57
Bhaskaran Muralidharan Dept. of Electrical Engineering, Indian institute of technology Bombay HRI Allahabad 29/02/2016 Currents through Quantum dots

Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Bhaskaran Muralidharan Dept. of Electrical Engineering,

Indian institute of technology Bombay HRI Allahabad29/02/2016

Currents through Quantum dots

Page 2: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Single Spins: An exciting frontier

Read-Out of spinsElzerman et.al., (2004)

Initailization of spins

Ono et.al., Science, (2002)Spin decoherenceKoppens et.al., Science, (2005)

Coherent ManipulationKoppens et.al., Nature, (2006)

http://qt.tn.tudelft.nl/research/spinqubits/

Page 3: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Preview

3

Dual Resonance Un-identical baths

Fin Structure

EXPERIMENT

THEORY THEORY

a

ab

b

γ γLµ

a

ab

b

γ γ

aN bN aN bN

ba NN = ba NN ≠

S Buddhiraju and B Muralidharan, JPCM, 26, 485302, (2014)

K. Ono et al. PRL 04

Page 4: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Outline

Spin Correlation effects in

Quantum-dot transport

Spin Blockade Transport: Multiple NDR

K. Ono et al. Science 02

Spin Blockade Transport: Role of Non-equilibrium Scattering Processes Hysteretic behavior

K. Ono et al. PRL 04

x

Page 5: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

IntroducingFock SpaceTransport

Page 6: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Regimes of Transport

H + U

Σ1

Σ2

µ1

µ2

Σs

U-> Self Consistent field

RµLµ

SCFU U n= < >

SCF Regime Works for

Γ ≥U

2^N many electron levels

00

11

0110

Fock space approach CWJ Beenakker (1991)

CB Regime Works for

Γ <<U

NN × NN 22 ×

Page 7: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Self Consistent Field

Σ1

Σ2

µ1

µ2

Σs

NEGF-SCF

H + U Single particle view point:

RµLµ εLγ

�Rγ

><− nUε

U

Let us try to introduce the Fock space View Point:

Page 8: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

A small pocket of transport problems?Coulomb Blockade effects

Spin Correlation effects

x

Spin Correlation coupled to Hot-scatterers

Park et al, nature 02

Ono et al, Science 02

Bi-stability

Page 9: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Fock space picture

ε

Lµ RµRγ

�Lγ

ε

0

�Lγ

RµLµU,ε

N=1

N=0

0N=0

ε ε N=1

U+ε2 N=2

Page 10: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

How Coulomb Blockade transport works

ε ε

0

εLµ

Rµε

U+ε

Rµε

U+ε

NEGF-SCF

CB

Correlations matter even for a minimal model!

0N =

1N =

2N =U+ε2

Muralidharan et al., PRB06

Page 11: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Generalized Viewpoint

RµLµ

NN ×

NN 22 ×nN =

nN =

1+= nN

Rµ1trε

2trε

2trε1trε

Given a bias point a set of Fock states are probabilistically distributed! !These may be viewed as transition Energies in the one-particle picture !

}{ iP

Page 12: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Fock space master equations

{ , }N i

{ 1, }N j−

{ 1, }N j+

,, 1, , 1, , 1, 0N i

N i N j N i N j N i N jj j

dPR P R P

dt → ± ± → ±+ − =∑ ∑

,{ }N iPFock space probability distribution

,, 1, , 1, , 1,

N iN i N j N i N j N i N j

j j

dPR P R P S

dt → ± ± → ±+ − =∑ ∑

{ , }N i { , }N j

With scattering

Page 13: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Part II

Spin Correlation effectsin

Quantum-dot transport

Spin Blockade Transport:Multiple NDR

K. Ono et al. Science 02

Spin Blockade Transport:Role of Non-equilibrium

Scattering ProcessesHysteretic behavior

K. Ono et al. PRL 04

x

Page 14: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Coulomb Blockade v/s Spin Blockade

Rµε

LµU+ε

Coulomb Blockade itself does not differentiate the spin degree

Lµε↑

ε↓

Spin Degree of freedom results in zero current

LµRµ

ε↑

ε↓

X

Finite Current Flows

LµRµ

ε↑

ε↓

X

Uε↓+

X

Spin Degree of freedom + Coulomb Blockade Spin Blockade!

Page 15: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Spin Blockade regime in Double Quantum Dots:

2εRµ

No Ferromagnetic Contacts! What is the Blockade mechanism?

Current Blockade!

But why does current flow at all?

What is the mechanism for NDR

Page 16: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

NDR: Conventional Viewpoint

I

V

Lµ Rµ LµRµ

Rµx

a)

b)

L. Esaki, RTD Phenomenon 1972

No band edges in our case! What makes Spin blockade NDR novel?

NEED FOCK SPACE VIEWPOINT

Page 17: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

NDR due to “dark states”

* *C A AC CR M fγ→ =

2CA RDM C H A=

C

RµLµ

RµLµ

A0N n=

0 1N n= +

Transition Rates reflect on the symmetry properties CA

ACR τ

1~→

B

BAε BAε

CAεI

V

a)

b)

Page 18: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

NDR from the dark state model

Muralidharan and Datta, PRB07

LAB

RBA

RCA τττ +>

LAB

RBA

RCA τττ +≤

RAB

LBA

LCA τττ +≤

Page 19: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Spin Blockade regime in Double Quantum Dots:

2εRµ

No Ferromagnetic Contacts! What is the Blockade mechanism?

222 U+ε

X

Explains Current Blockade!

But why does current flow at all?

Mechanism for NDR

Page 20: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

“Dark” State model: Double Quantum Dots:

BN=1

TS N=2

RµLµ

SBεLµ

RµSBε

TBε

Under Special Conditions Triplet State Can be Dark!

Page 21: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Results

TheoryExperiment

Muralidharan et.al., JCEL 08Muralidharan and Datta, PRB 07

Ono et. al., science 02

Page 22: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Pauli Blockade: A Broader Perspective

Off state

X

Permits manipulation of single Electron spin detected by a current Measurement !Host Nuclei can also assist!

Page 23: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Part III

Spin Correlation effects in

Quantum-dot transport

Spin Blockade Transport: Multiple NDR

K. Ono et al. Science 02

Spin Blockade Transport: Role of Non-equilibrium Scattering Processes Hysteretic behavior

K. Ono et al. PRL 04

x

Page 24: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Preview

24

Dual Resonance Un-identical baths

Fin Structure

EXPERIMENT

THEORY THEORY

a

ab

b

γ γLµ

a

ab

b

γ γ

aN bN aN bN

ba NN = ba NN ≠

S Buddhiraju and B Muralidharan, JPCM, 26, 485302, (2014)

K. Ono et al. PRL 04

Page 25: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Spin-Blockade Toy Model

25

❑ Single QD with single nuclear bath

❑ Spin-down polarized right contact

❑ Blockade lifted by Spin-Flip transitions

N

γ γ+ε

−ε

0

−+−+ HFH

Page 26: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Hyperfine mediation

Spin-flip at the cost of nuclear-flop

Apply B field externally

appB

26

+−

0

− +

0

N

Page 27: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Analysis: Fermi Golden rule

❑ Z-component – Mean Field Approximation

FI = average nuclear z-polarization

!

!❑ X-Y component – Fermi’s Golden

Rule to give spin-flip rate

27

Electron dynamics:

Nuclear spin dynamics: 

 

 

 

Page 28: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

No Overhauser field

❑ Energy of T ❑ Decreases under applied

magnetic field

❑ No effect on energy of S

28

S T

B

Page 29: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

With Overhauser field

29

Overhauser field: !It can either oppose the resonance or aid it via negative or positive feedback !Feedback: Origin of Hysteresis !!

S T

B appB ovB

Page 30: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Including Overhauser field

30

❑ Negative feedback from gµB to JeffFI during forward sweep❑pseudo-linear build-up of FI

❑Hysteresis: resonance breaking

❑ Positive feedback during reverse sweep – rapid rise of FI

S T

B appB ovB

Page 31: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Recap

31

Dual Resonance Un-identical baths

Fin Structure

EXPERIMENT

THEORY THEORY

S Buddhiraju and B Muralidharan, JPCM, 26, 485302, (2014)

K. Ono et al. PRL 04

Page 32: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Two Dots, Two Nuclear Baths

32

•  

t

a

ab

b

γ γaa /ε bb /εaaU abU bbU

aN bN

Page 33: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Double Resonance due to Two-Electron states

❑ Two-electron states at B = 0 ❑ Three S = 1 states (T) ❑ Three S = 0 states (S)

❑ Triplets are blocking states ❑ TWO RESONANCES:

❑ T+1 – S1 ❑ T-1 – S2

❑ T+ and T- move in opposite directions under B and FI.

33

appB0T1T+

1T−

1S

2S

1/ 2B+1/ 2B−

1/ 2A−1/ 2A+

N=1 N=2

Page 34: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

34

Double Resonance:

Electronic Structure

0S

1S

bbaababa 1/01/01/01/0 δξβα +++

( )S1,1 ( ) ( )SS 2,0/0,2

1/01/0 βα ≡ Identical Nuclear baths

Unlike Nuclear Baths1/01/0 βα ≠

No Difference Overhauser field

Difference Overhauser field

t

a

ab

b

γ γaa /ε bb /εaaU abU bbU

aN bN

Page 35: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

35

Electronic Structure: Continued

0S

1S

1/01/0 βα ≡ Identical Nuclear baths

Unlike Nuclear Baths1/01/0 βα ≠

No Difference Overhauser field

Difference Overhauser field

baT

abT

babaT

bbaababaS

=

=

+=

+++=

+

1

1

0

1/01/01/01/0

2/)(

δξβα

Page 36: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Two-Dot Two-Bath Hamiltonian

❑ Z-component – Mean Field Approximation

F = average nuclear z-polarization

!

!❑ X-Y component – Fermi’s Golden

Rule to give spin-flip rate

36

Electron dynamics:

Nuclear spin dynamics: 

 

 

 

Page 37: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Fermi’s Golden rule: One-bath variable vs

two-bath variables

37

 

 

a

ab

b

γ γ

aN bN

a

ab

b

γ γ

N

Page 38: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Identical Nuclear Baths & Near-Simultaneous Resonances

38

❖ Novelty of two nuclear baths: Matrix elements between singlet and triplet elements non-zero simply due to incoherent addition between the two baths. Difference Overhauser field NOT required !!

❖ Two dragged resonances ❖ Each contributes a triangular

current traces ❖ S u p e r p o s i t i o n : f l a t t o p p e d

hysteretic behavior

Page 39: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Superposition

39

a)

2/1b

0

1

1+T1−T

1=N

2=N

2

Page 40: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Un-identical Nuclear Baths: Difference Overhauser field

40

Fin structure at the two ends of the hysteretic sweep as noted in the experiments

S Buddhiraju and B Muralidharan, JPCM, 26, 485302, (2014)

bbaababaTS 1/01/01/01/0/ δξβα +++=

Page 41: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Results

41

Ideal Dual Resonance Un-identical baths

Fin Structure

EXPERIMENT

THEORY THEORY

S Buddhiraju and B Muralidharan, JPCM, 26, 485302, (2014)

Page 42: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Summary❑ Key Points: ❖ One Dot toy example

❖ Hyperfine interaction Hamiltonian ❖ Dragged resonance due to Overhauser Field ❖ Triangular current trace

❖ Double Dot, Two-Bath:

42S Buddhiraju and B Muralidharan, JPCM, 26, 485302, (2014)

Page 43: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

yz

x

RL BBB���

+=

S�

Density matrix formalism: Spin dynamics

( )

( )

( )⎥⎥⎦

⎢⎢⎣

⎡×+

⋅−−=

⎟⎠

⎞⎜⎝

⎛−

−+

−−

Γ=

++−

Γ=

⎥⎥⎦

⎢⎢⎣

⎡×+

⋅−−=

⎟⎠

⎞⎜⎝

⎛ +=⎟

⎞⎜⎝

⎛ −=⎟

⎞⎜⎝

⎛ −=

∑=

αα

ααααααα

αααααα

αα

αα

αα

α

αααααα

τ

εεπ

εετ

τ

ρρρρρρ

BSmSmpS

mpJq

J

EEf

UEEf

dEm

pB

Uff

BSmSmpS

mpJqdt

Sd

SiSS

r

qS

r

RL r

q

xyz

����

��

����

���

,

2

'

,

, ,

2

211221122211

ˆˆˆ2

)(1)(ˆ

,)()(1

,ˆˆˆ

2

22,

22,

22

ε

U+ε2U,ε

TkB<<Γ�

2

3

1

0

( )⎥⎥⎦

⎢⎢⎣

⎡×+

⋅−−= α

α

ααααααα τ

BSmSmpSmpJq

Jr

qS��

����

,

2 ˆˆˆ

2

Injection Relaxation Precession

Page 44: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

( ) ,ˆˆˆ

2, ,

2

∑= ⎥

⎥⎦

⎢⎢⎣

⎡×+

⋅−−=

RL r

q BSmSmpSmpJqdt

Sdα

αα

αααααα τ

����

��

QD Spin dynamics v/s STT

LL T,µRR T,µε

U+εLL mp �, RR mp �,

∫ ⎟⎠

⎞⎜⎝

⎛−

−+

−−

Γ=

εεπαααα

αα EEf

UEEfdEmpB )(1)(ˆ '

Precession Damping

Injection Relaxation Precession

Page 45: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

LL mp �, RR mp �,

yz

x

RL BBB���

+=

S�

Thermoelectrically induced spin precession!Pure spin current due to spin precession!Y Tserkovnyak et.al., PRL (2002)

( )⎥⎥⎦

⎢⎢⎣

⎡×+

⋅−−= α

α

ααααααα τ

BSmSmpSmpJq

Jr

qS��

����

,

2 ˆˆˆ

2

Injection Relaxation Precession

Spin precession-spin current

B Muralidharan and M Grifoni, PRB (2013)

Page 46: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Spin batteries/Maxwell’s demon

Page 47: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Heat Engines with demons

ChannelSource Drain

111 NE µ− 222 NE µ−

Out of Equilibrium System “Demon”

0E

11 ,NE 22 ,NE

0

00

02

222

1

111

021

21

≤Δ−−

+−

=++

=+

STNE

TNEEEE

NN

µµ0

00

0

0

2

222

1

111

021

21

≤+−

+−

=++

=+

TE

TNE

TNEEEE

NN

µµ

ChannelSource Drain

111 NE µ− 222 NE µ−

Reservoir/Bath at T0

0E

11 ,NE 22 ,NE

S=klnW

Page 48: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Examples of nano-device “demons”

ChannelSource Drain

111 NE µ− 222 NE µ−

Out of Equilibrium System

0E

11 ,NE 22 ,NE

Page 49: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

nano-device “demons”+ info battery

00

≤Δ−Δ=Δ

≥Δ

STEFStot

0

00

02

222

1

111

021

21

≤Δ−−

+−

=++

=+

STNE

TNEEEE

NN

µµ

v/s

ENERGY INFORMATION

Page 50: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

nano-device “demons”+ info battery

21 SSJH��⋅=

D U

du

u+D d+U

Page 51: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

nano-device “demons”+ info battery

State of the Demons

Current Stops to flow eventually!2ln

2ln0

NkSNkS

S

f

i

=

=

2µ1µ

2ln2ln

2ln0

NkTWNkSNkS

S

f

i

≤Δ

=

=

Where does the energy come from?!

Page 52: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Connection with Maxwell’s Demon

Reservoirsat T1 and T2

W

Qin QoutHT CT

Does it no violate any known laws orCommon sense?!If not, what is the catch???!Demon exorcism by Szilard (1929)!

Page 53: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Connection with Maxwell’s demon

00

≤Δ−Δ=Δ

≥Δ

STEFStot

00

≤Δ−Δ=Δ

≥Δ

STEFStot

Energy Information

Page 54: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Connection with Maxwell’s demon/Landauer principle

2µ1µ

2ln2ln

2ln

2lnln0

NkTENkTWNkS

NkWkSS

Erase

f

i

≤Δ

==

=

µΔµΔ−=Δ ∫

final

initialudNW

u+D d+U

Page 55: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

Connection with Maxwell’s demon/Landauer principleState of the Demons

Discharging Randomizing the bit

Erasurecharging

2ln2ln

2ln

NkTENkTWNkS

Erase ≥

≤Δ

Page 56: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

CHARGE Spin

Energy

Nano-spin-energy group

Page 57: Currents through Quantum dots - Harish-Chandra Research ...nanotr16/notes/BMuralidharan-3.pdf · α ααα α αα αα α α α α α α ααα τ π ε ε εε τ τ ρρ ρρ ρρ

AcknowledgmentsSiddharth Buddhiraju (student IITB) Prof. Supriyo Datta (Purdue University) Prof. Milena Grifoni (University of Regensburg, Germany)

THANK YOU FOR YOUR

ATTENTION!