2
175 Curtius rearrangement Thermal or photochemical rearrangement of acyl azides into amines via isocy- anate intermediates. While the thermal rearrangement is a concerted process, the photochemical rearrangement goes through a nitrene intermediate. The thermal rearrangement: R Cl O NaN 3 R N 3 O R NC O N 2 H 2 O R NH 2 CO 2 R Cl O R N O N 3 N N R N 3 O R Cl N 3 O R N O N N N 2 R N C O :OH 2 H + isocyanate intermediate R NH 2 CO 2 R H N O O H :B The photochemical rearrangement: R N O N N N 2 h R N: O nitrene R N O R N C O R NH 2 CO 2

Curtius Rearrangement

  • Upload
    p

  • View
    213

  • Download
    1

Embed Size (px)

Citation preview

  • 175

    Curtius rearrangement

    Thermal or photochemical rearrangement of acyl azides into amines via isocy-anate intermediates. While the thermal rearrangement is a concerted process, the photochemical rearrangement goes through a nitrene intermediate.

    The thermal rearrangement:

    R Cl

    O NaN3R N3

    O '

    R N C ON2nH2O

    R NH2 CO2n

    R Cl

    O

    R N

    O

    N3N NR N3

    O

    R Cl

    N3O

    'R N

    O

    N NN2n

    R N C O

    :OH2

    H+

    isocyanate intermediate

    R NH2 CO2nRHN O

    OH

    :B

    The photochemical rearrangement:

    R N

    O

    N NN2n

    hQ

    R N:

    O

    nitrene

    R N

    OR N C O R NH2 CO2n

  • 176

    Example 19

    O

    O O

    CO2MeHO2C DPPA, Et3N, t-BuOH

    80 oC, 16 h, 64%

    O

    O O

    CO2MeBocHN

    Example 211

    OOCO2H

    EtO(CO)Cl, then NaN3EtOH, PhH, reflux, 55% OO

    NHCO2Et

    References

    1. Curtius, T. Ber. Dtsch. Chem. Ges. 1890, 23, 3023. Theodor Curtius (18571928) was born in Duisburg, Germany. He studied music before switching to chemistry under Bunsen, Kolbe, and von Baeyer before succeeding Victor Meyer as a Professor of Chemistry at Heidelberg. He discovered diazoacetic ester, hydrazine, pyrazoline de-rivatives, and many nitrogen-heterocycles. Curtius also sang in concerts and com-posed music.

    2. Chen, J. J.; Hinkley, J. M.; Wise, D. S.; Townsend, L. B. Synth. Commun. 1996, 26,617.

    3. am Ende, D. J.; DeVries, K. M.; Clifford, P. J.; Brenek, S. J. Org. Process Res. Dev.1998, 2, 382.

    4. Braibante, M. E. F.; Braibante, H. S.; Costenaro, E. R. Synthesis 1999, 943. 5. Migawa, M. T.; Swayze, E. E. Org. Lett. 2000, 2, 3309. 6. El Haddad, M.; Soukri, M.; Lazar, S.; Bennamara, A.; Guillaumet, G.; Akssira, M. J.

    Heterocycl. Chem. 2000, 37, 1247. 7. Moore, J. D.; Sprott, K. T.; Hanson, P. R. J. Org. Chem. 2002, 67, 8123. 8. Mamouni, R.; Aadil, M.; Akssira, M.; Lasri, J.; Sepulveda-Arques, J. Tetrahedron

    Lett. 2003, 44, 2745. 9. van Well, R. M.; Overkleeft, H. S.; van Boom, J. H.; Coop, A.; Wang, J. B.; Wang, H.;

    van der Marel, G. A.; Overhand, M. Eur. J. Org. Chem. 2003, 1704. 10. Kedrowski, B. L. J. Org. Chem. 2003, 68, 5403. 11. Dussault, P. H.; Xu, C. Tetrahedron Lett. 2004, 45, 7455. 12. Holt, J.; Andreassen, T.; Bakke, J. M.; Fiksdahl, A. J. Heterocycl. Chem. 2005, 42,

    259.