvent use

    accountsforthemajorityofthepotentialenvironmentalimpacts.

    PonderandOvercash(2010)performedaLCAstudyofthevancomycinhydrochlorideproduction ina

    lowyield fermentationprocess.Results show that,ona cradletogateperspective, the fermentation

    stepconsumesthemostoftherawmaterialsandenergy(47%ofthetotalenergyconsumption).Also,

    steam use accounts for more than 75% of the total cradletogate energy consumption, mainly for

    sterilization operations. Aeration and agitation in fermentation consume 65% of the cradletogate

    electricalenergy.Asanenvironmentalmeasureoftheprocess,theseauthorsdeterminedtheprocess

    mass intensity (PMI),calculatedas the totalgatetogatemassof rawmaterialspermassofproduct,

    whichmayideallyapproachesthevalueofoneifnowastesaregenerated.

    Wernetetal.(2010)performedaLCAofanAPIproductionfromcradletofactorygateandconcludedthatpharmaceutical production is significantlymorecomplex thanbasicchemicalproduction.Energy

    useisdirectlyorindirectly,thecauseofthemajority(andsometimesupto85%)oftheimpacts.These

    authors also concluded that the emissions from the chemical processes and transport are minor

  • 8/2/2019 D2 1_LCA Tool Adaptation to Pharmaceutical Processes

    5/39

    LCAToolAdaptationtoPharmaceutical Processes

    5

    contributorstotheoverall impacts.Furthermore,thisanalysissuggeststhatthemosteffectivewayof

    increasing these processes sustainability is by optimizing material and energy efficiency. Therefore,

    althoughAPIarenormallyproducedandused in lowerquantities,their lowercontribution inmassto

    productsshouldnotleadLCApractitionerstoneglecttheirimportance.

    Kimetal.(2009)performedanLCAofthreesupportedenzymesforpharmaceutical applicationsFLASCusingthe lifecycle inventorydatabasedevelopedbyGlaxoSmithKline. Theyconcludedthatproduction

    of immobilized enzymes is an energy intensive process, being the immobilization and the media

    preparation the primary sources of potential environmental impacts such as acidification,

    eutrophication, andphotochemicalsmogformation.

    Jonge(2003)performedalimitedLCAofpharmaceutical productsconcludingthatitistheportionofthe

    active ingredient inthe finalproductthatdeterminestheecologicalconsequences foractivitiesdown

    the supply chain. Also, the major energy requirements and environmental impacts of the active

    ingredientoverthelifecycleareattributedtotheproductionstage.

    Also,somesoftwaretoolsalreadyexisttoperformLCAstudies,evaluatingthepotentialenvironmental

    impacts,andothers, toassessprocesspotential risksandhazards,or theenvironmental, healthand

    safety(EHS)propertiesofchemicals.Examplesarepresentedbellowandamoreexhaustivelistofthese

    softwaretools,servicesanddatacanbefoundathttp://lca.jrc.ec.europa.eu/lcainfohub/toolList.vm

    Ecoprofarma Desarrollo de Procesos y Productos Sostenibles para la Industria Farmacutica.Under this project it wasdevelopedan LCA tool forpharmaceuticalbasedon a stateof the art

    aboutavailableenvironmentaltechnologiesforpharmaceutical products(Ecoprofarma,2008)

    FLASC FastLifecycleAssessmentofSyntheticChemistry,developedbyGlaxoSmithKline (GSK),isa webbased tool and methodology designed to evaluate the life cycle environmental impacts

    associatedwiththemanufactureofmaterialsusedinatypicalpharmaceuticalprocess(Curzonsetal.,2007).

    Sabento Software for the Assessment of Biotechnology Processes. It can be used tomodelbiotechnical production processes and process development. Also, it allows a process

    designertoperformeconomicandecologicalassessmentsofprocessalternatives.Thissoftwarecan

    beorderedat:http://www.sabento.com/en/

    SimaProLCAsoftwaredevelopedbyPRConsultants, includesalargedatabasefortheinventoryandenvironmental analysesofseveralprocesses.Itcanbeorderedat:http://www.pre.nl/simapro/

    KCLECOLCAsoftware&KCLEcoData developedbyKCLpulpandpaperResearchCompany,canbeappliedindifferentindustrialsectors.

    BEES BuildingforEnvironmentalandEconomicSustainability developedbytheBuildingandFireResearchLaboratory.

    OpenLCA isamodularsoftwarefor lifecycleanalysisandsustainabilityassessmentsdevelopedbyby Green DeltaTC (Ciroth, 2007). This software will be available as open source at

    http://www.openlca.org/index.html.

    TRACI Tool for Reduction and Assessment of Chemical and Other Environmental Impacts developed by the Environmental Protection Agency (EPA) to assists in making environmental

    decisionsandcompletingLCAfordifferentproductionprocesses.

    Ecosolvent LCAtooldevelopedbytheInstituteforChemicalandBioengineering ofETHZurich,forquantifying the potential environmental impact of wastesolvent treatment. It is available athttp://www.sustchem.ethz.ch/tools/ecosolvent/.

  • 8/2/2019 D2 1_LCA Tool Adaptation to Pharmaceutical Processes

    6/39

    LCAToolAdaptationtoPharmaceutical Processes

    6

    EHSassessmenttool developedbytheSafetyandEnvironmentalTechnologyGroup,ofETHZurich,forassessingchemicalsandsolventsbasedonEHScriteria.Thistoolisdemonstratedon26organic

    solventsofcommonusewithinthechemicalindustry.Thesubstancesareassessedbasedontheir

    performance inninecategories:Releasepotential,chronic toxicity, fireorexplosion,persistency,

    reaction or decomposition, air hazard, acute toxicity, water hazard, irritation. It is available at

    http://www.sustchem.ethz.ch/tools/ehs/.

    HAZOPExpert HAZOPsoftwaredevelopedbytheLaboratoryforIntelligentProcessSystems(LIPS),SchoolofChemicalEngineeringofPurdueUniversity,toanalyzedifferentprocessesfortheirrisks

    andhazards(Venkatasubramanianetal.,2000). WAR (WAste Reduction) algorithm software tool developed by the Environmental Protection

    Agency(EPA)todescribetheflowandthegenerationofpotentialenvironmentalimpactthrougha

    chemicalprocess.Availableathttp://www.epa.gov/nrmrl/std/cppb/war/sim_war.htm.

    The problems with some of these software tools is that they are not specifically oriented for

    pharmaceutical processes,somearenotuser friendly, the licensing feesmaybehighand the results

    obtainedareoftennotclearforusersinSME(SmallandMediumEnterprises) andforthegeneralpublic.

    Also,thesetoolsaremuchtimeconsuming,complicatedandnormallydonotaddressconcernsofsocial

    sustainabilityoroftheprocesseconomics.AlthoughFLASC isspecificallyorientedtodevelopa fast,

    streamlined LCA for a wide range of materials commonly used in pharmaceutical products it is only

    availabletoGSKscientistsandengineersandaccessibleviatheintranetsiteofthiscompany.

    Forthesereasons,thereisastronginterestindevelopinganopensourceLCAtool,easytohandleand

    interpret,thatcanbeusedbypharmaceuticalcompaniestoperforman inputoutputanalysisoftheir

    processes,productsandmaterials lifecycle,helping them tomeetcurrentenvironmental legislations

    andtheirenvironmentalreportingneeds.

    Moreover,theinformationdevelopedinanLCAorLCI(lifecycleinventory)studycanbeusedaspartof

    a much more comprehensive decision making process. Furthermore, to achieve the environmentalcertificationorecolabelforapharmaceutical product,theirmanufactureandtransformationneedsto

    complywithspecialenvironmentalconditionsbasedonalifecycleassessment.

    Especiallyconcerningpharmaceutical products,thecurrentEuropeanRegulationsforEcologic labeldo

    not take intoconsiderationmedicines,healthproductsandothersdangerousor toxicproducts.Also,

    existing methodologies like LCA and others for Ecodesign are practically not applied in the

    pharmaceutical sector or others, like EMAS (EcoManagement and Audit Scheme) are slightly used,

    whichmakestheLCAtoolevenmorenecessary.

    Concerning pharmaceutical manufacturing companies, there is an increasing pressure to ensure that

    information and data about their processes are accurate and reproducible. However, the current

    environmental regulations (e.g. for ecoproducts) are not yet specifically oriented to be applied to

    pharmaceutical products and processes. Leonard and Schneider (2004) states that pharmaceutical

    companiesalreadyrecognizedthatonewaytogrowtheirbottom lines isby integratingsustainability

    performance. Nevertheless, currently no standardized methods exist for integrating, measuring, or

    communicatingsustainability bypharmaceutical companies.Moreover,Schneideretal.(2010)analyzedtheevolutionofsustainability reportinginthepharmaceutical sector,concludingthatithasincreasedin

    breadthanddepth,buthavenowshiftedmoretowardscorporatesocialresponsibility,whichreflectthe

    companiesneedtosatisfypublicopinion.Inotherhand,Geibleretal.(2006)inferthatsincethesocialdimensionofsustainabilityhasan intangibleandqualitativenaturethere isa lackofconsensusabout

    whataretherelevantcriteriaforcompaniestoaccountforit.

  • 8/2/2019 D2 1_LCA Tool Adaptation to Pharmaceutical Processes

    7/39

    LCAToolAdaptationtoPharmaceutical Processes

    7

    Onewayofevaluatingthesustainability ofpharmaceutical processesisbyusingsustainabilitymetricsor

    indicators.Severalindicatorsandmetricshavebeenproposedbyresearchersovertheyears.Theissue

    withsomeofthesemetricsystemsisthattheyonlycovercertaindimensionsofsustainabilityandnotall

    the three dimensions. Below is a summary of the key metric systems that have been proposed by

    researchersinthisfield.

    Key performance indicator (KPI) proposed by Geibler et al. (2006) to account for the socialsustainabilityinbiotechnological processesandproductdevelopment.Also,theseauthorsidentified

    eightaspectswithsignificantrelevancetothesocialimpactassessmentofthebiotechnologysector:

    healthandsafety,qualityofworkingconditions, impactonemployment,educationand training,

    knowledgemanagement, innovationpotential,customeracceptanceandsocietalproductbenefit,

    and social dialogue. For each one of these aspects these authors proposed typical indicators to

    assessthem.

    ALCHESustainabilityMetrics:TheSustainabilityMetricsworkinggroupofTheAmericanInstituteofChemicalEngineers(AICHE)hasdevelopedasetofbaselinesustainability metricsforcompaniesto

    measureenvironmental impactsandhasanactiveprojectevaluatingandtestingthesemetrics in

    industry(http://www.aiche.org/cwrt).

    IChemESustainabilityMetrics:SustainableDevelopmentProgressMetricsRecommendedforUseintheProcess Industry. IChemEextendedsustainability metricsto includemeasuresofthepotential

    impactsofemissions,effluentsandwastes.Thus, this indicators systemcanbeused toevaluate

    environmental, economicandsocialconcernsofaprocessunit(IChemE,2002).

    Dow Jones Sustainability Index (DJSI) established in 1999 by Sustainable Asset Management(SAM), thiswas the first indexattempting toassess theabilityofbusinesses tocreate longterm

    shareholder value by embracing opportunities and managing risks deriving from economic,

    environmentalandsocialdevelopments(http://www.sustainability index.com/).

    SustainableProcessIndex(SPI) developedin1995,SPImeasuresthepotentialimpact(pressure)ofprocessesormoregenerallyactivitiesontheecosphere.ThebasicunitoftheSPIisarea,i.e.itisthe

    total surface area required by any activity that exchanges material with the environment to be

    sustainably embedded into the ecosphere (or environment). This is based on the principle that

    surface area is a limited resource in a sustainable economy because earth has a finite surface

    (Narodoslawsky and Krotscheck, 2000). SPIonExcel is developed based on SPI to calculate the

    ecologicalfootprintofaprocessonanExcelbasedtool(SandholzerandNarodoslawsky,2007).

    BRIDGESBasicSustainabilityMetrics Introducedin2002thismetricssystemtoassessproductionprocessesbymeasuringthefollowingsetofindicatorsbyunitofoutput(massofproduct,orsales

    revenue,orvalueadded):material intensity,water intensity,energy intensity,toxicreleases,solid

    wastes,pollutanteffects.ExamplesofComplementaryMetricsarealsogiven(Schwarzetal.,2002;TanzilandBeloff,2006).

    ThreeDimensional(3D)SustainabilityMetrics proposedbyMartinsetal.(2007)forevaluatingthesustainabilityof industrial processesandcomparing themwithalterativeproductionmethods.A

    threedimensionalsustainability framework isalsoaddressedby theseauthors thatproposed the

    following sustainability metrics for evaluating chemical processes: Energy intensity, Material

    intensity,Potentialchemicalrisk,andPotentialenvironmentalimpact.

    BASF ecoefficiency analysis developed by BASF to quantify sustainability of products andprocesses. The environmental impacts are determined on the basis of five main aspects: the

    consumptionofrawmaterials,theconsumptionofenergy,resultingemissionstoairwaterandsoil,

    thetoxicitypotential,andtheabuseandriskpotential.Also,thetotalcostsarecalculatedoverthe

  • 8/2/2019 D2 1_LCA Tool Adaptation to Pharmaceutical Processes

    8/39

    LCAToolAdaptationtoPharmaceutical Processes

    8

    life cycle, including the real costs that occur and the subsequent costs that will occur in future

    (Salingetal.,2002;Salingetal.,2005;Saling,2005). TheDowfireandexplosionindex(DowF&EI)publishedbyDowChemical,in1964,isprobablythe

    mostfrequentlyusedhazardevaluation index.It isusedtodeterminesafetyrisksassociatedwith

    fireandexplosion,todeterminetheareasofgreatestlosspotential inaparticularprocess,andto

    predictthephysicaldamagethatwouldoccurintheeventofanincident(Sinnott,2005).

    InherentSafetyIndex(ISI) thisindexsystem,suggestedbyHeikkila(1999),addressesthechemicalandprocesssafetyofachemicalplant.Itiscalculatedbasedonsubindicesconcerningthechemical

    safety(e.g.chemicalreactivity,flammability,explosiveness,toxicityandcorrosivenessofchemical

    substancespresent intheprocess)andtheprocesssafety(e.g.processtemperatureandpressure,

    equipmentsafetyandsafeprocessstructure).

    Sustainability Indicators and Indices An indicators system proposed by Tugnoli et al. (2008) toaddressthethreeaspectsofsustainabilityduringearlystagesofprocessdesign.Itcabbeusedfor

    comparingdesignalternativesandforanalyzingtheenvironmental,economicandsocialimpactsof

    aprocess.

    GlobalEnvironmentalRiskAssessment(GERA)Index proposedbyAchouretal.(2005),this indexsystemassessestheenvironmentalriskofindustrialprocesses.

    Metrics togreenchemistry aiming todrivepharmaceuticalprocesses towardsmoresustainablepractices.Constableetal. (2002)exploresseveralmetricscommonlyusedbychemists,comparesandcontraststhesemetricswithanewmetricknownasreactionmassefficiency toassessthe

    massefficiencyofachemicalsynthesis.

    Sustainability Indicators for assessing energy systems an indicators system to assess thesustainabilityofenergysystemswithafocusonresources,environment,societal,andproduction

    efficiency(Afganetal.,2000). GlobalReportingInitiative(GRI)indicatorstheSustainabilityReportingGuidelineshavebecomea

    standardforsustainability reportingduetothelackofaformalglobalconsensusonmeasurement

    and reporting practices. For reporting on an organizations activities GRI employs quantitative

    indicators wherever possible, but in situations where quantitative measures are not effective

    qualitativemeasuresarealsopossible(http://www.globalreporting.org).

    UNCTADenvironmentalandfinancialperformanceindicatorsUNCTADandtheIntergovernmentalWorkingGroupofExpertsonInternationalStandardsofAccountingandReporting(ISAR)prepared

    amanualthatpresentsamethodbywhichenvironmentalandfinancialperformanceindicatorscan

    beused together tomeasureanenterprise'sprogress inattainingecoefficiencyor sustainability

    (UNCTAD,2004)

    NRTEEecoefficiency indicators TheCanadasNationalRoundTableontheEnvironmentandtheEconomy (NRTEE) conducted one of the earliest studies on the development of sustainability

    metrics. Itssearchforasmallsetofecoefficiency indicatorsthat ismeaningfulandapplicableby

    companies fromdifferent industrialsectors.Thestudy (NRTEE,1999)recommendedasetofcore

    metricsincludingmaterialintensity,energyintensity,anddispersionofregulatedtoxicsperunitof

    products or services, and also suggested using complementary metrics, such as greenhouse gas

    intensity.

    WBCSD Ecoefficiency Indicators developed by The World Business Council for SustainableDevelopment (WBCSD) forcompaniespursuingecoefficient strategies to reduce their impacton

    theenvironmentwhileincreasingoratleastnotdecreasing(shareholder)value.TheWBCSDstatesthatecoefficiencyisachievedbythedeliveryofcompetitivelypricedgoodsandservicesthatsatisfy

  • 8/2/2019 D2 1_LCA Tool Adaptation to Pharmaceutical Processes

    9/39

    LCAToolAdaptationtoPharmaceutical Processes

    9

    humanneedsandbringqualityoflife,whileprogressivelyreducingecologicalimpactsandresource

    intensity(Schmidheiny,1992).

    BITC social and environmental indicators indicators to help companies report social andenvironmental impact effectively, proposed by the Business Impact Review Group (BIRG) of

    BusinessintheCommunity(BITC),amovementofover700oftheUKstopcompaniescommitted

    toimprovetheirpositiveimpactonsociety(BITC,2003).

    PERFORMindicatorsetincludesabout30indicatorsapplicabletoallindustrialsectorsandasmallnumber of additional indicators specific to each sector. It covers the following areas: Economy

    (Turnover, Profit, Return on capital, Labor productivity), Environment (Air emissions, Water

    emissions, Energy and resource input, Waste, Environmental management), Social responsibility

    (Employment, Health and safety, Training and education, Equal opportunities, Community). This

    indicatorssetwasdevelopedunderthePERFORMproject launchedbyresearchersofScienceand

    TechnologyPolicy(SPRU)attheUniversityofSussex.Tosetobjectivesforimprovement,SPRUhas

    implementedafreeserviceallowingcompaniestobenchmarkthemselvesagainsttheircompetitors

    using a standard set of economic, environmental and social performance indicators (PERFORM,

    2004).

    Szkelya and Knirsch M. (2005) lists some of the sustainable performance metrics used by several

    companies,someofwhichfromthepharmaceutical industry.Someexamplesarelistedinthefollowing

    table:

    Economicmetrics Environmentalmetrics Socialmetrics

    BASF(CorporateReport,

    2003)

    Sales,

    NetIncome,

    EarningsPerShare, CashFlow

    GHGEmissions

    ReductionofGHGEmissions

    EmissionstoWater

    ReductionofWaterEmissions

    LostTimeAccidents,

    WorkforceProfile,

    DonationsandSponsoring

    BoehringerIngelheim

    Pharma(KGESH2000)

    Sales

    ExpenditureonEHS

    TotalEnergyConsumption

    GHGEmissions

    WaterConsumption

    Wastewater

    SolidWaste

    %ofWasteRecycling

    No.ofEmployees

    AccidentsperhoursWorked

    Henkel(SustainabilityReport

    2003)

    Sales

    OperatingProfit

    ProductionVolumes

    EnergyConsumption GHGEmissions

    DustEmissions

    VOCEmissions

    WaterConsumption

    VolumeofWastewater

    COD

    HeavyMetalstoWater

    WasteRecyclingandDisposal

    ComplaintsfromNeighbors No.ofEmployees

    AccidentsperHoursWorked

    ParticipationinEmployee

    TrainingPrograms

    No.ofEmployeeProjects

    Schering(Environmental

    Report2003)

    Sales InvestmentR&D

    EnergyConsumption

    CO2Emissions WaterConsumption

    TransportModes(Ship,

    Airplane,Truck/Car), TotalNumberEmployee,

  • 8/2/2019 D2 1_LCA Tool Adaptation to Pharmaceutical Processes

    10/39

    LCAToolAdaptationtoPharmaceutical Processes

    10

    EarningsperShare

    CashFlow

    Wastewater

    SolidWaste

    EnvironmentalProtection

    AccidentsperWorkingHours,

    TotalNumberofApprentices,

    FrequencyofEHSTraining

    Veleva et al. (2003) applied the fivelevel indicator hierarchy developed at the Lowell Center forSustainableProductiontoanalyzetheenvironmentalreportingofsixpharmaceutical companies.Theseauthorsconcludedthatthemajorityofindicatorsaddressperformanceorecoefficiency(Level2),some

    indicatorslookatenvironmentaleffects(Level3),supplychainandproductlifecycleeffectsarestarting

    tobeaddressed(Level4),andnocompaniesareaddressingcarryingcapacityissues(Level5).

    Henderson et al. (2008) used a life cycle approach and sustainability metrics to compare theperformance,and theenvironment, health, safety, and life cycle impacts of two methods for amino

    acidsproduction,concludingthatrawmaterialsproductionhasthelargestenvironmentalimpacts.

    Fischer and Hungerbuhler (2000) discussed the use of four different indicators for assessing the

    environmental impact of chemical processes: Mass Loss Indices (MLI), Environmental Indices (EI), a

    comprehensive EHS (Environment, Health, and Safety) assessment method, and EcoIndicator 95, an

    evaluationmethodusedintheLCAframework.

    Hoetal.(2010)analyzedtheenvironmental impactsofproteinmanufacturingconcludingthatenergyuseandwaterusearethemaincontributorstotheenvironmental impactsofsuchoperations inclean

    roomspaces.

    BlumKusterer and Hussain (2001) analyzed the main drivers for sustainability improvements in the

    Pharmaceuticals Industryconcluding that regulation followedby implementation ofnewtechnologies

    arethemajordriversforprocesschange.

    JimnezGonzales and Overcash (2000) evaluated the energy use and related emissions during the

    severalstagesofpharmaceuticals production,concludingthatabout70%energyreductionispossibleby

    optimizingthe energyusagesysteminthepilotscalestageduringprocessdevelopments.

    JimnezGonzalesetal.(2002)explaintheconceptoftheGreenTechnologyGuide,whichisaseriesofcasescenariocomparisons thatprovidescientistsandengineerswithcomparativeenvironmentaland

    safety information on technologies for operations commonly found in the pharmaceutical industry.

    Technologiesarecomparedusing indicatorsbasedonunitoperationanalysisand lifecycleconcepts.

    Theseauthorspropose indicators in four categories:Environment, Safety,Efficiency,andEnergy. For

    exampleenvironmental Indicatorsare:Mass intensity,Solvent intensity,Waste intensity,Emissionsof

    compoundsreleased.

    ThefollowingindicatorsareproposedintheLCAtooldevelopedunderthisprojectscope,forassessing

    pharmaceuticals processes,basedonthePRAXIScurrentprocesses:

    Environmentalmetrics Socialmetrics Economicmetrics

    Energyintensity(MJ/vialorMJ/API)

    Materialintensity(gram/vialorMJ/API)

    WaterConsumption(liter/vialorMJ/API)

    SolidWaste(gram/vialorMJ/API)

    Wastewater(liter/vialorMJ/API)

    GHGEmissions(kgCO2eq/vialorMJ/API)

    abioticdepletion(expressedinantimony

    equivalent/vialorMJ/API)

    abioticdepletion(expressedinkWh/vialor

    MJ/API)

    globalwarming(kgCO2eq./vialorMJ/API)

    ozonelayerdepletion(kgCFC11eq./vialorMJ/API)

    humantoxicity(kg1,4dichlorobenzeneeq./vial

    Deathsorpermanent

    disabilitiesinthepast5

    years

    Partialdisability(number

    ofaffectedinthelast5

    years)

    Partialdisabilities(%

    average)

    Annualabsences(days/yr)

    Absencecosts(euros/day)

    Numberofdirectfulltime

    jobs Numberofhoursper

    personperyear

    Electricitycost(EUR/g

    vial)

    Watercost(EUR/vial)

    Costofwoodpacking

    material,paperand

    cardboard(kg/grAPI)

    Costoffuel(EUR/

    year)

    Costofrawmaterial

    forAPImanufacture

    (EUR/year)

    Sales NetIncome

    ProductionVolumes

  • 8/2/2019 D2 1_LCA Tool Adaptation to Pharmaceutical Processes

    11/39

    LCAToolAdaptationtoPharmaceutical Processes

    11

    orMJ/API)

    Freshwateraquaticecotoxicity(kg1,4

    dichlorobenzeneeq./vialorMJ/API)

    Marineaquaticecotoxicity(kg1,4

    dichlorobenzeneeq./vialorMJ/API)

    Terrestrialecotoxicity(kg1,4dichlorobenzene

    eq./vialorMJ/API)

    photochemicaloxidation(kgethyleneeq./vialor

    MJ/API)

    acidification(kgSO2eq./vialorMJ/API)

    eutrophication(kgPO4eq./vialorMJ/API)

    Numberofindirectfull

    timejobs

    Numberofworkingdays

    perpersonperyear

    Numberofaccidentsper

    workinghours

    OperatingProfit

    InvestmentinR&D

    CashFlow

    ExpenditureonEHS

    1.2 STUDYOBJECTIVESTheLCAtooldevelopedforpharmaceutical companiesisbasedonMicrosoftOfficeExcel.Itallowsthe

    inputofthe inventorydataandautomaticallycalculatesthepotentialenvironmental impacts,suchas

    global warming, acidification, eutrophication, ozone depletion, photochemical oxidation, human

    toxicity, aquatic ecotoxicity, and terrestrial ecotoxicity. The LCA tool should facilitate results

    interpretation,both fororganizationalor scientificuse,concerning the following threemain typesof

    contents(Gainzaetal.,2009): Ecologicalcontent EcoSocialcontent Economiccontent

    During the development of the LCA tool, the best available technologies for specific production

    processes in the pharmaceutical industry will be analyzed and also their environmental impactsand

    sustainabilitywillbeevaluated.Thetechnologiestobe identifiedandassessed includetheones listed

    below,whichhappenstobetheonescurrentlybeingusedbyPRAXIS:

    APIProduction:o Recombinantbiotechnologytechniques;o Fermentationtechnologies; o Formulationandfiltrationsystems;o Sterilizationsystems(e.g.autoclaving,depyrogenation,radiation,chemical);

    MedicineProductiono Materialwashingandpreparationsystemsthat:

    Avoidcrosscontamination; Saveenergy,e.g.choosingasteamheatingsourceoverelectricalsystems; Reducewaterconsumption,speciallyofWFI(WaterforInjection); Combinewashingandsterilizationsystemsinonesingleequipment;

    o Dosingandfillingsystemsforliquidsandsolids;o Freezedrying;o Microandnanostopperingtechnologies;o Sterileconditioningtechnologies; o Chromatographicseparation;o Filtersterilizationandproductconservation;o Preparationandconditioningtechnologies.

  • 8/2/2019 D2 1_LCA Tool Adaptation to Pharmaceutical Processes

    12/39

    LCAToolAdaptationtoPharmaceutical Processes

    12

    2 ProductionofLyophilizedProductsviaRecombinantBiotechnologyPharmaceutical production is usually divided into two main production stages: API and Medicine

    Production.The former isrelatedtotheproductionoftheactivepharmaceutical ingredient (API)and

    thesecondoneisrelatedtotheconversionoftheAPIintothefinalsdrugpresentationform.Thesetwo

    stagesarepresentedanddivided intoseveralprocessingsteps thatwillbedescribed inthe following

    sections.

    2.1 APIPRODUCTIONMicrobialcellfermentationhasalonghistoryofuseintheproductionofvariousbiologicalproductsof

    commercial significance. It started in the early 1970s when there was the development of two core

    biotechnologies (rDNA and Mabs), accounting in 2006, for 80 of the 140 commercially available

    products.TherDNAprocess,sometimescalled geneticengineering, isaserialprocesswhereby (i)a

    proteinisassociatedwithabiologicactionandisidentified;(ii)aspecifichumangene(aDNAsequence)

    is associatedwith theprotein; (iii) the humangene is inserted intobacterialDNA (plasmid); (iv) the

    plasmid isplaced intothenonhumanhostcells (e.g.Escherichia colibacteria);and (v)thehostcells

    manufacture their typicalvarietyofproteinsandproduceahumanprotein from thehumangene. In

    fact,overhalfofallbiopharmaceuticals thus farapprovedareproducedby recombinantE. colior S.cerevisiae (themostcommonhosts).Asa result,awealthof technicaldataandexperiencehasbeenaccumulatedinthisarea(Walsh,2003,Swarbrick,2005).

    Figure showsatypicalflowdiagramofaprimaryprocessingviarecombinantbiotechnologyfortheAPI

    manufacture.

    Figure13.Primaryprocessingviarecombinantbiotechnology.

  • 8/2/2019 D2 1_LCA Tool Adaptation to Pharmaceutical Processes

    13/39

    LCAToolAdaptationtoPharmaceutical Processes

    13

    2.1.1 PreparationofRawMaterialsforFermentationTheculturemediumcompositionandthefermentationconditionsrequiredtopromoteanoptimalcell

    growthand/orproductmanufactureneeds tobeestablishedduring the initialproductdevelopment.

    Afterthat,routinebatchproductionisahighlyrepetitiveandahighlyautomatedprocess.

    Heatlabileingredientscanbesterilizedbyfiltrationandaddedtothefermenteraftertheheatingstep.

    Mediacompositioncan vary froma simpledefinedculturemedia (usuallyglucoseand somemineral

    salts) to a more complex media, using yeast extract and peptone. The choice of the culture media

    dependsuponseveralfactorssuchas(Walsh,2003):

    Exact nutrient requirements of producer cell line to maximize cell growth and productproduction;

    Processeconomics(totalmediacost); Extracellularor intracellularnatureoftheproduct.Ifthebiopharmaceutical isanextracellular

    product, then the less complex the media composition, the better in order to render

    subsequentproductpurificationasstraightforwardaspossible.

    Typically, the batch manufacture of a biopharmaceutical productentails filling theproduction vessel

    withtheappropriatequantityofwaterforinjection(WFI).Heatstablenutrientsrequiredforproducer

    cellgrowtharethenaddedandtheresultantmediaissterilizedinsitu.Thiscanbeachievedbyheatand

    manyfermentershaveinbuiltheatingelementsor,alternatively, outerjacketsthroughwhichsteamcan

    bepassedinordertoheatthevesselcontents.

    Table1showsthemaininputsandoutputsfortheinventoryanalysisrelatedtothepreparationofthe

    culturemediumusedforthefermentationprocess(PRAXIS,2009).

    Table1 Inventoryanalysisofthepreparationoftheculturemediumforthefermentationprocess(PRAXIS,2009)

    ReceptionandcontrolofRawmaterial

    RawMaterials

    ElectricalEnergy

    ACSconsumption

    AFSconsumption

    industrialsteamconsumption

    puresteamconsumption

    WFIconsumption

    timberpackaging,cardboard,paper

    plasticpackaging

    scrappackstetrabrickandisothermal

    glasspackaging

    packagesorpiecesofsteel

    packagesorpiecesofaluminium

    PreparationofRawmaterial

    ElectricalEnergy

    ACSconsumption

    AFSconsumption

    Industrialsteamconsumption

    Puresteamconsumption

    PurifiedWaterconsumption

    WFIconsumption

    timberpackaging,cardboard,paper

    plasticpackaging

    scrappackstetrabrickandisothermal

    glasspackaging

    packagesorpiecesofsteel

  • 8/2/2019 D2 1_LCA Tool Adaptation to Pharmaceutical Processes

    14/39

    LCAToolAdaptationtoPharmaceutical Processes

    14

    packagesorpiecesofaluminium

    Preparationand

    Material

    Recuperation

    ACSconsumption

    AFSconsumption

    Industrialsteamconsumption

    Puresteamconsumption

    PurifiedWaterconsumption

    WFIconsumption

    ElectricalEnergy

    CompressedAir

    2.1.2 InoculationandFermentationTheupstreamprocessingelementofthebatchmanufactureofabiopharmaceutical productstartswith

    theremovalofasingleampouleoftheworkingcellbank.Thisvialisusedtoinoculateasmallvolumeof

    sterile growth medium. This step entails the use of daughter cells from the new host cell (master

    workingcellbank),actuallyremovedfromitsstorageina 70Cfreezer.Thedaughtercellsaregrownin

    specific media in serially larger flasks and assessed for normal growth characteristics. The growth

    medium (liquid and air) is a unique and specific mixture of minerals, compounds, and nutrients to

    enhancecellviability (lifespan) invitroand functionalabilityofcells toproduceproteins.Thisstarter

    culture is in turnused to inoculateaproductionscale starter culture,which isused to inoculate the

    productionscale bioreactor (Walsh, 2003). It is here that fermentation occurs, with cells from the

    inoculumphaseandaddingtheappropriatefortifiedgrowthmedia.Inabatchconfiguration,hostcells

    thatcontainanexpressionvectorfortherecombinantproductareaddedtoapredeterminedvolumeof

    growthmedium.Thecellsareallowedtogrowuntilthenutrients inthemediumaredepletedorthe

    excretedbyproductsreach inhibitorylevels.Meanwhile,theywillproceedtoproduceproteins(inthisparticularcaseextracellularly)intothemedia.Feedingofthehostcellsandremovingofwastefromthe

    medianeedtobedoneperiodicallytosustainhostviabilityandproductivity.Fermentationfollowsfor

    severaldays subsequent to inoculationwith theproductionscale starterculture.During thisprocess,

    the biomass (i.e. cell mass) accumulates. From each master frozen culture, a subculture stock is

    established for use in largescale production. The subculture stock becomes the inoculum for every

    batch of product. In this way each batch of cultured cells is initiated with a common lineage of

    recombinanthostcells(Swarbrick,2005;Walsh,2003;RodneyandMilo,2003).

    Table2 shows themain inputsandoutputs for the inventoryanalysis related to the inoculationand

    fermentationprocesses(PRAXIS,2009).

    Table2 Inventorydatafortheinoculationandfermentationprocesses(PRAXIS,2009)

    Inoculation

    ElectricalEnergy

    ACSconsumption

    AFSconsumption

    Industrialsteamconsumption

    Puresteamconsumption

    PurifiedWaterconsumption

    WFIconsumption

    CompressedAir

    O2

    CO2

    N2Excipients

  • 8/2/2019 D2 1_LCA Tool Adaptation to Pharmaceutical Processes

    15/39

    LCAToolAdaptationtoPharmaceutical Processes

    15

    Timberpackaging,cardboard,

    Paper

    Plasticpackaging

    scrappackstetrabrickand

    isothermal

    glasspackaging

    piecesofsteel

    packagesorpiecesofaluminium

    Fermentation

    ElectricalEnergy

    Containerforbiologicalproducts

    ACSconsumption

    AFSconsumption

    industrialsteamconsumption

    puresteamconsumption

    purifiedwaterconsumption

    WFIconsumption

    Excipients

    Compressedair

    Auxiliarymaterial

    Industrialscalebacterialandyeast fermentationsystemsareusedandsharemanycommon features.

    Forexample,fermentationorbioreactionvesselsaregenerallymanufacturedfromhighgradestainless

    steel,andcanvary insizefromafewtensof literstoseveraltensofthousandsof liters.An impeller,

    drivenbyanexternalmotor,servestoensureevendistributionofnutrientsandcells inthetank.The

    baffles(stainlesssteelplatesattachedtothesidewalls)servetoenhanceimpellermixingbypreventing

    vortex formation. During fermentation, air (sterilizedby filtration) is sparged into the tank to supply

    oxygentothefermenterthatisoperatedatanappropriatetemperaturetooptimalcellgrowth(usually

    between 2537C) depending upon the producer cell type. In order to maintain this temperature,

    cooling rather thanheating is required insomecases.Large scale fermentations, inwhichcellsgrow

    rapidlyandtoahighcelldensity,cangenerateconsiderableheatduetomicrobialmetabolismandalso

    mechanical activity, e.g. stirring. Cooling is achieved by passing the coolant (cold water or glycol)

    through a circulating system associated with the vesseljacket or sometimes via internal vessel coils

    (Walsh, 2003). Various ports are also available through which probes are inserted to monitor pH,

    temperatureandsometimestheconcentrationofacriticalmetabolite(e.g.thecarbonsource).

    The isolationstepfollows immediatelyafterharvestingoftherawmaterials. Inthe isolationstep,the

    cruderawmaterialisrefinedintoaclarifiedfeedstreamthatisanintermediateprocessfreefromcells

    andotherparticulatematter.Anumberofdifferentmethodsmaybeemployedduringtheisolationstep

    such as filtration, gravity separation, centrifugation, flocculation, evaporation. The unit operations

    employedintheisolationstepdependverymuchontheinitialrawmaterial(JornitzandMeltzer,2007).

    In the purificationphase, the aim is toprepare apure biopharmaceutical product from the clarified

    feed.Thisisthemostchallengingandexpensivestepindownstreamprocessingbecauseitisnecessary

    to separate the desiredproduct from othermoleculeswith similar properties in the fewest possible

    stepswiththesimplestpurificationtechnologytoachievetherequiredpurity.

    Anoverviewofthestepsnormallyundertakenduringdownstreamprocessingwillbepresented inthe

    followingsections,sincedetailsoftheexactstepsundertakenduringthedownstreamprocessingofany

    specificbiopharmaceutical productareusuallyconsideredhighlyconfidentialbythemanufacturerand

    thusarerarelymadegenerallyavailable(Walsh,2003;RodneyandMilo,2003).

  • 8/2/2019 D2 1_LCA Tool Adaptation to Pharmaceutical Processes

    16/39

    LCAToolAdaptationtoPharmaceutical Processes

    16

    2.1.3 ProductConcentrationandChromatographicPurificationThe following phase of downstream processing usually entails concentration of the crude protein

    product.The reason for this step isbecauseafter the removalof the cellsandcellsdebris from the

    culturemediumthroughsolidliquidseparation,thefractionofrecombinantproteinintheliquidphase

    usually ranges from2% to15%.The largevolumesassociatedwith these lowconcentrationsmake itimpracticaltoproceedtothenextpurificationstep.Indeed,thevolumeofproductcontaminantstobe

    purifiedmay farexceed the capacity for chromatographic purification techniquesused to isolate the

    recombinantproteinsfromothersolublecellularcontaminants.Therefore,aconcentrationstepisused

    toreducethevolumeandtherebyincreasetherecombinantproteinconcentration.

    Theconcentrationstepyieldssmallerproductvolumes,whicharemoreconvenienttoworkwithand

    cansubsequentlybeprocessedwithgreaterspeed.Concentrationmaybeachievedbyinducingproduct

    precipitation using, for example, salts such as ammonium sulphate or solvents such as ethanol.

    Moreover,proteinprecipitation, usingagentsthatdecreasethesolubilityoftherecombinantproduct,is

    a well established technique in the pharmaceutical industry. While salts and organic solvents have

    traditionallybeenused,morespecificprecipitationreagentsarenowbeingtestedto improveproteinpurification.However,ultrafiltrationisthemorecommonlyemployedmethod.

    Ultrafiltration is a lessdestructive approach to protein concentration. In most cases, pore size is

    selectedtoretaintherecombinantmacromoleculewhileallowingthepassageofwaterandothersmall

    molecules. Ultrafiltration membranes are usually manufactured from tough plasticbased polymers,

    suchaspolyvinylchlorideorpolycarbonate.Arangeofmembranesareavailablewhichdisplaydifferent

    cutoffpoints.Inpractice,however,theselectionofporesize ismoreanartthanascience,especially

    thechoiceofdesignandsizingconfigurationsofthefiltrationsystem.Theselectionofaproperfiltration

    systemmay leadtoadditionalbenefitsintermsofanincreaseintheyieldofrecombinantproteinand

    itspurity.Ultrafiltration isapopularmethodofconcentration since: (Walsh,2003,RodneyandMilo,

    2003)

    Highproductrecoveryratesmaybeattained(typicallyoftheorderof99%); Processingtimesarerapid; Processscale ultrafiltration equipment is readily available, and running costs are relatively

    modest.

    After concentration, furtherpurification isneeded to increase the purity of the recombinantprotein

    foundintheconcentratedsolution.Inthisstage,increasedpurityisachievedthroughremovalofmost

    contaminant proteins, nucleic acids, endotoxins, and viruses, by means of chromatography. High

    resolution chromatographic purification is usually undertaken for which, a variety of different

    chromatographic techniques are available to separate proteins from each other on the basis of

    differences in various physiochemical characteristics (Jornitz and Meltzer, 2007, Rodney and Milo,

    2003).

    Detaileddescriptionofthetheoryandpracticeunderliningchromatographictechniquesgofarbeyond

    thescopeofthistext,andarefreelyavailableinthescientificliterature.However,asimpledescription

    canbegivenhereinordertounderstandthechromatographytechnique.

    Chromatography can be defined as a procedure in which proteins bind differentially to solid matrix

    supports ormediawith various functionalgroups to providehydrophobic, ionexchange,andaffinity

    interactions.Theseinteractionstrengthsofeachcomponentwiththestationaryphaseareproportional

    toitsretentiontime.

  • 8/2/2019 D2 1_LCA Tool Adaptation to Pharmaceutical Processes

    17/39

    LCAToolAdaptationtoPharmaceutical Processes

    17

    Amongthemanydifferentchromatography formatsavailable,theonethat isusuallyapplied in large

    scaledownstreamprocessingisthecolumnbasedliquidchromatography,inwhichaliquidfeedstream

    is passed over or through a porous, solid matrix or resin held in a column. The components of the

    mixturebecomedistributedbyvirtueof their relativeaffinity for the solidand liquidphases.So, the

    secrethere is to introduce theclarified feed stream into thecolumnunderconditionswherecertain

    components bind strongly to the resin while others flow through. The composition of the buffer ischosen to favor the retentionorelutionof specificcomponents.Bychanging thecompositionof this

    buffer, molecules that initially bind to the resin can be washed through in subsequent fractions

    (SchmidtTraub,2005).One importantreference isthatthechromatographictechniqueshouldprovide

    highcapacityandselectivityandfastkinetics.Thematrixmaterialmustwithstandmultiplepurification

    cycleswithminimumlossofefficiency.Somematricesusedfor industrialscaleproteinpurificationare

    indicatedinthefollowinglist(JornitzandMeltzer,2007;RodneyandMilo,2003).

    Agaroseanddextrancomposite Agaroseandpolyacrylamidecomposite Agaroseandporouskieselguhrcomposite Cellulose Crosslinkedagarose Crosslinkeddextran Crosslinkedpolyacrylamide Ethyleneglycolmethacrylatecopolymer Hydroxyacrylicpolymer Hyroxymethacrylate polymer Polyacrylamide Polyacrylamideanddextrancomposite Polystyrenedivinylbenzene Poroussilica Rigidorganicpolymer

    Thevariouskindsofphysiochemical interactionsthatareusedinchromatographytoproduceselectivity

    are called modes of interaction. Examples include electrostatic interactions in ionexchange or ion

    chromatography, hydrophobic interactions in reversedphase and hydrophobic interaction

    chromatography,andspecific interactions inaffinitychromatography. However,sometimesthisrange

    of selectivity isnt enough. The reason is related to the different molecular weights of proteins,

    hydrophobicity,charge,andstructureoverawiderange,whichrenders it impossibletoapplyasingle

    chromatographicseparationforcomplexproteinmixtures(JornitzandMeltzer,2007;Gad,2007).

    Ingeneral,acombinationoftwotofourdifferentchromatographic techniquesisemployedinatypicaldownstreamprocessingprocedure,beinggel filtrationand ionexchange chromatographyamong the

    most common. Affinity chromatography is employed whenever possible, as its high biospecificity

    facilitates theachievementofa very high degree ofpurification. Anyway, thegeneralprocedure for

    adsorptivechromatography isto introducetheclarifiedfeedstream intothecolumnunderconditions

    wherecertaincomponentsbind strongly to the resinwhileothers flow through (JornitzandMeltzer,

    2007;RodneyandMilo,2003).

    Aswithmostaspectsofdownstreamprocessing, theoperationofchromatographic systems ishighly

    automated and it is usually computercontrolled. While mediumsize processscale chromatographic

    columns(e.g.515litres)aremanufacturedfromtoughenedglassorplastic,largerprocessingcolumns

    areavailable,manufacturedfromstainlesssteel(Walsh,2003).

  • 8/2/2019 D2 1_LCA Tool Adaptation to Pharmaceutical Processes

    18/39

    LCAToolAdaptationtoPharmaceutical Processes

    18

    Normally, forresinsalreadyused,additionalanalysis isrequired,whichdoesnthappenwiththenew

    resins.Theseanalysisincludeforexample,titrationofsmallionbindingcapacity,measurementoftotal

    protein capacity, comparison of flow versus pressure plots to indicate particle size (and attrition),

    particle size distribution, total organic carbon (TOC) removal by cleaning solutions, and microbial

    contamination/ endotoxin (LAL) analysis. Exposure to cleaning/regeneration solutions, rather than

    contact with mild buffers and protein solutions during normal processing, is most likely to causechemicaldegradation(Gad,2007).

    A final purification, known as the polishing step, is designed to remove trace contaminants and

    impurities so that a biologically active recombinant protein with a safety profile suitable for

    pharmaceutical application is obtained. Chromatography systems for final purifications demand high

    performanceevenatthecostofa lowercapacitythanthecolumnusedfor intermediatepurification.

    High separation performance is needed to minimize contaminant carryover into the recombinant

    productforpharmaceutical use.(RodneyandMilo,2003)

    Table 3 shows the main inputs and outputs for the inventory analysis of the chromatographic

    purificationprocess(PRAXIS,2009).

    Table3 Inventorydataforthechromatographic purification(PRAXIS,2009)

    ChromatographicPurification

    ElectricalEnergy

    puresteamconsumption

    purifiedwaterconsumption

    WFIconsumption

    Auxiliarymaterial

    Containerforbiologicalproducts

    2.1.4 FilterSterilizationandAPIConditioningWhile implementation of good manufacturing practices will ensure that the product carries a low

    microbial load, itwillnotbesterileat thisstage. Ideally,sterile filtration removesunwantedparticles

    andbacteriawhileallowingtheformulationtoremainunadulterated.

    In the membrane filtration method, the product samples are put aseptically into a volume of non

    inhibitorydiluentandthenpassedthroughasterilemembranefilterwithaporeof0.22to0.45mm.This

    cancompletelyeliminateviableorganismsofanyspeciesfromafluid(JornitzandMeltzer,2007).Thus,

    a liquid,containingsuspendedmicroorganismswouldberendered freeofcontaminatingmicrobesby

    separationofthemfromtheliquid.Theadvantageofthisstepis,aswithmanyoftheotherassessment

    techniques, that it must be conducted offline in a timeconsuming manner. As a result, it is not

    determinedwhetherbatchesaresatisfactoryuntilprocessingiscompleted(Gad,2007).

    Thetestforsterilitymaybeperformedinoneoftwoways,bydirectinoculation(directtransfer)orby

    membranefiltration(Swarbrick,2007).Indirectinoculation,theproductsamplesareputasepticallyinto

    themicrobiological recoverymediumand incubated.Clearly thisapproach isonlysuited forproducts

    that are not likely to be inhibitory to the growth of microorganisms in the recovery medium. An

    incubationperiodof14daysisspecified(JornitzandMeltzer,2007).

    Table 4 shows the main inputs and outputs for the inventory analysis of filter sterilization and

    conditioningoftheAPIsteps(PRAXIS,2009).

    Table4 InventorydataforthefiltersterilizationandconditioningoftheAPI(PRAXIS,2009)

  • 8/2/2019 D2 1_LCA Tool Adaptation to Pharmaceutical Processes

    19/39

    LCAToolAdaptationtoPharmaceutical Processes

    19

    FilterSterilization

    Electrical Energy

    inhibitoryagents

    timberpackaging,cardboard,paper

    plasticpackaging

    scrappackstetrabrickandisothermal

    glasspackaging

    packagesorpiecesofsteelpackagesorpiecesofaluminium

    Containerforbiologicalproducts

    AFS

    Compressedair

    Industrialsteamconsumption

    Inspection,controland

    quarantine

    Electrical Energy

    timberpackaging,cardboard,paper

    plasticpackaging

    scrappackstetrabrickandisothermal

    glasspackaging

    packagesorpiecesofsteel

    packagesorpiecesofaluminium

    Packaging

    Electrical Energy

    timberpackaging,cardboard,paper

    plasticpackaging

    scrappackstetrabrickandisothermal

    glasspackaging

    packagesorpiecesofsteelpackagesorpiecesofaluminium

    AnexampleoftheinventoryanalysisresultsfortheprimaryprocessingisexpressedinTable5(PRAXIS,

    2009).

    Table5Exampleoftheinventoryanalysisresultsforprimaryprocessing(PRAXIS,2009)

    SoilContamination EnergyCostofWasteProductionandManagement

    Paper,cardboardandothercellulosic products

    Plastic

    DangerousWasteWaterPollution EnergyCostofWaterTreatment

    AirPollution

    EnergyCostofAirPollution

    CO2absorption

    CO2emissionsfrom fermentationprocesses

    SO2emissionsfromcombustionprocesses

    NOXemissionsfromcombustionandmanufacturing

    processes

    CO2emissionsfromcombustionprocesses

    NaturalResourcesDepletion

    EnergyCostofNaturalResourcesDepletion

    Energyusage(fossilfuelandelectricenergy)

    Waterusage

    Consumptionofcardboard andothercellulosicproducts

  • 8/2/2019 D2 1_LCA Tool Adaptation to Pharmaceutical Processes

    20/39

    LCAToolAdaptationtoPharmaceutical Processes

    20

    Plasticinputs consumption

    Ferrousmetals consumption

    Lubricantagent consumption

    BeforethetransformationoftheAPIintothemedicine,theAPIhastotravelbyplainforalongdistance.

    Itwasconsideredthattheconsumesduetothattripareimportantfortheoverallimpact,sotheinputs

    areshownbelow.

    Transportation

    QuantityofRawMaterialbeingtransportedbetween

    thestorageareatothemanufacturearea

    Transportmode

    Fuelconsumption

    QuatityofRawmaterialpertrip

    Kmpertrip

    2.2 MEDICINEPRODUCTIONAll the steps after purification (except in some cases milling) are usually included in the Medicine

    Production.itsgoalistomaketheformulationintothefinalproduct(BennettandCole,2003).

    Thisgenerallyinvolvesthefollowingsteps:

    Addition of the various excipients, which are substances other than the active ingredient(s)which, for example, stabilize the final product or enhance the characteristics of the final

    productinsomeotherway;

    Filter sterilization of the final product (e.g. through a 0.22mm absolute filter) in order togeneratesterileproduct,followedbyitsasepticfillingintothefinalproductcontainers;

    Freezedrying(orlyophilization) iftheproductistobemarketedinapowderedformat.Generallyonemayrepresentthesecondaryprocessingforthemanufactureofalyophilizedproductas

    inFigure.

    Figure14 Secondaryprocessingforthemanufactureoflyophilizedproducts.

    Asimpledescriptionofthemostimportantstagesofsecondaryprocessingwillbegiveninthefollowing

    sections.

  • 8/2/2019 D2 1_LCA Tool Adaptation to Pharmaceutical Processes

    21/39

    LCAToolAdaptationtoPharmaceutical Processes

    21

    2.2.1 APIandExcipientsWeightingandProductFormulationPharmaceutical dosage formscontainbothpharmacologically activecompoundsandexcipientsadded

    tofacilitateformulationandmanufactureofthesubsequentdosageformforadministration topatients.

    In which concerns freezedrying, excipients are used for various purposes. For example, they act as

    bulkingagentstogiveapleasingappearancetothefreezedriedproducts.BuffersarepresenttocontrolthepHoftheproductsthatarestableonlywithinanarrowpHrange insolution,bothduringfreezing

    andthesubsequentreconstitution(Swarbrick,2007).

    Moreover, excipients also play a role in the API protection. This mechanism has not been fully

    elucidated,butempiricalobservationshavepointedtothefollowingcontributingfactors:formationofa

    glassystateoftheproteinexcipientsystem,crystallinityoftheexcipients,hydrogenbondingbetween

    the excipient and protein molecules, and residual water content. In particularly, water affects the

    stabilityofproteinsbyenhancingthemobilityoftheproteinmolecules.Ithasbeenestablishedthatan

    optimallevelofwaterisrequiredtomaintainstabilityofproteinsduringstorage.Indeed,theproperties

    ofthefinaldosageform(i.e.itsbioavailabilityandstability)are,forthemostpart,highlydependenton

    the excipients chosen, their concentration and interaction with both the active compound and eachother.Inconclusion,theymustbechosenverycarefully(Rowe,SheskeyandQuinn,2009).

    Some excipients that may be present in freezedried powders include solubility enhancers (e.g.,

    surfactantsor cosolvents),osmoticagents (e.g., salineand sugars),antioxidants (e.g.,ascorbicacid),

    andpreservativesformultipleinjectioncontainers(e.g.,benzylalcoholandchlorobutanol).Inaddition,

    freezedriedbiologicalpowdersmayalsocontainexcipientsthatfunctiontoreduceproteinadsorption

    ontothecontainersurface(e.g.,surfactantsandalbumins).Aparticularlyimportantuseofexcipientsfor

    therapeuticproteinformulationsisthestabilizationoftheproteinmoleculesinthedrystate.

    Examplesof some excipientsusedas stabilizers forproteins in freezedried formulations include the

    following(Swarbrick,2007):

    Mannitol and glycine as amorphous excipients to prevent human growth hormone (hGH)aggregation.Trehaloseasalyoprotectant, preservesthesecondarystructureofrhGH(e.g.used

    forrecombinanthumangrowthhormone(rhGH)).

    Dextrin,EmdexTM (spraydrieddextrose)andhydroxypropyl cyclodextrinminimized insulinaggregation(e.g.usedforbovineandhumaninsulins).

    Polysorbate80asprotectorforfreezing;sucroseasprotectorfordrying;histidineaspHbuffer;glycineforcakeappearance(e.g.usedforrecombinantfactorIX).

    Aggregation prevented by amorphous trehalose, sucrose or a combination of sucrose, andglycineormannitol(e.g.usedforrecombinanthumaninterleukin6).

    Sucrose, sorbitol, trehaloseandalanineasprotectantsagainstaggregationanddeamidation;mannitol and glycine as bulking agent; sodium citrate as buffer (e.g. used for recombinant

    humaninterleukin1receptorantagonist)

    Sugars(sucrose,lactose,trehalose,maltose),polymer(dextran)andsalts(NaCl,KCl)tomodifytheglasstransitiontemperaturesofthefreezedriedpowders(e.g.usedforFK906tripeptide).

    Recombinanthumanalbumin OrganicacidexcipientmoleculeswitheitheracarboxylgrouporanaminogrouppresentatC1positioncompletelystabilizedrHAagainstaggregation

    Polyethylene glycol as protectant for freezing; sugars (mannitol, lactose, trehalose) aslyoprotectants against loss of bioactivity (e.g. used for lactate dehydrogenase

    phosphofructokinase).

    Lactoseand trehalose maintain activity longeratelevated temperatures than mannitol (e.g.usedforAlkalinephosphatise).

  • 8/2/2019 D2 1_LCA Tool Adaptation to Pharmaceutical Processes

    22/39

    LCAToolAdaptationtoPharmaceutical Processes

    22

    Both the excipient type (sucrose, sorbitol, glycerol) and moisture content affected proteindegradation(e.g.usedforrecombinantbovinesomatotropin,lysozyme).

    Mannitolprotectedproteinfromphaseseparation induceddamageduringfreezedrying(e.g.usedforHemoglobin).

    Trehalose and sucrose preserved the native dimeric structure of the protein and preventedaggregatesformation(e.g.usedforRecombinanthumanfactorXIII).

    Amongothers,saccharidesarethemostwidelyusedexcipientsforstabilizingfreezedriedtherapeutic

    proteins.

    Table 6 presents the main inputs and outputs for the inventory analysis for the API and excipients

    weightingandproductformulation.ThisdatawasprovidedbythepharmaceuticalcompanyPRAXIS.

    Table6InventoryanalysisoftheAPIandexcipientsweightingandproductformulation(PRAXIS,2009)

    Receptionandcontrolofraw

    materialsandexcipients

    ElectricalEnergyAPI

    ACSconsumption

    AFSconsumption

    industrialsteamconsumption

    puresteamconsumption

    purifiedwaterconsumption

    WFIconsumption

    timberpackaging,cardboard,paper

    plasticpackaging

    scrappackstetrabrickandisothermal

    glasspackaging

    packagesorpiecesofsteel

    packagesorpiecesofaluminium

    Materialreceptionandstorage

    conditioning

    ElectricalEnergy

    ACSconsumption

    AFSconsumption

    industrialsteamconsumption

    puresteamconsumption

    purifiedwaterconsumption

    WFIconsumption

    timberpackaging,cardboard,paper

    plasticpackaging

    scrap packstetrabrickandisothermal

    glasspackaging

    packagesorpiecesofsteel

    packagesorpiecesofaluminium

    Washingandconditioning

    materialpreparation

    ElectricalEnergy

    ACSconsumption

    AFSconsumption

    industrialsteamconsumption

    puresteamconsumption

    purifiedwaterconsumption

    WFIconsumption

    Aircompressed

    Preparationof

    the

    buffer

    solution:Weighting,ElectricalEnergyACSconsumption

  • 8/2/2019 D2 1_LCA Tool Adaptation to Pharmaceutical Processes

    23/39

    LCAToolAdaptationtoPharmaceutical Processes

    23

    FormulationandSterile

    Filtration

    AFSconsumption

    industrialsteamconsumption

    pure steamconsumption

    purifiedwaterconsumption

    WFIconsumption

    RawMaterials

    API

    Aircompressed

    2.2.2 FreezeDryingFreezedrying isacommondryingtechniqueused inthepharmaceutical industry(Swarbrick,2007).As

    manypharmaceuticals cannotbeproducedonacommercialscalebycrystallization, aglassysolidmay

    betheonlysolidstateoption.FreezeDryingisanextremeformofvacuumdrying,whereaformulation

    isdriedto1%waterorless,withoutanyoftheproductexceeding30C.Theprocessinvolvesfreezingof

    an aqueousbased drug solution in a glass vial followed by sublimation of the ice in a vacuum

    environment.Althoughrelativelyexpensive, it isemployedtoconvertsolutionsof labilematerials into

    highlyporous,amorphoussolidcakesofsufficientstabilityfordistributionandstorage(Swarbrick,2007;

    HickeyandGanderton,2001).

    Someadvantagesoffreezedryingoverotherdryingtechniquesarethefollowing(KudraandMujundar,

    2009;OetjenandHaseley,2004):

    The use of low temperatures with the purpose of protecting the API during processing (afreezedryingprocessmaintainssterilityandparticle freecharacteristicsoftheproductmuch

    moreeasilythanotherdryingprocess.Furthermore,theingredientsoftheformulationarenot

    stable in the liquid stateandothermethodsofwater removaldestroyor reduce the activeingredient);

    Thisprocessisapprovedbyregulatoryauthorities; Itcanbeperformedundersterileconditions(thesolutionissterilefilteredimmediatelybefore

    fillingintothefinalcontainer,andfurtherprocessing);

    Thedriedproductcanberapidlyrehydratedwhennecessary; Theamountoftheactiveingredientisverysmall Thefreezedryingprocesshasthereputationofbeingsimpletoperform; Ithasbeensuccessfullyusedbyseveralcompaniesand/orforseveralproducts; Moisture and headspace gas can be easily controlled, an important advantage for products

    whosestoragestabilityisadverselyaffectedbyresidualmoistureand/oroxygen; Development of freezedried products requires less material for formulation and process

    development.

    The only requirement is the product sterility and it is of overriding importance that the whole

    procedure, from vial filling to the final sealing stages, is performed under strictly controlled

    environmental conditions, so that the final product is viable for consumption. The hypothesis of

    sterilizingafterthisprocesscantbeconsideredbecausetheonlyavailabletechniquesrequirea liquid

    producttosterilizeorhightemperatures,whichwoulddenatureproteins(Franks,2007).

  • 8/2/2019 D2 1_LCA Tool Adaptation to Pharmaceutical Processes

    24/39

    LCAToolAdaptationtoPharmaceutical Processes

    24

    2.2.2.1 ProductFillingandGlassVialsLoadingAnaqueoussolutioncontainingthedrugandvariousformulationaidsorexcipients,housedtemporarily

    inasterileproductholdingtankisasepticallyfilledintopresterilizedfinalproductcontainers(e.g.glass

    vials,ampoulesoroccasionallyinsyringes),whichareloadedontothetemperaturecontrolledshelves.

    The filling processnormallyemployshighly automated liquid filling systems. All items of equipment,

    pipework,etc.withwhichthesterilizedproductcomesintodirectcontactmustobviouslythemselvesbe

    sterile.Thisismaintainedbyafilterattheneckofthebottlethatallowsthepassageofwatervaporbut

    prevents the ingressofbacteria.Mostofsuchequipment itemsmayalsobesterilizedbyautoclaving

    andbeasepticallyassembledprior to the fillingoperation.The finalproductcontainersmustalsobe

    presterilized. This may be achieved by autoclaving, or passage through special equipment which

    subjectsthevialstoahotWFIrinse,followedbysterilizingdryheatandUVtreatment.

    If the product can be filled into plasticbased containers, alternative blowfillseal systems may be

    used,as itsname suggests.Suchequipment firstmouldsplastic into the finalproductcontainer (the

    molding conditions ensure container sterility), followed immediately by automated filling of sterile

    product into thecontainerand its subsequent sealing. In thiswayoperator intervention in the filling

    processisminimized(Swarbrick,2007,HickeyandGanderton,2001,Franks,2007).

    2.2.2.2 TheFreezedryingProcessThefreezedryingcycle,asappliedtoasolution,consistsofasequenceoftwodistinctprocesses

    (1)Primarydrying(coolingtobelowthefreezingtemperatureinordertomaximizetheicecontentand

    sublimatetheiceatsomesubfreezingtemperature,usuallyperformedunderreducedpressure);

    (2)Secondarydrying(removalofresidualunfrozenwaterfromthesolidifiedsolution).

    During the primary drying, the drug solution is filled into glass vials and then placed within a

    temperaturecontrolleddryingchamber.There,thesolution isfrozenquicklytopreventconcentration

    of the solution and to produce fine ice crystals according to physiochemical principles (the energy

    transporttotransformiceintowatervaporandthetransportofthewatervaporfromthesublimation

    surface through thealreadydriedproduct into thedryingchamber to thecondensationorabsorbing

    systemforthevapor)astheshelftemperatureisloweredtobelowfreezing.

    Theshelftemperatureissubsequentlyincreasedbutmaintainedbelowthefreezingpoint.Avacuumis

    applied to the chamber to sublimate the solvent.Theextent towhich the compound is supercooled

    dependsonthecompoundnature,thetemperatureprogramoftheshelf,theheattransferproperties

    ofthecontainer,andthepresenceofparticulatesinthesolution.

    Thisphaseofthedryingprocessextractsthemajorityofthesolvent(5080%).Thedrugandexcipients

    aretypicallyconverted intoanamorphousglassalsocontaining largeamountsofunfrozenwater(15

    30%)dissolved inthesolid, i.e.glassyamorphousphase.Thus,mostofthedesiccationactuallyoccurs

    duringthefreezingstageofthefreezedryingprocess.

    During the secondary drying, the remainder of the solvent is removed at an elevated but still

    subfreezing temperature inorder to minimize product moisture content. So, heat is supplied to the

    dryingsurface.Thepowerdissipatedbytheheatermustbecarefullycontrolledsothatmeltingdoesnot

    occur (only drying is accepted) at the icecontainerjunction (Franks, 2007, Swarbrick, 2007, Oetjen,

    Haseley,2004,HickeyandGanderton,2001).

  • 8/2/2019 D2 1_LCA Tool Adaptation to Pharmaceutical Processes

    25/39

    LCAToolAdaptationtoPharmaceutical Processes

    25

    2.2.2.3 TheEquipmentAtypicalproductionscalefreezedryerconsistsofadryingchamberinwhichthesolutioncanbecooled

    totherequiredtemperatureandbeevacuatedtoa lowpressureandseveralcontainingtemperature

    controlledshelves,whichcanbecontrolledwithacirculatingheatexchange fluid.Theheatexchange

    system issuppliedwithapump,whichcirculatesthefluidthroughtheshelves.Thiscirculationsystemmustbecapableofmaintainingtheshelftemperatureatthesetdesiredvalues.

    Thesystemisalsoconnectedtoacondenserchamberviaalargevalve.Thecondenserchamberhouses

    aseriesofplatesorcoilscapableofbeingmaintainedatvery lowtemperature (i.e., lessthan 50C).

    Oneormorevacuumpumpsinseriesareconnectedtothecondenserchambertoachievepressuresin

    therangeof0.030.3Torrintheentiresystemduringoperation.

    Modern equipment contains computerbased control and monitoring systems by means of which a

    desireddryingcycleprogramcanbepreset.Finally, forpharmaceutical applications, it isessentialto

    prevent crosscontamination between consecutive batches. A cleaninplace (CIP) system and a

    steriliseinplace system are therefore provided by means of which the chamber can be cleaned

    betweensuccessiveproductioncycles(Swarbrick,2007;Franks,2007).

    Table7showsthemain inputsandoutputs forthe inventoryanalysisofproductfillingandglassvials

    loading(PRAXIS,2009).

    Table7 Inventoryanalysisofproductfillingandglassvialsloading(PRAXIS,2009)

    FreezeDryingandCapping

    ElectricalEnergy

    ACSconsumption

    AFSconsumption

    industrialsteamconsumption

    puresteamconsumption

    purifiedwaterconsumptionWFI consumption

    FlipOff(capsulesthatcarrythevials)

    Sterilevials

    Sterilecaps

    SterileTop

    Compressedair

    2.2.3 StopperingandFinalProductStorageFinalconditioningand storagebeginswith theextractionof theproduct from theequipment.During

    thisoperation,agreatcarehastobetakennotto losetherefinedqualitiesthathavebeenachieved

    duringtheprecedingsteps.Thus,forvials,stopperingundervacuumorneutralgaswithinthechamber

    is the currentpractice. Forproducts inbulk or in ampoules, extractionmight bedone in a tightgas

    chamberby remoteoperation.Water,oxygen, light,and contaminantsareall important threatsand

    mustbemonitoredandcontrolled.

    Stabilizationisamatterofimportanceandmustbecontrolledparticularlyinfreezedryingandstorage

    steps. While freezedrying has a long history in the pharmaceutical industry as a technique for

    stabilizationoflabiledrugs,includingproteins,manyproteinssufferirreversiblechange,ordegradation,

    duringthefreezedryingprocess.Evenwhenthelabiledrugsurvivesthefreezedryingprocesswithout

    degradation,theresultingproductisrarelyfoundperfectlystableduringlongtermstorage,particularly

    when analytical techniques with a sensitivity to detect low levels of degradation (around 0.1%) are

  • 8/2/2019 D2 1_LCA Tool Adaptation to Pharmaceutical Processes

    26/39

    LCAToolAdaptationtoPharmaceutical Processes

    26

    employed.Bothsmallmoleculesandproteinsshowdegradationduringstorageofthefreezedriedglass.

    Insomecases,instabilityisseriousenoughtorequirerefrigeratedstorage.

    So, ultimate storage has to be done according to the specific sensitivities of the products. Again,

    uncontrolledexposurestowatervapor,oxygen(air),light,excessheat,ornonsterileenvironmentare

    major factors to be considered. Stability problems are most often addressed by a combination of

    formulationoptimizationandattentiontoprocesscontrol.Lyoprotectantsareaddedforstabilityduring

    the freezedrying process as well as to provide storage stability, and the level and type of buffer is

    optimized. Finally, it is important toanalyze the compositionand quality of the container itself, i.e.,

    glass,elastomersofthestoppers,plasticororganicmembranes(Rey,2004,Swarbrick,2007).

    2.2.4 StabilityTests,QualityControlandQuarantine

    2.2.4.1 StabilityTestsThe stabilityindicatingprofile for abiotechnological productgenerally comprises information from a

    batteryofassaysandnotfromasinglestabilityindicatingassay.Theexpiry/expirationdateistheactual

    dateplacedonthecontainer/labels ofadrugproductdesignatingthetimeduringwhichabatchofthe

    drugproduct isexpectedtoremainwithintheapprovedshelflifespecification ifstoredunderdefined

    conditionsandafterwhichitmustnotbeused.Toarriveatanexpirationdate, itmustbedetermined

    first forhow longandunderwhatconditionsapharmaceutical formulationcanmeetallof itsquality

    specifications. In general, this issue isanswered through stability testing that monitors chemical and

    physical product attributes as a function of time, temperature, and other environmental factors. To

    supporttheexpirationdating,thestabilityofthedrugproductanddrugsubstancemustbeassessedby

    methodsthathavebeenvalidatedandaredetailedinaprotocolspecifictothatproduct.Thisprotocol

    includesthetestingintervalsandthespecificationsthattheproductmustmeet.

    Particularly in thiscase, thisstep is important inorder tominimizedegradationof theprotein in the

    formulationduringstorage.So,theFoodandDrugAdministration (FDA)andotherregulatoryagencies

    require that the purity and potency of pharmaceuticals are monitored during the shelf life of the

    products.Achieving theserequirements involvesusingacombinationofanalytical techniquessuchas

    chromatography,electrophoresis, andspectroscopyamongothers.

    Becauseproteinsarecapableofdenaturingviaseveralmechanisms, it isnecessarytousemore than

    onetechniquetodemonstratestability(Walsh,2003).

    2.2.4.2 QualityControlThe final product must undergo a quality control testing in order to confirm their conformance to

    predeterminedspecifications. Forexample,potencytestingisofobviousimportance,ensuringthatthe

    drugwillbeefficaciouswhenadministeredtothepatient.Otherprominentaspectissafetytestingthat

    entailsanalysisofproductforthepresenceofvariouspotentialcontaminants(Walsh,2003).

    The range and complexity of analytical testing undertaken for recombinant biopharmaceuticals far

    outweighs that undertaken with regard to traditional pharmaceuticals manufactured by organic

    synthesis.Notonlyareproteinsoradditionalbiopharmaceuticals, suchasnucleicacids,muchlargerand

  • 8/2/2019 D2 1_LCA Tool Adaptation to Pharmaceutical Processes

    27/39

    LCAToolAdaptationtoPharmaceutical Processes

    27

    structurallycomplexthantraditional lowmolecularmassdrugs,butalsotheirproduction inbiological

    systemsrenderstherangeofpotentialcontaminantsfarbroader.

    Recent advances in analytical techniques render practical the routine analysis of complex

    biopharmaceuticalproducts(Walsh,2003).Inthefollowingparagraphsadescriptionisprovidedofthe

    usualdetectionmethodsusedforthequalitycontrolofproteinbasedfinishedproducts.

    Bioassaysrepresentthemostrelevantpotencydeterminingassay,astheydirectlyassessthebiological

    activityofthebiopharmaceutical. Itinvolvesapplyingaknownquantityofthesubstancetobeassayed

    toabiologicalsystem that responds insomeway to thisappliedstimulus.The response ismeasured

    quantitatively,allowinganactivityvaluetobeassignedtothesubstancebeingassayed.

    Anexampleofa straightforward bioassay is the traditionalassaymethod forantibiotics.Thisusually

    involved measuring the zone of inhibition of microbial growth around an antibioticcontaining disc,

    placedonanagarplate seededwith the testmicrobe.Formodernbiopharmaceuticals bioassaysare

    generallymorecomplex,sincethebiologicalsystemusedcanbewholeanimals,specificorgansortissue

    types,orevenindividualmammaliancellsinculture.

    Allbioassaysarecomparativeinnature,requiringparallelassayofastandardpreparationagainstwhich

    the sample will be compared. Internationally accepted standard preparations of most

    biopharmaceuticals areavailable fromorganizationssuchastheWorldHealthOrganization (WHO)or

    theUnitedStatesPharmacopeia(USP).

    Quantificationoftotalproteininthefinalproductrepresentsanotherstandardanalysisundertakenby

    qualitycontrol,whereanumberofdifferentproteinassaysmaybepotentiallyemployed.Thesimplest

    of suchmethods isperhaps the detectionandquantification ofprotein bymeasuringabsorbency at

    280nm,basedonthefactthatthesidechainsoftheaminoacidstyrosineandtryptophanabsorbatthis

    wavelength.Thismethodispopular,asitisfast,easytoperformandisnondestructivetothesample.

    However,itisarelativelyinsensitivetechnique,andidenticalconcentrationsofdifferentproteinsyield

    differentabsorbancevalues if theircontentoftyrosineandtryptophanvary toanysignificantextent.

    Hence,thismethodisrarelyusedtodeterminetheproteinconcentrationofthefinalproduct,butitis

    routinelyusedduringdownstreamprocessing todetectproteinelutionoffchromatographic columns,

    andhencetrackthepurificationprocess.

    Sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (SDSPAGE) represents the most

    widely used analytical technique in biochemistry, forensics, genetics and molecular biology for the

    assessmentof finalproductpurity.This technique iswellestablishedandeasy toperform,providing

    highresolution separation of polypeptides on the basis of their molecular mass or for separating

    proteins according to their electrophoretic mobility, a function of length of polypeptide chain or

    molecularweight.

    SDSPAGEisnormallyrununderreducingconditions,wheretheadditionofareducingagentsuchas2

    mercaptoethanol or dithiothreitol (DTT) disrupts interchain and/or intrachain disulfide linkages.

    Individualpolypeptidesheldtogetherviadisulfidelinkagesinoligomericproteinswillthusseparatefrom

    eachotheronthebasisoftheirmolecularmass.

    Twodimensional gel electrophoresis, abbreviated as 2DE or 2D electrophoresis, is a form of gel

    electrophoresiscommonlyusedtoanalyzeproteins.It isnormallyrunsothatmixturesofproteinsare

    separatedfromeachotheronthebasisofadifferentmolecularpropertyineachdimension,i.e.bytwo

    properties in two dimensions on 2D gels. The most commonly used method entails separation of

    proteinsby isoelectric focusing in the firstdimension,withseparation in theseconddimensionbeing

  • 8/2/2019 D2 1_LCA Tool Adaptation to Pharmaceutical Processes

    28/39

    LCAToolAdaptationtoPharmaceutical Processes

    28

    undertaken in the presence of SDS, thus promoting band separation on the basis of protein size.

    Applicationofbiopharmaceutical finishedproductstosuchsystemsallowsrigorousanalysisofpurity.

    Capillaryelectrophoresis(CE),alsoknownascapillaryzoneelectrophoresis(CZE)systems,canbeused

    toseparateionicspeciesbytheirchargeandfrictionalforcesandmass.Thesesystemsarealsolikelyto

    playan increasinglyprominentanalyticalrole inthe laboratoryqualitycontrol.Aswithotherformsof

    electrophoresis, separation isbasedupondifferent ratesofproteinmigrationuponapplicationofan

    electricfield.

    Asthenamecapillaryelectrophoresissuggests,thisseparationoccurswithinacapillarytube,typically

    withadiameterof2050manduptoa1mlong,anditisnormallycoiledtofacilitateeaseofuseand

    storage.Thedimensionsofthissystemyieldgreatlyincreasesurfacearea/volumeratio,comparedwith

    slabgels,andhencetheefficiencyofheatdissipationfromthesystem.Thisinturn,allowsoperationat

    ahighercurrentdensity,thusspeedinguptherateofmigrationthroughthecapillary.Sampleanalysis

    can be undertaken in 1530 min and online detection at the end of the column allows automatic

    detectionandquantificationofelutingbands.

    Highperformance liquid chromatography (HPLC) occupies a central analytical role in assessing the

    purityoflowmolecularmasspharmaceutical substances.Italsoplaysanincreasinglyimportantrolein

    macromoleculesanalysis, suchasproteins. Mostof thechromatographic strategiesused to separate

    proteinsunderlowpressure(e.g.gelfiltration,ionexchange,etc.)canbeadaptedtooperateunderhigh

    pressure. Reversephase, sizeexclusion and, to a lesser extent, ionexchangebased HPLC

    chromatography systemscanbeusedintheanalysisofarangeofbiopharmaceuticalpreparations.

    Electrosprayionization(ESI)isatechniqueusedinmassspectrometrytoproduceionsfrombiological

    macromolecules, anda veryuseful technique for theiranalysis, since itovercomes thepropensityof

    thesemolecules to fragmentwhen ionized.ESIallowsone todetermine themolecularmassofmany

    proteinstowithinanaccuracyof0.01percent.Aproteinvariantmissingasingleaminoacidresiduecan

    easily be distinguished from the native protein in many instances. Although this is a very powerful

    technique,analysisoftheresultsobtainedcansometimesbelessthanstraightforward.

    Immunologicalapproachestodetectionofcontaminantsorimmunoassaysarebiochemicalteststhat

    measure theconcentrationofa substance inabiological liquid,using the reactionofanantibodyor

    antibodiestoitsantigen.

    Thestrategyusuallyemployedtodevelopsuchimmunoassaysistermedtheblankrunapproach.This

    entailsconstructingahostcellidenticalinallaspectstothenaturalproducercell,exceptthatitlacksthe

    genecodingforthedesiredproduct.Thisblankproducercellisthensubjectedtoupstreamprocessing

    procedures identical to those undertaken with the normal producer cell. Cellular extracts are

    subsequently subjected to the normal product purification process, but only to a stage immediately

    priortothefinalpurificationsteps.Thisproducesanarrayofproteinsthatcouldcopurifywiththefinal

    product.Therefore,polyclonalantibodypreparationscapableofbinding specifically to theseproteins

    areproduced.Purificationoftheantibodiesallowstheirincorporationinradioimmunoassay orenzyme

    based immunoassay systems, which may subsequently be used to probe the product. Such multi

    antigenassaysystemswilldetectthetotalsumofhostcellderivedimpuritiespresentintheproduct.

    Immunoassayshavefoundwidespreadapplication indetectingandquantifyingproduct impurities.For

    example, an immunoassay may be conveniently used to detect and quantify nonproductrelated

    impurities in a final preparation. Generally immunoassays may not be used to determine levels of

    productrelated impurities,asantibodies raisedagainst such impuritieswouldalmost certainly cross

    react with the product itself. Immunoassays identifying a single potential contaminant can also be

    developed.Theseassaysareextremelyspecificandverysensitive,oftendetectingtargetantigendown

  • 8/2/2019 D2 1_LCA Tool Adaptation to Pharmaceutical Processes

    29/39

    LCAToolAdaptationtoPharmaceutical Processes

    29

    topartspermillionlevels.Manyimmunoassaysarecommerciallyavailableandtherearecompaniesfor

    rapidlydevelopingtailormadeimmunoassaysystemsforbiopharmaceuticalanalysis.

    Aminoacidanalysisremainsacharacterization techniqueundertakeninmanylaboratories,inparticular

    iftheproduct isapeptideorsmallpolypeptide.This isasimplestrategytodetermine therangeand

    quantity of aminoacids present in the final product and to compare the results obtained with the

    expectedtheoreticalvalues.Thustheresultsshouldbecomparable.

    Peptidemapping(orfingerprint)isapowerfulidentitytestforproteins,especiallythoseobtainedbyr

    DNA technology, capable of detecting whether alterations in protein structure have occurred, and

    demonstratesprocessconsistencyandgeneticstability.

    Fullsequencingofa sampleofeachbatchof theprotein is theonlyprocedureguaranteed todetect

    alterations in gene transcription or translation. This potential occurrence of point mutations in the

    products gene is a major concern relating to biopharmaceuticals produced in highexpression

    recombinantsystems,sinceitleadstoanalteredprimarystructurei.e.aminoacidsequence.

    Peptidemappinginvolvesthechemicalorenzymatictreatmentofaproteinresultingintheformationof

    peptidefragments,forexampleexposureoftheproteinproducttoareagentthatpromoteshydrolysis

    of peptide bonds at specific points along the protein backbone. This generates a series of peptide

    fragmentsthatcanbeseparatedandidentifiedfromeachotherinareproduciblemannerbyavarietyof

    techniques,includingone ortwodimensionalelectrophoresis, andRPHPLCinparticular.

    Astandardizedsampleoftheproteinproductwhensubjectedtothisprocedurewillyieldcharacteristic

    peptide fingerprint, or map, with which the peptide maps obtained with each batch of product can

    subsequently be compared. Thus, the information obtained in this test is compared to a Reference

    StandardorReferenceMaterialsimilarlytreatedthatconfirmstheprimarystructureoftheprotein.This

    comparison is possible since each protein presents unique characteristics which must be well

    understoodsothatthescientificandanalyticalapproachespermitvalidateddevelopmentofapeptide

    mapthatprovidessufficientspecificity.Ifthepeptidesgeneratedarerelativelyshort,thenachangeina

    singleaminoacidresidue is likelytoalterthepeptidesphysicochemical propertiessufficientlytoalter

    itspositionwithinthepeptidemap.Inthisway,single(ormultiple)aminoacidsubstitutions,deletions,

    insertionsormodificationscanusuallybedetected.

    Nterminal sequencing (also called Edman sequencing) of the first 2030aminoacid residuesof the

    protein product became a popular quality control test for finished bi