17
Creating a script There are a lot of different shells available for Linux but usually the bash (bourne again shell) is used for shell programming as it is available for free and is easy to use. So all the scripts we will write in this article use the bash (but will most of the time also run with its older sister, the bourne shell). For writing our shell programs we use any kind of text editor, e.g. nedit, kedit, emacs, vi...as with other programming languages. The program must start with the following line (it must be the first line in the file): #!/bin/sh The #! characters tell the system that the first argument that follows on the line is the program to be used to execute this file. In this case /bin/sh is shell we use. When you have written your script and saved it you have to make it executable to be able to use it. To make a script executable type chmod +x filename Then you can start your script by typing: ./filename Comments Comments in shell programming start with # and go until the end of the line. We really recommend you to use comments. If you have comments and you don't use a certain script for some time you will still know immediately what it is doing and how it works. Variables As in other programming languages you can't live without variables. In shell programming all variables have the datatype string and you do not need to declare them. To assign a value to a variable you write: varname=value To get the value back you just put a dollar sign in front of the variable: #!/bin/sh # assign a value: a="hello world"

D00019_unix Shell Scripting

Embed Size (px)

DESCRIPTION

g

Citation preview

Creating a script

Creating a script

There are a lot of different shells available for Linux but usually the bash (bourne again shell) is used for shell programming as it is available for free and is easy to use. So all the scripts we will write in this article use the bash (but will most of the time also run with its older sister, the bourne shell).For writing our shell programs we use any kind of text editor, e.g. nedit, kedit, emacs, vi...as with other programming languages.The program must start with the following line (it must be the first line in the file):

#!/bin/sh

The #! characters tell the system that the first argument that follows on the line is the program to be used to execute this file. In this case /bin/sh is shell we use.When you have written your script and saved it you have to make it executable to be able to use it.To make a script executable typechmod +x filename Then you can start your script by typing: ./filename

Comments

Comments in shell programming start with # and go until the end of the line. We really recommend you to use comments. If you have comments and you don't use a certain script for some time you will still know immediately what it is doing and how it works.

Variables

As in other programming languages you can't live without variables. In shell programming all variables have the datatype string and you do not need to declare them. To assign a value to a variable you write:

varname=value

To get the value back you just put a dollar sign in front of the variable:

#!/bin/sh

# assign a value:

a="hello world"

# now print the content of "a":

echo "A is:"

echo $a

Type this lines into your text editor and save it e.g. as first. Then make the script executable by typing chmod +x first in the shell and then start it by typing ./firstThe script will just print:

A is:

hello world

Sometimes it is possible to confuse variable names with the rest of the text:

num=2

echo "this is the $numnd"

This will not print "this is the 2nd" but "this is the " because the shell searches for a variable called numnd which has no value. To tell the shell that we mean the variable num we have to use curly braces:

num=2

echo "this is the ${num}nd"

This prints what you want: this is the 2nd

There are a number of variables that are always automatically set. We will discuss them further down when we use them the first time.

If you need to handle mathematical expressions then you need to use programs such as expr (see table below).Besides the normal shell variables that are only valid within the shell program there are also environment variables. A variable preceeded by the keyword export is an environment variable. We will not talk about them here any further since they are normally only used in login scripts.

Shell commands and control structures

There are three categories of commands which can be used in shell scripts:

1)Unix commands:Although a shell script can make use of any unix commands here are a number of commands which are more often used than others. These commands can generally be described as commands for file and text manipulation.

Command syntaxPurpose

echo "some text"write some text on your screen

lslist files

wc -l filewc -w filewc -c filecount lines in file orcount words in file orcount number of characters

cp sourcefile destfilecopy sourcefile to destfile

mv oldname newnamerename or move file

rm filedelete a file

grep 'pattern' filesearch for strings in a fileExample: grep 'searchstring' file.txt

cut -b colnum fileget data out of fixed width columns of textExample: get character positions 5 to 9cut -b5-9 file.txtDo not confuse this command with "cat" which is something totally different

cat file.txtwrite file.txt to stdout (your screen)

file somefiledescribe what type of file somefile is

read varprompt the user for input and write it into a variable (var)

sort file.txtsort lines in file.txt

uniqremove duplicate lines, used in combination with sort since uniq removes only duplicated consecutive linesExample: sort file.txt | uniq

exprdo math in the shellExample: add 2 and 3expr 2 "+" 3

findsearch for filesExample: search by name:find . -name filename -printThis command has many different possibilities and options. It is unfortunately too much to explain it all in this article.

teewrite data to stdout (your screen) and to a fileNormally used like this:somecommand | tee outfileIt writes the output of somecommand to the screen and to the file outfile

basename filereturn just the file name of a given name and strip the directory pathExample: basename /bin/tuxreturns just tux

dirname filereturn just the directory name of a given name and strip the actual file nameExample: dirname /bin/tuxreturns just /bin

head fileprint some lines from the beginning of a file

tail fileprint some lines from the end of a file

sedsed is basically a find and replace program. It reads text from standard input (e.g from a pipe) and writes the result to stdout (normally the screen). The search pattern is a regular expression (see references). This search pattern should not be confused with shell wildcard syntax. To replace the string linuxfocus with LinuxFocus in a text file use:cat text.file | sed 's/linuxfocus/LinuxFocus/' > newtext.fileThis replaces the first occurance of the string linuxfocus in each line with LinuxFocus. If there are lines where linuxfocus appears several times and you want to replace all use:cat text.file | sed 's/linuxfocus/LinuxFocus/g' > newtext.file

awkMost of the time awk is used to extract fields from a text line. The default field separator is space. To specify a different one use the option -F.

cat file.txt | awk -F, '{print $1 "," $3 }'

Here we use the comma (,) as field separator and print the first and third ($1 $3) columns. If file.txt has lines like:

Adam Bor, 34, India

Kerry Miller, 22, USA

then this will produce:

Adam Bor, India

Kerry Miller, USA

There is much more you can do with awk but this is a very common use.

2) Concepts: Pipes, redirection and backtickThey are not really commands but they are very important concepts.

pipes (|) send the output (stdout) of one program to the input (stdin) of another program. grep "hello" file.txt | wc -l

finds the lines with the string hello in file.txt and then counts the lines.The output of the grep command is used as input for the wc command. You can concatinate as many commands as you like in that way (within reasonable limits).

redirection: writes the output of a command to a file or appends data to a file> writes output to a file and overwrites the old file in case it exists>> appends data to a file (or creates a new one if it doesn't exist already but it never overwrites anything).

BacktickThe output of a command can be used as command line arguments (not stdin as above, command line arguments are any strings that you specify behind the command such as file names and options) for another command. You can as well use it to assign the output of a command to a variable. The command

find . -mtime -1 -type f -print

finds all files that have been modified within the last 24 hours (-mtime -2 would be 48 hours). If you want to pack all these files into a tar archive (file.tar) the syntax for tar would be:

tar xvf file.tar infile1 infile2 ...

Instead of typing it all in you can combine the two commands (find and tar) using backticks. Tar will then pack all the files that find has printed:

#!/bin/sh

# The ticks are backticks (`) not normal quotes ('):

tar -zcvf lastmod.tar.gz `find . -mtime -1 -type f -print`

3) Control structuresThe "if" statement tests if the condition is true (exit status is 0, success). If it is the "then" part gets executed:

if ....; then

....

elif ....; then

....

else

....

fi

Most of the time a very special command called test is used inside if-statements. It can be used to compare strings or test if a file exists, is readable etc... The "test" command is written as square brackets " [ ] ". Note that space is significant here: Make sure that you always have space around the brackets. Examples:

[ -f "somefile" ] : Test if somefile is a file.

[ -x "/bin/ls" ] : Test if /bin/ls exists and is executable.

[ -n "$var" ] : Test if the variable $var contains something

[ "$a" = "$b" ] : Test if the variables "$a" and "$b" are equal

Run the command "man test" and you get a long list of all kinds of test operators for comparisons and files. Using this in a shell script is straight forward:

#!/bin/sh

if [ "$SHELL" = "/bin/bash" ]; then

echo "your login shell is the bash (bourne again shell)"

else

echo "your login shell is not bash but $SHELL"

fi

The variable $SHELL contains the name of the login shell and this is what we are testing here by comparing it against the string "/bin/bash"

Shortcut operatorsPeople familiar with C will welcome the following expression:

[ -f "/etc/shadow" ] && echo "This computer uses shadow passwors"

The && can be used as a short if-statement. The right side gets executed if the left is true. You can read this as AND. Thus the example is: "The file /etc/shadow exists AND the command echo is executed". The OR operator (||) is available as well. Here is an example:

#!/bin/sh

mailfolder=/var/spool/mail/james

[ -r "$mailfolder" ] || { echo "Can not read $mailfolder" ; exit 1; }

echo "$mailfolder has mail from:"

grep "^From " $mailfolder

The script tests first if it can read a given mailfolder. If yes then it prints the "From" lines in the folder. If it cannot read the file $mailfolder then the OR operator takes effect. In plain English you read this code as "Mailfolder readable or exit program". The problem here is that you must have exactly one command behind the OR but we need two: -print an error message -exit the program To handle them as one command we can group them together in an anonymous function using curly braces. Functions in general are explained further down. You can do everything without the ANDs and ORs using just if-statements but sometimes the shortcuts AND and OR are just more convenient.

The case statement can be used to match (using shell wildcards such as * and ?) a given string against a number of possibilities.

case ... in

...) do something here;;

esac

Let's look at an example. The command file can test what kind of filetype a given file is:

file lf.gz

returns:

lf.gz: gzip compressed data, deflated, original filename,

last modified: Mon Aug 27 23:09:18 2001, os: Unix

We use this now to write a script called smartzip that can uncompress bzip2, gzip and zip compressed files automatically :

#!/bin/sh

ftype=`file "$1"`

case "$ftype" in

"$1: Zip archive"*)

unzip "$1" ;;

"$1: gzip compressed"*)

gunzip "$1" ;;

"$1: bzip2 compressed"*)

bunzip2 "$1" ;;

*) error "File $1 can not be uncompressed with smartzip";;

esac

Here you notice that we use a new special variable called $1. This variable contains the first argument given to a program. Say we run smartzip articles.zip then $1 will contain the string articles.zip

The select statement is a bash specific extension and is very good for interactive use. The user can select a choice from a list of different values:

select var in ... ; do

break

done

.... now $var can be used ....

Here is an example:

#!/bin/sh

echo "What is your favourite OS?"

select var in "Linux" "Gnu Hurd" "Free BSD" "Other"; do

break

done

echo "You have selected $var"

Here is what the script does:

What is your favourite OS?

1) Linux

2) Gnu Hurd

3) Free BSD

4) Other

#? 1

You have selected Linux

In the shell you have the following loop statements available:

while ...; do

....

done

The while-loop will run while the expression that we test for is true. The keyword "break" can be used to leave the loop at any point in time. With the keyword "continue" the loop continues with the next iteration and skips the rest of the loop body.

The for-loop takes a list of strings (strings separated by space) and assigns them to a variable:

for var in ....; do

....

done

The following will e.g. print the letters A to C on the screen:

#!/bin/sh

for var in A B C ; do

echo "var is $var"

done

A more useful example script, called showrpm, prints a summary of the content of a number of RPM-packages:

#!/bin/sh

# list a content summary of a number of RPM packages

# USAGE: showrpm rpmfile1 rpmfile2 ...

# EXAMPLE: showrpm /cdrom/RedHat/RPMS/*.rpm

for rpmpackage in $*; do

if [ -r "$rpmpackage" ];then

echo "=============== $rpmpackage =============="

rpm -qi -p $rpmpackage

else

echo "ERROR: cannot read file $rpmpackage"

fi

done

Above you can see the next special variable, $* which contains all the command line arguments. If you run showrpm openssh.rpm w3m.rpm webgrep.rpm then $* contains the 3 strings openssh.rpm, w3m.rpm and webgrep.rpm.

The GNU bash knows until-loops as well but generally while and for loops are sufficient.

QuotingBefore passing any arguments to a program the shell tries to expand wildcards and variables. To expand means that the wildcard (e.g. *) is replaced by the appropriate file names or that a variable is replaced by its value. To change this behaviour you can use quotes: Let's say we have a number of files in the current directory. Two of them are jpg-files, mail.jpg and tux.jpg.

#!/bin/sh

echo *.jpg

This will print "mail.jpg tux.jpg".Quotes (single and double) will prevent this wildcard expansion:

#!/bin/sh

echo "*.jpg"

echo '*.jpg'

This will print "*.jpg" twice. Single quotes are most strict. They prevent even variable expansion. Double quotes prevent wildcard expansion but allow variable expansion:

#!/bin/sh

echo $SHELL

echo "$SHELL"

echo '$SHELL'

This will print:

/bin/bash

/bin/bash

$SHELL

Finally there is the possibility to take the special meaning of any single character away by preceeding it with a backslash:

echo \*.jpg

echo \$SHELL

This will print:

*.jpg

$SHELL

Here documentsHere documents are a nice way to send several lines of text to a command. It is quite useful to write a help text in a script without having to put echo in front of each line. A "Here document" starts with