21
Cholesterol Oxidases: Microbial Enzymes in Industrial Applications Chapter 5 Current Research in Microbiology Sunita Devi; Shamsher Singh Kanwar* Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla-171 005, India. * Correspondence to: Shamsher Singh Kanwar, Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla-171 005, India Phone: 91-177-2831948; Fax: 91-177-2832153; E-mail: [email protected] Abstract Cholesterol oxidases are bifunctional flavoenzymes produced by diverse bac- terial species. These enzymes catalyse the oxidation of steroid substrates containing a hydroxyl group at the 3β-position of the steroid ring backbone. The enzyme exists in two main forms: one with the FAD cofactor embedded noncovalently in the en- zyme; and one with the cofactor attached covalently to the protein. Cholesterol oxi- dase is of significant importance owing to its use in analysis of cholesterol amount in various clinical and food samples. In addition, the enzyme also acts as a larvicide biocontol agent against many insects and is also involved in the biotransformation of a number of steroids. Moreover, cholesterol oxidase is also associated with some bacterial infections and thus can be explored as a potential new antimicrobial drug target to contain bacterial infections. 1. Introduction The history of cholesterol oxidase dates back to over 70 years when search for choles- terol-degrading microorganisms was started and many species of Mycobacterium were ob- served to use cholesterol as a source of carbon and energy [1,2]. In eukaryotes, cholesterol is essential for maintaining cell membrane structure and for synthesizing a number of important compounds. Cholesterol is either derived exogenously or synthesized endogenously in the endoplasmic reticulum [3]. An abnormally high level of cholesterol in the blood leads to heart disease, in addition to many other severe health problems. Higher cholesterol levels (greater than 200 mg dL -1 ) may cause hypertension, arteriosclerosis, lipid metabolism dysfunction, brain vessel thrombosis, nephritis, diabetes, jaundice and cancer. Alternatively, abnormally low cholesterol levels may cause hyperthyroidism, anemia and malabsorption [4,5]. Several

Current Research in Microbiology - Open Access. eBooks · Current Research in Microbiology 5 to be optimally active at neutral pH and are stable over a wide pH range. The enzymes

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Current Research in Microbiology - Open Access. eBooks · Current Research in Microbiology 5 to be optimally active at neutral pH and are stable over a wide pH range. The enzymes

Cholesterol Oxidases: Microbial Enzymes in Industrial Applications

Chapter 5

Current Research in Microbiology

Sunita Devi; Shamsher Singh Kanwar*

Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla-171 005, India.*Correspondence to: Shamsher Singh Kanwar, Department of Biotechnology, Himachal Pradesh University,

Summer Hill, Shimla-171 005, India

Phone: 91-177-2831948; Fax: 91-177-2832153; E-mail: [email protected]

Cholesteroloxidasesarebifunctionalflavoenzymesproducedbydiversebac-terialspecies.Theseenzymescatalysetheoxidationofsteroidsubstratescontainingahydroxylgroupatthe3β-positionofthesteroidringbackbone.Theenzymeexistsintwomainforms:onewiththeFADcofactorembeddednoncovalentlyintheen-zyme;andonewiththecofactorattachedcovalentlytotheprotein.Cholesteroloxi-daseisofsignificantimportanceowingtoitsuseinanalysisofcholesterolamountinvariousclinicalandfoodsamples.Inaddition,theenzymealsoactsasalarvicidebiocontolagentagainstmanyinsectsandisalsoinvolvedinthebiotransformationofanumberofsteroids.Moreover,cholesteroloxidaseisalsoassociatedwithsomebacterialinfectionsandthuscanbeexploredasapotentialnewantimicrobialdrugtargettocontainbacterialinfections.

1. Introduction

Thehistoryofcholesteroloxidasedatesbacktoover70yearswhensearchforcholes-terol-degradingmicroorganismswas startedandmanyspeciesofMycobacterium were ob-servedtousecholesterolasasourceofcarbonandenergy[1,2].Ineukaryotes,cholesterolisessentialformaintainingcellmembranestructureandforsynthesizinganumberofimportantcompounds.Cholesterol is either derived exogenously or synthesized endogenously in theendoplasmicreticulum[3].Anabnormallyhighlevelofcholesterolinthebloodleadstoheartdisease,inadditiontomanyotherseverehealthproblems.Highercholesterollevels(greaterthan 200mgdL-1)may cause hypertension, arteriosclerosis, lipidmetabolismdysfunction,brainvessel thrombosis, nephritis, diabetes, jaundiceandcancer.Alternatively, abnormallylowcholesterollevelsmaycausehyperthyroidism,anemiaandmalabsorption[4,5].Several

Page 2: Current Research in Microbiology - Open Access. eBooks · Current Research in Microbiology 5 to be optimally active at neutral pH and are stable over a wide pH range. The enzymes

CurrentResearchinMicrobiology

2

www.openaccessebooks.comKanwarSS

compoundssuchasstatins,filipinandcyclodextrinsmaybeusedtomanipulatecellularcho-lesterol [6].Cholesteroloxidase isabacterialenzyme thathasproven tobeveryuseful inbiotechnologicalapplicationsrelatedtothedetectionofcholesterolandtothedisruptionofcholesterol-containingmembranes.Cholesteroloxidaseiscommonlyusedtomanipulatecho-lesterollevelsofcells[7].

Cholesteroloxidasehasmanyapplicationsandoneofmostimportantoneisitswideuseforthedetectionofamountofcholesterolpresentinfood,serumandotherclinicalsamplesthroughanenzymaticassay[8,9].Withtheexceptionofglucoseoxidase,thisenzymehasbe-comeoneofthemostwidelyusedbiosensorsinclinicalapplications[10].Cholesteroloxidaseisalsousedfortheproductionofavarietyofintermediateswhichareprecursorsforthesynthe-sisofsteroidhormones,suchas4-androstene-3,17-dione(AD)and1,4-androstadiene-3,17-dione(ADD)[11].Cholesteroloxidaseplaysacriticalroleinsterolcatabolismbyconverting3-β-hydroxysteroidsto3-oxo-4-enesteroids[10,12,13].Cholestenoneformedbycatalysisofcholesterolbycholesteroloxidaseisalsoanimportantsyntheticintermediateinmanysteroidtransformations.Previousstudieshaveshownthatitiseffectiveagainstobesity,liverdiseaseandkeratinization[14].Additionally,theenzymehasinsecticidaleffectagainstlarvaeofsomeinsects[15],alsousedformembranestructureanalysisandhypothesisedtoactasasignallingmoleculeforthebiosynthesisofpolyenemacrolidepimaricin.

Cholesteroloxidase(3-βhydroxysteroloxidase,EC1.1.3.6)isamemberofflavinad-eninedinucleotide(FAD)dependentenzymessuperfamilyandcatalyzestheoxidationofcho-lesterol(cholest-5-en-3β-ol)toits3-keto-4-enederivative,cholestenone(cholest-4-en-3-one),withthereductionofoxygentohydrogenperoxide[16].However,somebacterialcholesteroloxidaseshavealsobeenreportedtocatalyseoxidationofcholesterolto6β-hydroperoxycholest-4-en-3-one(HCEO)inplaceofcholest-4-en-3-one(CEO)[18].Cholesteroloxidaseisabac-terialFAD-dependentenzymewhichisfoundtoexistintwodifferentformsonthebasisofbondingbetweenenzymeandFADcofactor.InfirstformtheenzymeanditsFADcofactorarelinkednon-covalently(classI)andinsecondformcofactorisboundcovalentlytotheenzyme(class II) [18,19]. Cholesterol oxidase is among thewell-studied enzymeswith prominentcharacteristics,structuralfeatures[20],broaderbiotechnologicalapplications[21]andphysi-ologicalfunctions[22,23].Nonetheless,reportsregardingcholesteroloxidaseproduction,pu-rification,molecular characterization and genetic analyses have been previously published[24].

Many bacteria belonging to the genera Brevibacterium [25], Streptomyces [26,27],Corynebacterium [28],Arthrobacter [29],Pseudomonas [30],Rhodococcus [31,32],Chro-mobacterium[17]andBacillus[33,34]arereportedtodegradecholesterol.Microbialcholes-terolbreakdownoccursbythedegradationofitsside-chainandtheringtoacetylCoAandpropionylCoAthroughamulti-stepprocessandtheenzymewhichcatalyzesthefirststepis

Page 3: Current Research in Microbiology - Open Access. eBooks · Current Research in Microbiology 5 to be optimally active at neutral pH and are stable over a wide pH range. The enzymes

CurrentResearchinMicrobiology

3

cholesteroloxidase.Mostofsteroidsincludingcholesteroldonotseemtobeabletodiffusetothebacterialcytoplasm,andappearstobetransportedbyspecificuptakesystemsbeforebeingmetabolized.Inmostofcholesteroldegradingmicroorganisms,thecholesteroloxidaseisem-ployedintheinitialstepofcholesterolmetabolism,whileincaseofpathogenicbacteriaitactsasmembrane-damagingfactorcontributingasavirulencefactorandaddstothepathogenicityofthesebacteria[35,36].

Figure 1:Thereactionmechanismofcholesteroloxidase.

2. Sources of Cholesterol Oxidase

Cholesteroloxidasehasbeenisolatedfromvariousbacterialsources,comprisingbothGram-negativeandGram-positivebacteria [10,23].Cholesteroloxidaseproducingbacteriaproducesitinthreeforms:intracellular,extracellularandmembranebound.Mostofthemicro-organismsdescribedascholesteroloxidaseproducers,produceitinextracellularformwhichiseventuallyreleasedintothefermentationmedium.Thecell-surface-linkedformofenzymeisextractiblewithnon-ionicdetergentssuchasTritonX-100(polyethyleneglycoloctylphenylether)andLubrolPX(polyethyleneglycolmonododecylether)[37,38,39,40].Themostcom-monmicrobialsourcesforproductionofcholesteroloxidaseareArthrobacter[41,42],Bacillus [33,43],Brevibacterium[44], Bordetella[45],Corynebacterium[28], Mycobacterium[46,47],Nocardia [48,49],Rhodococcus [32,38]andStreptomyces species.[26,50,51].SomeGram-negativebacteriasuchasBurkholderia[52],Chromobacterium[17], Enterobacter [53]andPseudomonas species.[30]havealsobeenreportedtoproducecholesteroloxidase.

Cholesterol oxidase is amonomeric enzymewhich exists in two forms classified asclassIandclassII,inclassItheFADcofactorisattachednon-covalentlytotheproteinandinclassIIthiscofactorisboundcovalentlytotheenzyme[54,55].Howeverthesetwoclassesofenzymeshowsamecatalyticactivitybutdonothaveanysignificantsequencehomologyandthusappeartobelongtodifferentproteinfamilies[23].ClassIenzymesarepartoftheglucose-methanol-choline(GMC)oxido-reductasefamilyandhavebeenfoundmostlyinac-tinomycetessuchasStreptomyces, Brevibcterium, Rhodococcus, Arthrobacte, Nocardia and Mycobacteriumspp.Whereas,ClassIIenzymeshavebeenassignedtovanillylalcoholoxi-

CH3

CH3

CH3

CH3

H3C

CH3

CH3

CH3

CH3

H3C

CH3

CH3

CH3

CH3

H3C

CHOxFAD FAD+H+

CHOx

O2 H2O2

OH O

O

Cholesterol

4-Cholesten-3-one

5-Cholesten-3-oneOxidation

Isomerization

Page 4: Current Research in Microbiology - Open Access. eBooks · Current Research in Microbiology 5 to be optimally active at neutral pH and are stable over a wide pH range. The enzymes

CurrentResearchinMicrobiology

4

dase(VAO)familyandhavealsobeenreportedfromBrevibacterium sterolicum, Rhodococcus erythropolisandsomeGram-negativebacteriasuchasBurkholderia sp.,Chromobacterium sp.andPseudomonas aeruginosa[56].Mostofflavoenzymescontainaconsensussequencemadeupofrepeatingglycineresidues(GXGXXG)continuedbythepresenceofasparticacid⁄glutamicacidapproximately20residuesfurtherisindicativeofanucleotide-bindingfold[57].Thenoncovalentformofcholesteroloxidaseshowsanearlyidenticalconsensussequenceofglycinemoieties(G17-X-G19-X-G21-G⁄A22)whichisfollowedbyaglutamateandconfirmsthepresenceofnucleotide-bindingfold.However,thesecondformwhichexhibitscovalentbindinglacksthisconsensussequencewhichindicatestheprobableabsenceofanucleotide-binding fold [20].Despite exhibiting structural differences both covalent and noncovalentenzymeformspossessaburiedhydrophobicpocketforbindingsteroidringbackbone.Basedonfunction,cholesteroloxidasecontainstwodomains,theFAD-bindingdomainandthesub-strate-bindingdomain.Thereisnosignificantsequenceidentitybetweentwotypesofenzymesresultingindifferenttertiarystructureandkineticsmechanism[20,58].Ithasbeenreportedfromdifferent structural andkinetics studies thatHis447andGlu361 residues act asmaincatalystsalongwiththeconservedwatermoleculeH2OandAsn485intypeIcholesteroloxi-dase[59].The3-OHgroupofthesteroidringislinkedtoboththeFADcofactorandaboundwatermoleculeviahydrogenbonding.ThecriticalresiduescomposingtheactivesiteoftypeIIcholesteroloxidasefromBrevibacterium sterolicumincludeArg447,Glu475,Glu311,andAsn516[54].

Cholesteroloxidaseisthusafunctionalflavoenzymewhichcatalyzestheoxidationandisomerizationofcholesterol to4-cholesten-3-one in three successivesteps (Figure 1).Thefirststepresultsinthe3-OHgroupdehydrogenationwiththelossofthe3α-hydroxyand3β-hydroxyfromthesteroidringbackbone(reductivehalf-reaction).ThetworesultingelectronequivalentsaretransferredtotheoxidizedFADenzymecofactorthatisthenceconvertedtoitsreducedformintheprocess.Inthenextstep,thereducedformofFADcofactorreactswithmolecularoxygen(O2)toregenerateoriginalenzymeinitsoxidizedformandH2O2(oxidativehalf-reaction).Inthefinalthirdstep,thecholesteroloxidasecatalyzesisomerizationofdoublebondinthesteroidringbackbone,from∆5-6to∆4-5,leadingtofinalproductformation.IthasalsobeenreportedpreviouslythatcholesteroloxidasefromB. cepacia, Pseudomonasspp.,and Chromobacteriumsp.oxidizescholesteroltoHCEO[17,60]TheHCEOformationschemediffersonlyforasinglestepinwhichHCEOisformedfromcholest-5-en-3-one,presumablybyauto-peroxidation[23].

3. Properties of Cholesterol Oxidase

Cholesterol oxidases are amongwell studied enzymes and have been reported fromseveralmicroorganisms.Generalrangeformolecularweight(Mr)ofcholesteroloxidaseisre-portedtobefrom47–61kDa.Cholesteroloxidasesfromdifferentmicrobialsourcesarefound

Page 5: Current Research in Microbiology - Open Access. eBooks · Current Research in Microbiology 5 to be optimally active at neutral pH and are stable over a wide pH range. The enzymes

CurrentResearchinMicrobiology

5

tobeoptimallyactiveatneutralpHandarestableoverawidepHrange.Theenzymeshavetemperatureoptimaintherangeof37–60°C(Table 1).CholesteroloxidasefromStreptomyces fradiaeisreportedtohavehighestoptimumtemperatureof(70°C)amongtheenzymesreport-ed[51].CholesteroloxidaseproducedfromChromobacteriumsp.strainDS-1isfoundhighlythermostableretaining80%ofitsoriginalactivityevenat85°Cafter30min[17].Generallycholesteroloxidasedoesnotrequiremetalionsforitsactivitybutincaseofsomeenzymes,itsactivitywasenhancedinthepresenceofmetalions[45,32].DifferentchelatingagentslikeEDTA,o-phenanthroline,and8-hydroxyquinolinealsodonotseemtohaveanysignificantef-fectontheenzymeactivity[17,61].Sincecholesterolisaninsolublecompound,detergentsaswellasorganicsolventsareoftenaddedtothereactionsolutiontoactassolubilizer(s).Cho-lesteroloxidasehasbeenusedfortheopticalresolutionofnon-steroidalcompounds,allylicalcohols[62,63]andthebioconversionofanumberof3β-hydroxysteroidsinthepresenceoforganicsolvents[64,65].Therefore,anorganicsolvent-tolerantcholesteroloxidasewouldbeusefulfortheseapplications.Organicsolventsofteninfluencethecholesteroloxidaseactivity[49,66].Table 1:Propertiesofcholesteroloxidasesproducedfromdifferentmicrobialsources.

Producer organism

Optimum pH

OptimumTemp. (°C)

Mr(kDa)

Temp. stability (°C)

Km(mM)

Specific activity (Units/mg)

References

Brevibacterium sterolicum

6.5 55 46.5 - 0.03 55.2 [44]

Streptomyces aegyptia NEAE

1027.0 37 46 50 0.152 16.1 [27]

Bacillus subtilis 7.5 37 105 37 3.25 1.39 [33]

Bordetella sp. 7.0 37 55 50 0.556 20.8 [45]

Chryseobacterium gleum

6.75 35 60 - 0.50 15.5 [67]

Rhodococcus sp. 8.0 37 60 - - 35.6 [32]

Enterococcus hirae 7.8 40 60 92 - 124.9

Streptomyces sp. 7.2 50 55 65 0.02 20.0 [26]

Chromobacterium sp. DS-1

7.0 65 58 85 0.026. 13.9 [17]

Burkholderia cepaca ST-200

6.8-8.0 60 60 70 - 16.9 [52]

Pseudomonas aeruginosa

7.0 70 59 70 92.6 11.6 [68]

Page 6: Current Research in Microbiology - Open Access. eBooks · Current Research in Microbiology 5 to be optimally active at neutral pH and are stable over a wide pH range. The enzymes

CurrentResearchinMicrobiology

6

4. Substrates for Cholesterol Oxidase

CholesteroloxidaseisactiveonalargenumberofsterolswithorwithoutaC-17alkylchain.However, it ismostactiveinthepresenceofcholesterol.Richmond(1973)reportedthatcholesteroloxidasefromaNocardiasp.wasaffectedlargelybythelengthofsidechain[48].Longsidechainsappearedtoaidtheorientationofthesubstratewithrespecttotheac-tiveenzymaticsite.Allainetal., (1974) found thatergosterol,5,7-cholestadien-3β-ol,20α-hydroxycholesterol, 5α-cholestan-3β-ol and 7-cholesten-3β-olwere oxidised at rates lowerthanthatoftherateofcholesterolforthesameenzyme[69].IncontrasttotheenzymefromNocardiasp.,acholesteroloxidasefromBrevibacterium sterolicumwasfairlyreactivetosub-strateslackingasidechain[25].ThesubstratespecificityofcholesteroloxidasefromStrep-tomyces cinnamomeuswasstudied[70]inorientedsterolmonolayersanditwasfoundthatthecholesterolanalogue5α-cholestan-3β-olwasoxidizedalmostasfastascholesterolitself.Inaddition,whentheΔ-5doublebondincholesterolwasinsteadattheΔ-4positionandΔ-5doublebondwasattheΔ-7position(5α-cholest-7-en-3β-ol),theoxidationratebecameslower.WithC-17sidechainanaloguesofcholesterol,itwasobservedthatthecompletelackoftheC-17sidechain(5-androsten-3β-ol)ortheinsertionofanunsaturationatΔ-24(desmosterol)orevenanethylgroupatC-24hadnoappreciableeffectsonsteroloxidationrate,implyingthattheenzymedidnotrecognizethesidechaininorientedsterolmonolayers[70].SubstratespecificityofacholesteroloxidasefromRhodococcussp.GK1wasexaminedandtheenzymewas found to bemost activewith cholesterol (100%), β-sitosterol (70%) and stigmasterol(40%).SterolswithmodifiedA-ringsandB-ringsorthe3α-OHofcholicacidremainedun-oxidised[38].CholesteroloxidasefromBrevibacterium sterolicumrapidlyoxidizedcholes-terol,pregnenoloneandβ-sitosterolbutwaslessreactivetowardsstigmasterol.However,itwasfoundtobeunreactivetowardcholicacid,deoxycholicacid,5α-androstan-3α,17β-diolandandrosterone[44].Exceptcholesterol,β-cholestanolwasalsooxidizedatahighratebymostenzymes[23].Thedoublebondinthesteroidringbetween5and6positionsdoesnotseemtobeessentialforthisenzymeactivityandthesterolswiththeshortsidechainareoxi-dizedatalowratecomparatively.Althoughtheoxidationratesofpregnenolonebymosten-zymeswereslow,theenzymesfromChromobacteriumsp.DS-1,Streptomycessp.SA-COOand S. violascensoxidizedpregnenoloneatahighrate[17,71].Chromobacteriumsp.DS-1cholesteroloxidaseoxidizedmost3β-hydroxysteroids.Interestingly,thecholesterolwasthebestsubstrateandβ-cholestanol,pregnenoloneandβ-sitosterolwererapidlyoxidized.Incon-trast,theβ-stigmasterol,ergosterol,dehydroepiandrosteroneandepiandrosteronewereslowlyoxidized.Epicholesterolwascompletelyresistanttoenzymaticoxidation[17].

Cholesterolisacommonlyfoundsteroidwithagreatimportanceinbiology,medicineandchemistryasitplaysanessentialroleasastructuralcomponentofanimalcellmembranes.Cholesterolisfoundnormallyinnaturebecauseofitshighresistancetomicrobialdegradation.

Page 7: Current Research in Microbiology - Open Access. eBooks · Current Research in Microbiology 5 to be optimally active at neutral pH and are stable over a wide pH range. The enzymes

CurrentResearchinMicrobiology

7

Owingtoitscomplexspatialconformationandlowsolubilityinwater,cholesterolisaveryresistantmoleculetobiodegradation.Thehighhydrophobicityandlowvolatilityofcholes-terolleadtoahighabsorptiontosolidphases.Becauseofhighrateofpersistence,cholesterolandsomederivedcompoundssuchascoprostanolhavebeenusedasreferencebiomarkersforenvironmentalpollutionanalysis[72].Steroids,someofthemderivedfromcholesterolcon-stituteanewclassofpollutantsdischargedintotheenvironmentasaresultofhumanactivity[73].Thepotentmetabolic activitiesof these compounds affect a largenumberof cellularprocessesandthus,theirpresenceandaccumulationinwater-wastesandincertainecologicalnichescanaffecttheendocrinesystemofanimalsandhumans[74].Moreover,cholesterolisthemaincomponentoflanolinandthisandotherrelatedsterolsarenaturalcontaminantsfairlyresistanttotheanaerobictreatmentthatiscarriedoutontheeffluentsfromwool-processingindustry[75].Ineukaryotes,steroidoxidationandisomerizationareimportantstep(s)inthesynthesisofawidevarietyofsteroidhormonesthatarecarriedoutbyNAD+dependent3β-hy-droxysteroiddehydrogenaseasmembrane-boundproteinlocatedintheendoplasmicreticulumandmitochondrion[76,77].Henceflavin-mediatedcholesteroloxidationisaprocessuniquetomicroorganisms.Itisgenerallyassumedthatthefirstreactionintheaerobicmetabolismofcholesterolisitsoxidationtocholestenonethroughtwosequentialreactions.Thatis,theoxi-dationofcholesteroltocholest-5-en-3-onefollowedbyitsisomerizationtocholestenonebothcatalysedbycholesteroloxidase.

Figure 2:Broaderapplicationsofcholesteroloxidase.

Page 8: Current Research in Microbiology - Open Access. eBooks · Current Research in Microbiology 5 to be optimally active at neutral pH and are stable over a wide pH range. The enzymes

CurrentResearchinMicrobiology

8

5. Major Applications of Cholesterol Oxidase

Themicrobialoxidaseshavebeenreportedfrommanybacterialspeciesanddiversehab-itats.Invariably,cholesteroloxidaseshavebeenexploitedinbiotransformation’sofsteroids,biosensors,membranestructuralstudies,insectcontrol&larvicidaldrugsandantimicrobialdrugs(Figure 2).Thebroaderknownapplicationsofcholesteroloxidasesareasfollows;

5.1. Cholesterol biotransformation

Biotransformation’sarestructuralalterationsinachemicalcompoundwhicharecata-lyzedbymicroorganisms in termsofgrowingor restingcellsorby isolatedenzymes.Be-cause of the high stereo- or regio-selectivity combinedwith high product purity and highenantiomericexcesses,biotransformation’scanbetechnicallysuperiortotraditionalchemicalsynthesis.Ifthesefeaturescanbecombinedwitheconomicbenefits,biotransformation’sbe-comethefunctionalpartofnewchemicalprocessesfororganicsynthesis.Furtheradvantagesofbiocatalyticprocessesarethemildandecologicallyharmlessreactionconditions(normalpressure,lowtemperatureandneutralpH),whichareimportantrequirementsforsustainabil-ity.Bioconversionsofhydrophobiccompoundsoftenmeetwithtwoseriousobstacles:limitedsubstrateaccessibilitytothebiocatalystasaresultofthelowaqueoussolubilityofmostorgan-ics;inhibitionortoxicityofbothsubstrateandproductexerteduponthemicroorganism[78].Cholesterolismetabolizedbyalargenumberofmicroorganismsthroughacomplexmetabolicpathwayinvolvingmanyenzymaticsteps,firststepinvolvingtheoxidationofthe3β-hydroxylgroupfollowedbytheoxidationofthe17-alkylsidechainandthesteroidringsystem,finallydegradingtheentiremoleculetoCO2andH2O[23].Inthesequenceofthecholesteroloxida-tionbymicrobialcells,4-cholesten-3-onemaybeoxidizedwithaccumulationofthesteroidsADandADD,whichareimportantprecursorsofchemicallysynthesizedhormonesormaybetransformedtosteroidintermediates[79]. R. equiDSM89-133wasemployedfortheconver-sionofcholesterolandothersterolstoandrost-4-ene-3,17-dioneandandrosta-1,4-diene-3,17-dioneandupto82%ofcholesterolwasconvertedwhenthegrowthmediumwassupplementedwithacetate[80].

BioconversionofcholesteroltoADDandADincloudpointsystemwasstudied[81].CholesterolwasinitiallyconvertedtocholestenonebyArthrobacter simplexU-S-A-18.Cho-lestenonewasprepareddirectlyfromthefermentationbrothofA. simplexandconvertedtoADDbyMycobacteriumsp.NRRLB-3683.ConversionofADtoADDhasbeenreportedinmixedcultureofMycobacterium-Nocardioides[82].Biotransformationofsterolsisinitiatedbymodificationofthe3β-ol-5-ene-to3-oxo-4-enemoiety.Theroleofcholesteroloxidaseinthisprocesshasbeenelucidated.Thecholesteroloxidaseisnotcriticalforsterolcatabolisminthefast-growingAD-producingMycobacterium sp.VKMAc-1815Dstrainandtheknock-outofcholesteroloxidasegenedidnotabrogatesterolring-Aoxidation[83].Similarconclusions

Page 9: Current Research in Microbiology - Open Access. eBooks · Current Research in Microbiology 5 to be optimally active at neutral pH and are stable over a wide pH range. The enzymes

CurrentResearchinMicrobiology

9

weremadeearlierfor Mycobacterium smegmatismc2155[84].In Rhodococcus erythropolis CECT3014,cholesteroloxidasewasshowntobeamajorinducibleextracellularcholesteroloxidasebutitsdisruptiondidnotaltercellgrowthoncholesterol[85].However,inStrepto-myces virginiaeIBL-14,inactivationofcholesteroloxidaseledtoabrogatetheoxidationofdiosgenintodiosgenoneandother3-oxosteroids[86].Targetedgenedisruptionofcholesteroloxidases in Gordonia cholesterolivoransCECT7408Tresultedinamutantstrainunabletogrowonsteroids.Twocholesteroloxidases,ChoM1andChoM2wereidentifiedinMycobac-terium neoaurumNwIBandtheseweresuggestedtobeessentialforutilizationofphytosterolasacarbonsource[87].Alongwithcholesteroloxidases,3β-hydroxysteroiddehydrogenases(3β-HSDs)cancatalyse3β-hydroxygroupoxidationandΔ5→4isomerizationinactinobacte-ria[84].

Mycobacterium smegmatisPTCC1307wasusedasamicrobialagenttoproduceADDandAD,twousefulprecursorsinthesynthesisofsteroiddrugs.Thesidechainofcholesterol,asthesubstrate,wasselectivelycleavedinthepresenceoffiveenzymeinhibitors.Aninterme-diatestructurewithintactsidechain,cholest-4-ene-3-one,wasalsodetectedandpurified[88].Wuandcoworkers(2015)exploredproductionofcholest-4-en-3-onebydirectlyusingcholes-teroloxidasefromRhodococcussp.inanaqueous/organictwo-phasesystemanditwasfoundthattheconversionwasmoreefficientinthebiphasicsystemthanintheaqueousorco-solventsystem.After48hofreaction,theconversionratereached94.2%inthebiphasicsystemandonly42.3%conversionwasachievedintheaqueoussystem[14].Inanotherstudybiotransfor-mationofcholesteroltoADDbycholesteroloxidasefromChryseobacterium gleum was stud-iedandthegrowingcellsproduced0.076gADDfrom1gcholesterol,whichwasequivalentto10%molarconversionofcholesterol[89].Whole-cellsoftherecombinantstrainsBacillus subtilis168/pMA5-choM1andB. subtilis168/pMA5-choM2expressingchoMgeneencodingcholesteroloxidasefromMycobacterium neoaurumJC-12wereusedascatalystsforthebio-conversionofcholesterolto4-cholesten-3-oneandapercentageconversionof67%and83%wasobservedat21h[90].R. erythropolischolesteroloxidasewasemployedfortheprepara-tiveoxidationofcyclicallylic,bicyclicandtricyclicalcoholsandforthesynthesisofseveralergotalkaloids[63].

5.2. Therapeutic uses

Cholesteroloxidaseisusedasanefficientanalytictoolfordeterminingcholesterolinvarioussamples;totalandesterifiedcholesterolinserumorblood,fromlow-densitylipopro-teinstohigh-densitylipoproteins,onthecellmembrane,ingallstones,inhumanbileandinvariousfoodsamples[21].Normalcholesterollevelinhumanbloodislessthan200mg/dLandlipoproteinscontaincholesterolofwhich~70%isinesterifiedform.Highlevelsofcholes-terolandcholesterylesters(hypercholesterolemia)havebeenassociatedwithcardiovasculardiseasesuchasatherosclerosisandotherheartdiseases,althoughlowerlevels(hypocholester-

Page 10: Current Research in Microbiology - Open Access. eBooks · Current Research in Microbiology 5 to be optimally active at neutral pH and are stable over a wide pH range. The enzymes

CurrentResearchinMicrobiology

10

olemia)maybeassociatedwithcancer,depressionorrespiratorydiseasesmakingdeterminingofserumcholesterolconcentrationveryimportant.Alzheimerdiseaseriskisalsoreportedtoberelatedtohypercholesterolemiavia involvingoxidativestressmechanisms[91].Choles-terollevelinserumisgenerallydeterminedbyusinganenzymaticassay[48,69].Asmostofcholesterolinserumsamplesexistsinanesterifiedformsopriorincubationofserumwithcho-lesterolesterase(EC3.1.1.13)isrequiredtoreleasethefreecholesterol.CholesteroloxidasecatalyzesoxidationofcholesteroltocholestenonewithsimultaneousreleaseofH2O2.Theen-zymesubsequentlycatalyzestheoxidativecouplingofH2O2withachromogenicdyewhichisdeterminedspectrophotometrically.Inadditiontobeingusedinthemicroanalysisofsteroidsinfoodsamplesit isalsousedfordifferentiatingthestericconfigurationsof3-ketosteroidsfromthecorresponding3β-hydroxysteroids[92].Overtheyears,variouselectrochemicalbio-sensorshavebeendesignedbyusingimmobilizedcholesteroloxidaseforthedeterminationofcholesterolinserumorfoodsamples[93-95].

5.3. Insecticidal activity

Geneticallymodifiedplantswhichareabletocontrolinsectpestsbyproducinginsecti-cidalproteins(suchasBacillus thuringiensistoxin)arebeingusedverywidelytoreplacetheuseofsyntheticpesticides.Ahighlyefficientbacterialproteincapabletokill larvaeofbollweevil(Anthonomus grandis grandisBoheman)intheculturefiltratesofStreptomyces sp.wasidentifiedasacholesteroloxidase[15].Whenthisenzymewasusedinpurifiedformagainstbollweevillarvae,itshowedgoodactivityatlethalconcentrationof50%(LC50of20.9μg.ml),which iswellcomparable to the insecticidalbioactivityexhibitedbyBacillus thuringiensis proteins.Cholesteroloxidaseinsecticidalactivityisreportedduetoinductionoflysisatthemidgutepitheliumoflarvaeuponingestion.Cholesterolorsomeotherrelatedsterolatthebollweevilmidgut epitheliummembrane appeared tobe available for oxidationby cholesteroloxidase,causinglysisofthemidgutepithelialcellsresultinginlarvaldeath[23].Theenzymealsoshowedinsecticidalactivityagainstlepidopterancottoninsectpests, includingtobaccobudworm(Heliothis virescens),cornearworm(Helicoverpa zea)andpinkbollworm(Pectino-phora gossypiella)[96].Microbialinsecticideproteinsareveryimportantinseveralpestcon-trolstrategiesemployedintransgeniccropsandcholesteroloxidasegenefromStreptomyces sp.hasbeenexpressedintobaccoprotoplasts[97].

5.4. Cell membrane structural studies

Cholesterol is themain sterol constituent of eukaryotic cellmembrane essential formaintainingcellmembranestructureandstability.Thecellsurfacecholesterolcanbedeter-minedaccuratelywithcholesteroloxidasehencethesurfaceareaofagivencellcanbeesti-matedreadily[98].Cholesteroloxidaseisusedasaprobetoinvestigatecholesterolinteractionwithphospholipidsascholesterolassociatespreferentiallywithsphingolipidsincholesterol-

Page 11: Current Research in Microbiology - Open Access. eBooks · Current Research in Microbiology 5 to be optimally active at neutral pH and are stable over a wide pH range. The enzymes

CurrentResearchinMicrobiology

11

richlipidraftsareasofthemembranesineukaryoticcells[100,101].Thelipidraftsarethemi-crodomainsinwhichcholesterolandsaturatedmembranelipidssuchassphingolipidspromotetheformationofahighlyorderedmembranestructureincomparisontothemoredisorderedvicinity[102,103].Lipidraftsplayrolesinvariouscellularprocesses,includingsignaltrans-duction,proteinandlipidsorting,cellularentrybytoxinsandviruses,andviralbudding[23].Therefore,cholesteroloxidaseplaysasignificantroleinthestudyofthefunctionalaspectsoflipidraftwithregardtoeukaryoticmembrane.

5.5. Potential new antimicrobial drug target

Awidevarietyofmicroorganismsincludingsomelifethreateningpathogenicbacteriasuch as Rhodococcus equi, Mycobacterium tuberculosis and M. lepraearereportedtoproducecholesteroloxidase[104].Rhodococcus equiisaGram-positivebacteriumknownforcausinginfectioninyounghorsesaswellasinhumansactingasanopportunisticpathogeninimmuno-compromisedpatients[36,105].Cholesteroloxidasemaypossiblyactsasaninterestingphar-maceuticaltargetfortreatingbacterialinfections.In vitrostudiesadvocatedthatduringR. equi infectionofthehostcell,membranelysisisfacilitatedbytheinductionofextracellularcho-lesteroloxidasealongwithothercandidatevirulencefactors[35].Themembrane-damagingactivityofR. equirequiresthepresenceofbacterialsphingomyelinaseCwhichsuggestedthatthecholesteroloxidasesubstrateisnotdirectlyaccessibletotheenzymeinintactmembranes[21].IthasalsobeenreportedthatcholesteroloxidaseisalsoinvolvedinthemanifestationofHIVandnonviralprionorigin(Alzheimer’s)diseases[106].Thepathogenicbacteriautilizecholesterol oxidase for infection by converting the cholesterol ofmembranes thus causingdamagebyalteringthephysicalstructureofthemembrane.Theemergingproblemofanti-biotic resistantbacteriaand theirabilities for rapidevolutionhavepushed theneed tofindalternativeantibioticswhichare lessprone todrugresistance.Sincenoeukaryoticenzymehomologuesexist, thistypeofbacterialcholesteroloxidasefallsintothescopeofpotentialdrugtargetforanewclassofantibioticswhichstillremaintobeexplored[107].

5.6. Polyene macrolide pimaricin biosynthesis

TheStreptomyces natalensischolesteroloxidasewhichisaproductofthepimEgeneplaysanimportantroleinthebiosynthesisofthepolyenemacrolidepimaricinbyactingasasignalingmolecule[108].This26-membertetraenemacrolideantifungalantibioticisusedinthefoodindustrytopreventcontaminationofcheeseandothernon-sterilefoodwithmoldandalsofortreatingthefungalkeratitisbecauseofitsabilitytointeractswithmembraneste-rolsespeciallyergosterol,resultinginthemembranestructurealterationthatcausesleakageofcellularcontents[21].Thepolyenemacrolidepimaricingeneislocatedinthecenterofthepimaricinbiosyntheticclusterasthepimaricinproductioniscompletelyblockedbythegenedisruptionwhichisrecoveredaftergenecomplementation.TheadditionofpurifiedPimE or

Page 12: Current Research in Microbiology - Open Access. eBooks · Current Research in Microbiology 5 to be optimally active at neutral pH and are stable over a wide pH range. The enzymes

CurrentResearchinMicrobiology

12

exogenouscholesteroloxidasetothegenedisruptingculturecanrestorethepimaricinproduc-tion.Thesefindingssuggestedtheinvolvementofcholesteroloxidasesassignalingproteinsforpolyenebiosynthesis[23].

5.7. Cholesterol oxidase as a novel antitumor therapeutic drug

Cholesteroloxidasecatalyzesoxidationofcholesterolandhasbeenusedtotrackmem-branecholesterol.Liuandcoworkers(2014)reportedthatcholesteroloxidasefromBordetella species madelungcancercellsbothin vitro and in vivotoundergoirreversibleapoptosis.Cho-lesteroloxidase treatment inhibitedphosphorylationofAkt(proteinkinaseB)andERK1/2(extracellularsignal-regulatedkinase1/2)whichwasirreversibleevenaftercholesteroladdi-tion.Furtherstudiesindicatedthatcholesteroloxidasetreatmentalsopromotedthegenerationofreactiveoxygenspecies(ROS).InadditiontothischolesteroloxidasetreatmentresultedinphosphorylationofJNK(c-JunNH2-terminalkinase)andp38,downregulationofBcl-2(B-celllymphoma/leukemia-2),upregulationofBaxwiththereleaseofactivatedcaspase-3andcytochromeClikelyduetoproductionofhydrogenperoxidealongwithcholesteroloxidation.Thesefindingssuggestedthatcholesteroloxidaseleadstoirreversiblecellapoptosisbyde-creasingcholesterolcontentandincreasingROSlevelindicatingcholesteroloxidasemaybeapromisingcandidateforanovelantitumortherapy[109].

5.8. Probiotics

Probiotics are livingmicroorganismswhichupon ingestion in certainnumbers exerthealthbenefitsonthehostbeyondinherentbasicnutrition[110].Thoughseveralin vitro and in vivostudieshaveprovedthattheadministrationofprobioticsdecreasesserum/plasmatotalcholesterol,LDL-cholesterolandtriglyceridesorincreasesHDL-cholesterolbuttheirhypoc-holesterolemiceffectsstillremaincontroversial[111].Thespecieswhichhavebeenfoundtoexertcholesterol-loweringeffectsincludegeneralikeLactobacillus, Lactococcus, Enterococ-cus, Streptococcus and Bifidobacterium[112].Differentmechanismslikeco-precipitationofcholesterolwithdeconjugatedbile, cholesterolbinding to cellwalls, integrationof choles-terol into thecellularmembranesduringgrowth,productionof short-chain fattyacidsdur-ingfermentationandtransformationintocoprostanolareproposedforcholesterol loweringeffectsofprobiotics [112-115].Cholesteroloxidase,especiallyderived frombacterialcellsplaysamajorroleinthedegradationofcholesterolinmanyfermentedfoods[116].Khiralla,(2015)reportedthatLeuconostoc mesenteroidesGMK03coulddegradecholesterolusingtheextracellularcholesteroloxidaseandfoundtobetoleranttolowacidity(pH2.5)andbilesalts(0.3%),competenttoadhesiontoCaco-2cellsandhavelowantibioticresistance,socouldbeconsideredasapromisingprobioticstrain[117].Ageneencodingcholesteroloxidase(choA)fromStreptomyces[118]hasbeenexpressedinseveralspeciesofprobioticbacteriaincludingLactobacillus casei[119],Lactobacillus reuteri[120]andStreptococcus thermophilus[121].

Page 13: Current Research in Microbiology - Open Access. eBooks · Current Research in Microbiology 5 to be optimally active at neutral pH and are stable over a wide pH range. The enzymes

CurrentResearchinMicrobiology

13

Rossietal.,(1998)reportedthecloningofcholesteroloxidasefromStreptomyces sp.intoBifi-dobacteriumunderitsownpromoterbutwithoutsuccessfulexpression[122].Parketal.,suc-cessfullyclonedandexpressedcholesteroloxidasegenefromaStreptomyces sp.inpromoterandRBS(ribosome-bindingsite)ofBifidobacterium longumMG1[123].Bacterialdegrada-tionofcholesterolincholesterolcontainingfoodmaybebeneficialforhumanhealth[124].

5.9. Cholesterol oxidase biosensors for analytical assays

Cholesterolisanimportantanalytemoleculeanditsassayisimportantforthediagnosisandpreventionofanumberofclinicaldisordersandinfoodanalyses.Moreover,quantifica-tionofcholesterolpresentinvariousfoodsisvitalforselectingadietwithoptimalintakeofcholesterol.Thus,itisnecessarytodevelopnewtechniquesforeasyandrapidestimationofcholesterollevelsinvariousanalyticalsamples[125].Biosensorswithimmobilizedenzymesareofhugeinterest inthevariousanalyticalproceduresastheyfacilitatetheenzymereusealongwithexclusiveselectivityofthebiologicalmoleculesandtheprocessingpowerofmod-ernmicroelectronics [126].Overaperiodof time,avarietyofcholesterolbiosensorshavebeen developed [95].Most of the reported enzyme-based cholesterol biosensors are fabri-catedonamperometrictechniquebesides,cholesterolbiosensorsbasedonphotometricbehav-iorslikeluminescence,fluorescenceandsurfaceplasmonresonancehavealsobeenreported[95,127,128].AmperometricmeasurementofO2consumptionorH2O2productionduringcho-lesterolcatalysisbycholesteroloxidaseisthefrequentlyusedstrategyincholesterolbiosensors[129].Acholesterolbiosensorbasedoncholesteroloxidase-poly(diallyldimethylammoniumchloride)-carbonnanotubes-nickelferritenanoparticles(ChOx-PDDACNTs-NiFe2O4NPs)wasfabricatedbyusingasingledroppingsteponaglassycarbonelectrodesurface[130].Variousnanoparticleslikemetalnanoparticles(gold(Au),platinum(Pt),silver(Ag)NPs),metalox-idenanoparticles(zincoxide(ZnO),ironoxide(Fe3O4),ceriumoxide(CeO2),titaniumoxide(TiO2)NPs),carbonnanotubes(single-walledcarbonnanotubes(SWCNTs),andmulti-walledcarbonnanotubes(MWCNTs)basedmaterialshavealsobeenexploitedfordesigningcholes-terolbiosensor[131-134].

6. Conclusion

Cholesteroloxidasehasbeenreportedfromalargenumberofbacterialspeciesandtheactinomycetesbeingthemostcommongroup.Beinganenzymeofgreatcommercialvalue,cholesteroloxidasehasdrawnsignificantattentionduetoitswidespreaduseindeterminationofcholesterollevel(s)invariousclinicalandfoodsamplesandbecauseofitsothernovelap-plicationslikebiocontrolofinsects,polyenemacrolidepimaricinsynthesis,biocatalysisforthesynthesisofanumberofsteroidsandfabricationofbiosensors.Biochemicalandstructuralstudiesoncholesteroloxidasecanplay important roles inunderstandingofvariouscataly-sisaspectsofdifferentflavoenzymesasitbelongstoflavoproteinoxidases.Thuscholesterol

Page 14: Current Research in Microbiology - Open Access. eBooks · Current Research in Microbiology 5 to be optimally active at neutral pH and are stable over a wide pH range. The enzymes

CurrentResearchinMicrobiology

14

oxidaseisaversatileenzyme,thenewermicrobialsourcesinnatureneedtobeexploredforsynthesisofextracellularcholesteroloxidase(s),whichis/areeasytopurify,characterizeandputforextendedcommercialuses.

7. References

1.TakJ(1942).Onbacteriadecomposingcholesterol.AntonieLeeuwenhoek.8:32–40.

2.TurfittGE(1944)Themicrobiologicaldegradationofsteroids.2.OxidationofcholesterolbyProactinomycesspp.Biochem.J38:492–496.

3.KuligL,CwiklikP,JurkiewiczT,RogI(2016)Cholesteroloxidationproductsandtheirbiologicalimportance.ChemPhysLipids.199:144–160.

4.OggioniC,CenaH,WellsJCK,LaraJ,Celis-MoralesC,SiervoM(2015)AssociationbetweenworldwidedietaryandlifestylepatternswithtotalcholesterolconcentrationsandDALYsforinfectiousandcardiovasculardiseases:Anecologicalanalysis.JEpidemiolGlobHealth.5:315–325.

5.NantapholS,ChailapakulO,SiangprohW(2015)Anovelpaper-baseddevicecoupledwithasilvernanoparticle-modifiedboron-dopeddiamondelectrodeforcholesteroldetection.Anal.ChimActa.2015;891:136–143.

6.ChernovKG,NeuvonenM,BrockI,IkonenE,VerkhushaVV(2017)Introducinginduciblefluorescentsplitcholes-teroloxidasetomammaliancells.JBiolChem.292:881.

7.LangeY(1992)Trackingcellcholesterolwithcholesteroloxidase.Journaloflipidresearch.33:315−321.

8.KhanR,SolankiP,KaushikA,SinghS,AhmadS,MalhotraB(2009)Cholesterolbiosensorbasedonelectrochemi-callypreparedpolyanilineconductingpolymerfilminpresenceofanonionicsurfactant.JPolymRes.16:363–373.

9.MolaeiR,SabziRE,FarhadiK,KheiriF,ForoughM(2014)Amperometricbiosensorforcholesterolbasedonnovelnanocompositearraygoldnanoparticles/acetone-extractedpropolis/multiwallcarbonnanotubes/gold.MicroNanoLett.9:100–104.

10.MacLachlanJ,WotherspoonATL,AnsellRO,BrooksCJW(2000)Cholesteroloxidase:sources,physicalpropertiesandanalyticalapplications.JSteroidBiochemMolBiol.72:169–195.

11.DograN,QaziGN(2001)SteroidbiotransformationbydifferentstrainsofMicrococcussp.FoliaMicrobiol(Praha).46:17–20.

12.MaierK,HofmannU,BauerA,NiebelA,VacunG,ReussM,MauchK(2009)QuantificationofstatineffectsonhepaticcholesterolsynthesisbytransientC-13-fluxanalysis.MetabEng.11:292–309.

13.VrielinkA(2010)CholesterolOxidase:Structureandfunction,cholesterolbindingandcholesteroltransportproteins.In:Harris,J.R.(Ed.),51.Springer,Nether-lands,pp.137–158.

14.WuK,LiW,songJ(2015)Production,purification,andidentificationofcholest-4-en-3-oneproducedbycholesteroloxidasefromrhodococcussp.inaqueous/organicbiphasicsystem.BiochemInsights.8:1–8.

15.PurcellJP,GreenplateJT,JenningsMJ,RyerseJS,PershingJC,SimsSR.PrinsenMJ,CorbinDR,TranM,SammonsRD,StonardRJ(1993)Cholesteroloxidase:apotentinsecticidalactiveagainstbollweevillarvae.BiochemBiophysResCommun.196:1406–1413.

16.DeviS,KanwarSS(2017)Cholesteroloxidase:Source,propertiesandapplications.InsightsEnzymeRes.1:1.

17.DoukyuN,ShibataK,OginoH,SagermannM(2008)PurificationandcharacterizationofChromobacteriumsp.DS-1cholesteroloxidasewiththermal,organicsolvent,anddetergenttolerance.ApplMicrobiolBiotechnol.80:59–

Page 15: Current Research in Microbiology - Open Access. eBooks · Current Research in Microbiology 5 to be optimally active at neutral pH and are stable over a wide pH range. The enzymes

CurrentResearchinMicrobiology

15

70.

18.CroteauN,VrielinkA(1996)CrystallizationandpreliminaryX-rayanalysisofcholesteroloxidasefromBrevibac-terium sterolicumcontainingcovalentlyboundFAD.JStructBiol.116:317–319.

19.LarioPI,SampsonN,VrielinkA(2003)Sub-atomicresolutioncrystalstructureofcholesteroloxidase:whatatomicresolutioncrystallographyrevealsaboutenzymemechanismandtheroleoftheFADcofactorinredoxactivity.JMolBiol.326:1635-1650.

20.VrielinkA,GhislaS(2009)Cholesteroloxidase:biochemicalproperties.FEBSJ.276:6826–6843.

21. Pollegioni L, Piubelli L, Molla G (2009) Cholesterol oxidase: biotechnological applications. FEBS J. 276:6857−6870.

22.KreitJ,SampsonNS(2009)Cholesteroloxidase:physiologicalfunctions.FEBSJ.276:6844–6856.

23.DoukyuN(2009)Characteristicsandbiotechnologicalapplicationsofmicrobialcholesteroloxidases.ApplMicro-biolBiotechnol.83:825–837.

24.MoradpourZ,GhasemianA(2016)Proteinengineeringofmicrobialcholesteroloxidases:amolecularapproachtowarddevelopmentofnewenzymeswithnewproperties.ApplMicrobiolBiotechnol.100:4323–4336.

25.UwajimaT,YagiH,TeradaO(1974)Propertiesofacrystalline3β-hydroxysteroidoxidaseofBrevibacterium ste-rolicum.AgrBiolChem.38:1149.

26.PraveenV,SrivastavaA,TripathiCKM(2011)PurificationandcharacterizationoftheenzymecholesteroloxidasefromanewisolateofStreptomycessp.ApplBiochemBiotechnol.165:1414–1426.

27.El-NaggarNE,DerazSF,SolimanHM,El-DeebNM,El-ShweihyNM(2017)Purification,characterizationandaminoacidcontentofcholesteroloxidaseproducedbyStreptomyces aegyptiaNEAE102.BMCMicrobiol.17:76−87.

28.ShirokaneYNK,MizusawaK(1977)Purificationandsomepropertiesofanextracellular3-hydroxysteroidoxidaseproducedbyCorynebacterium cholesterolicum.JFermTechnol.55:337–345.

29.ChenYR,HuangHH,ChengYF,TangTY,LiuWH(2006)Expressionofacholesteroloxidasegene fromAr-throbacter simplex in Escherichia coli and Pichia pastoris.EnzymeMicrobTechnol.39:854–860.

30.GhoshS,KhareSK(2016)Biodegradationofcytotoxic7-ketocholesterolbyPseudomonas aeruginosaPseA.Biore-sourTechnol.213:44–49.

31.YazdiMT,YazdiZT,ZarriniG,SepehrizadehZ,GhasemianA(2008)Purificationandcharacterizationofextra-cellularcholesteroloxidasefromRhodococcussp.PTCC1633.Biotechnology.7:751–756.

32.KasabePJ,GeetanjaliTM,PadmaBD(2015)AssessmentofalkalinecholesteroloxidasepurifiedfromRhodococcus sp.PKPD-CLforitshalotolerance,detergentandorganicsolventstability.ProteinExpressPurification.116:30–41.

33.KumariL,KanwarSS(2016)Purificationandcharacterizationofanextracellularcholesteroloxidaseofbacillus subtilisisolatedfromtigerexcreta.ApplBiochemBiotechnol.178:353−367.

34.ElbazFN,GamalRF,ElbazAF,IbrahimNE,ElmekawyA(2017)Biochemicalandbiotechnologicalstudiesonanovelpurifiedbacilluscholesteroloxidasetoleranttosolventandthermalstress.BiocatalBiotransformation.35:1−10.

35.NavasJ,Gonzalez-ZornB,LadronN,GarridoP,Vazquez-BolandJA(2001)Identificationandmutagenesisbyal-lelicexchangeofchoE,encodingacholesteroloxidasefromtheintracellularpathogenRhodococcus equi.JBacteriol.183:4796−4805.

36.BrzostekA,DziadekB,Rumijowska-GalewiczA,PawelczykJ,DziadekJ(2007)CholesteroloxidaseisrequiredforvirulenceofMycobacterium tuberculosis.FEMSMicrobiolLett.275:106−112.

Page 16: Current Research in Microbiology - Open Access. eBooks · Current Research in Microbiology 5 to be optimally active at neutral pH and are stable over a wide pH range. The enzymes

CurrentResearchinMicrobiology

16

37.AtratPG,WagnerB,WagnerM(1992)LocalizationofthecholesteroloxidaseinRhodococcus erythropolisIMET7185studiedbyimmunoelectronmicroscopy.JSteroidBiochemMolBiol.42:193–200.

38.KreitJ,LefebvreG,GermainP(1994)Membrane-boundcholesteroloxidasefromRhodococcussp.cellsproductionandextraction.JBiotechnol.33:271–282.

39.SojoM,BruR,Lopez-MolinaD(1997)Cell-linkedandextracellularcholesteroloxidaseactivitiesfromRhodococ-cus erythropolis:isolationandphysiologicalcharacterization.ApplMicrobiolBiotechnol.47:583–589.

40.ElalamiA,BaesslerK,KongF(2009)SubcellularformsofcholesteroloxidasefromRhodococcussp.CIP105335:induction,solubilizationandcharacterization.In:Mendez-VilasA(ed.).CurrentResearchTopicsinAppliedMicrobiol-ogyandMicrobialBiotechnology.Singapore:WorldScientificPublishingCo.Pte.Ltd,pp729–735.

41.WilmanskaD,SedlaczekL(1988)ThekineticsofbiosynthesisandsomepropertiesofanextracellularcholesteroloxidaseproducedbyArthrobactersp.IM79.ActaMicrobiolPolon.37:45–51.

42.LiuWH,MengMH,ChenKS(1988)Purificationandsomepropertiesofcholesteroloxidasesproducedbyanin-ducibleandaconstitutivemutantofArthrobactersimplex(MicrobiologyandFermentationIndustry).AgricBiolChem.52:413−418.

43.AmuthaK,VasanthaKK(2016)Optimizationofcholesteroloxidaseproductionand16SrRNApartialsequenceofBacillus cereusstrainKAVK4isolatedfrombutter.JApplPharmSci.6:61−66.

44.FujishiroK,UchidaH,ShimokawaK,NakanoM,SanoFOhtaT,KayaharaN,AisakaK,UwajimaT(2002)Pu-rificationandpropertiesofanewBrevibacterium sterolicumcholesteroloxidaseproducedbyE. coliMM294/pnH10.FEMSMicrobiolLett.215:243–248.

45.LinYL,FuJA,SongX(2010)PurificationandcharacterizationofanextracellularcholesteroloxidasefromaBor-detellaspecies.ProcessBiochem.45:1563–1569.

46.SmithM,ZahnleyJ,PfeiferD,GoffD(1993)GrowthandcholesteroloxidationbyMycobacteriumspeciesintween80medium.ApplEnvironMicrobiol.59:1425–1429.

47.WilmanskaD,DziadekJ,SajdudaA,MilczarekK,JaworskiA,MyrookaY(1995)Identificationofcholesteroloxi-dasefromfast-growingmycobacterialstrainsandRhodococcussp.JFermentBioeng.79:119–124.

48.RichmondW(1973)PreparationandpropertiesofabacterialcholesteroloxidasefromNocardiasp.anditsapplica-tiontoenzymeassayoftotalcholesterolinserum.ClinChem.1:1350–1356.

49.CheethamPS,DunnillP,LillyMD(1982)ThecharacterizationandinterconversionofthreeformsofcholesteroloxidaseextractedfromNocardia rhodochrous.BiochemJ.201:515–521.

50.LartillotS,KedzioraP(1990)Production,purificationandsomepropertiesofcholesteroloxidasefromaStreptomy-cessp.PrepBiochem.20:51–62.

51.YazdiMT,ZahraeiM,AghaepourK,Kuma-ranpourN(2001)PurificationandpartialcharacterizationofcholesteroloxidasefromStreptomyces fradiae.EnzymeMicrobTechnol.185:410-414.

52.DoukyuN,AonoR(2001)Cloning,sequenceanalysisandexpressionofageneencodinganorganicsolvent-anddetergent-tolerantcholesteroloxidaseofBurkholderia cepaciastrainST200.ApplMicrobiolBiotechnol.57:146–152.

53.RodriguesF,PalaniP(2016)Purificationandcharacterizationofcholesteroloxidasefromanovelsource-Enter-obacter cloacae.JEnvironSciToxicolFoodTechnol.10:25−30.

54.CoulombeR,YueKQ,GhislaS,VrielinkA(2001)OxygenaccesstotheactivesiteofcholesteroloxidasethroughanarrowchannelisgatedbyanArg-Glupair.JBiolChem.276:30435–30441.

55.LarioPI,SampsonN,VrielinkA(2003)Sub-atomicresolutioncrystalstructureofcholesteroloxidase:whatatomic

Page 17: Current Research in Microbiology - Open Access. eBooks · Current Research in Microbiology 5 to be optimally active at neutral pH and are stable over a wide pH range. The enzymes

CurrentResearchinMicrobiology

17

resolutioncrystallographyrevealsaboutenzymemechanismandtheroleoftheFADcofactorinredoxactivity.JMolBiol.326:1635-1650.

56.DijkmanWP,deGonzaloG,MatteviA,FraaijeMW(2013)Flavoproteinoxidases:classificationandapplications.ApplMicrobiolBiotechnol.97:5177-5188.

57. EventoffW,RossmannMG (1975)The evolution of dehydrogenases and kinases. CRCCrit RevBiochem. 3:111–140.

58.PiubelliL,PedottiM,MollaG,Feindler-BoeckhS,GhislaS,PiloneMS,PollegioniL(2008)Ontheoxygenreactiv-ityofflavoproteinoxidases:anoxygenaccesstunnelandgateinBrevibacterium sterolicumcholesteroloxidase.JBiolChem.283:24738–24747.

59.LimL,MollaG,GuinnN,GhislaS,PollegioniL,VrielinkA(2006)StructuralandkineticanalysesoftheH121Amutantofcholesteroloxidase.BiochemJ.400:13–22.

60.TengJI,SmithLL(1996)SterolperoxidationbyPseudomonas fluorescenscholesteroloxidase.Steroids.61:627–633.

61.IsobeK,ShojiK,NakanishiY,YokoeM,WakaoN(2003)Purificationandsomepropertiesofcholesteroloxidasestableindetergentsfromgamma-proteobacteriumY-134.JBiosciBioeng.95:257–263.

62.DiethS,TritschD,BiellmannJ-F(1995)ResolutionofallylicalcoholsbycholesteroloxidaseisolatedfromRhodo-coccus erythropolis.TetrahedronLett36:2243–2246.

63.BiellmannJF(2001)ResolutionofalcoholsbycholesteroloxidasefromRhodococcuserythropolis:lackofenantio-specificityofthesteroids.Chirality.13:34–39.

64.KazandjianRZ,DurdichJS,KilbanovAM(1986)Enzymaticanalysisinorganicsolvents.BiotechnolBioeng.28:417–421.

65.KhmelnitskyYL,HilhorstR,VeegerC (1988)Detergentlessmicroemulsionsasmedia for enzymatic reactions.Cholesteroloxidationcatalyzedbycholesteroloxidase.EurJBiochem.176:265–271.

66.PollegioniL,GaddaG,AmbrosiusD,GhislaS,PiloneMS(1999)CholesteroloxidasefromStreptomyces hygro-scopicus and Brevibacterium sterolicum:effectofsurfactantsandorganicsolventsonactivity.BiotechnolApplBio-chem.30:27–33.

67.ReissR,FaccioG,Thöny-MeyerL,RichterM(2014)Cloning,expressionandbiochemicalcharacterizationofthecholesteroloxidaseCgChoAfromChryseobacterium gleum.BMCBiotechnol.14:46.

68.DoukyuNandNiheiS (2015)Cholesterol oxidasewithhigh catalytic activity fromPseudomonas aeruginosa:Screening,moleculargeneticanalysis,expressionandcharacterization.JBioscienceBioeng.120:24−30.

69.AllainCC,PoonLS,ChanCSG,RichmondW,FuPC(1974)Enzymaticdeterminationoftotalserumcholesterol.ClinChem.20:470–475.

70.SlotteJP(1992)Enzymecatalysedoxidationofcholesterolinpuremonolayersattheair–waterinterfaceBiochimBiophysActa.1123:326–333

71.YueQK,KassIJ,SampsonNS,VrielinkA(1999)CrystalstructuredeterminationofcholesteroloxidasefromStrep-tomycesandstructuralcharacterizationofkeyactivesitemutants.Biochemistry.38:4277–4286.

72.VeigaP,JusteC,LepercqP,SaunierK,BeguetF,GerardP(2005)Correlationbetweenfaecalmicrobialcommunitystructureandcholesterol-tocoprostanolconversioninthehumangut.FEMSMicrobiolLett.242:81–86.

73.GagneF,BlaiseC,AndreC(2006)Occurrenceofpharmaceuticalproductsinamunicipaleffluentandtoxicitytorainbowtrout(Oncorhynchus mykiss)hepatocytes.EcotoxEnvironSaf.64:329–336.

Page 18: Current Research in Microbiology - Open Access. eBooks · Current Research in Microbiology 5 to be optimally active at neutral pH and are stable over a wide pH range. The enzymes

CurrentResearchinMicrobiology

18

74.HotchkissAK,RiderCV,BlystoneCR,WilsonVS,HartigPC,AnkleyGT,FosterPM,GrayHuangH,YuanQ,YangX(2004)Preparationandcharacterizationofmetal-chitosannanocomposites.ColloidsSurfBBiointerfaces.39:31–37.

75.PooleAJ,Cord-RuwischRC(2004)Treatmentofstrongflowwoolscouringeffluentbybiologicalemulsiondesta-bilization.WaterRes.38:1419–1426.

76.CherradiN,DefayeG,ChambazEM (1997) Submitochondrial distribution of three key steroidogenic proteins(steroidogenicacuteregulatoryproteinandcytochromep450sccand3b-hydroxysteroiddehydrogenaseisomeraseen-zymes)uponstimulationbyintracellularcalciuminadrenalglomerulosacells.TheJBiolChem.272:7899–7907.

77.ThomasJL,EvansBW,BlancoG,MercerRW,MasonJI,AdlerS,NashWE,IsenbergKEandStricklerRC(1998)Site-directedmutagenesisidentifiesaminoacidresiduesassociatedwiththedehydrogenaseandisomeraseactivitiesofhumantypeI(placental)3α-hydroxysteroiddehydrogenase/isomerases.JSteroidBiochemMolBiol.66:327–334.

78.GoetschelR,BarR(1991)DehydrogenationofhydrocortisonebyArthrobacter simplexinaliposomalmedium.EnzymeMicrobTechnol.13:245–251.

79.AhiaraH,WatanabeK,NakamuraR(1986)CharacterizationofproductionofcholesteroloxidasesinthreeRhodo-coccusstrains.JApplBacteriol.61:269−274.

80.AhmadS,RoyPK,KhanAW,BasuSK,JohriBN(1991)Microbial transformationofsterols toC19-steroidsbyRhodococcus equi.WorldJMicrobiolBiotechnol.7:557–561.

81.ZhilongW,FengshengZ,HaoX,ChenD,LiD(2004)Microbialtransformationofhydrophobiccompoundincloudpointsystem.JMolCatalB:Enzym.27:147–153.

82.FernandesP,CruzA,AngelovaB,PinheiroHM,CabralJMS(2003)Microbialconversionofsteroidcompounds:recentdevelopments.EnzymeMicrobTechnol.32:688–705.

83.IvashinaTV,NikolayevaVM,DovbnyaDV,DonovaMV(2012)CholesteroloxidaseChoDisnotacriticalenzymeaccountingforoxidationofsterolsto3-keto-4-enesteroidsinfast-growingMycobacteriumsp.VKMAc-1815D.JSte-roidBiochemMolBiol.129:47–53.

84.UhiaI,GalanB,MoralesV,GarciaJL(2011)InitialstepinthecatabolismofcholesterolbyMycobacterium smeg-matismc2155.EnvironMicrobiol.13:943.

85.FernandezdelasHerasL,MascaraqueL,FernándezEG,Navarro- LlorensJM,PereraJ,DrzyzgaO(2011)ChoGis themain inducibleextracellularcholesteroloxidaseofRhodococcus sp. strainCECT3014.MicrobResearch.16:403–418.

86.LiB,WangW,WangF-Q,WeiD-Z(2010)CholesteroloxidaseChoLisacriticalenzymethatcatalyzesthecon-versionofdiosgeninto4-ene-3-ketosteroidsinStreptomyces virginiaeIBL-14.ApplMicrobiolBiotechnol.85:1831–1838.

87.WangF-Q,YaoK,WeiD-Z(2011)Fromsoybeanphytosterolstosteroidhormones.In:El-ShemyH(ed)Soybeanandhealth.InTech–OpenAccessPublisher,Rijeka,pp232–252.

88.MahatoSB,GaraiS(1997)Advancesinmicrobialsteroidbiotransformation.Steroids.62:332–345.

89.ChaudhariPN,ChaudhariBL,ChincholkarSB(2010)Cholesterolbiotransformationtoandrosta-1,4-diene-3,17-dionebygrowingcellsofChryseobacterium gleum.BiotechnolLett.32:695–699.

90.ShaoM,RaoZ,XianX,XuM,YangT,LiH,XuZ(2015)Bioconversionofcholesterolto4-cholesten-3-onebyrecombinantBacillus subtilisexpressingchoMgeneencodingcholesteroloxidasefromMycobacterium neoaurum JC-12.JChemTechnolBiotechnol.90:1811–1820.

Page 19: Current Research in Microbiology - Open Access. eBooks · Current Research in Microbiology 5 to be optimally active at neutral pH and are stable over a wide pH range. The enzymes

CurrentResearchinMicrobiology

19

91.PuglielliL,FriedlichAL,SetchellKDR,NaganoS,OpazoC,ChernyRM,BarnhamKJ,WadeJD,MelovS,KovacsDM,BushAI(2005)Alzheimerdiseaseβ–amyloidactivitymimicscholesteroloxidase.JClinInvest.115:2556–2563.

92.ToyamaM,YamashitaM,YonedaM,ZaborowskiA,NagatoM,OnoH,HirayamaN,MurookaY(2002)Altera-tionofsubstratespecificityofcholesteroloxidasefromStreptomyces sp.bysite-directedmutagenesis.ProteinEng.15:477–484.

93.VidalJC,EspuelasJ,RuizEG,CastilloJR(2004)Amperometriccholesterolbiosensorsbasedontheelectropoly-merizationofpyrroleandtheelectrocatalyticeffectofPrussian-Bluelayershelpedwithself-assembledmonolayers.Talanta,64:655–664.

94.BasuAK,ChattopadhyayP,RoychoudhuriU,ChakrabortyR(2007)Developmentofcholesterolbiosensorbasedonimmobilizedcholesterolesteraseandcholesteroloxidaseonoxygenelectrodeforthedeterminationoftotalcholesterolinfoodsamples.JBioelectrochem.70:375–379.

95.AryaSK,DattaM,MalhotraBD(2008)Recentadvancesincholesterolbiosensor.BiosensBioelectron.23:1083–1100.

96.CorbinDR,GrebenokRJ,OhnmeissTE,GreenplateJT,PurcellJP(2001)Expressionandchloroplasttargetingofcholesteroloxidaseintransgenictobaccoplants.PlantPhysiol.126:1116–1128.

97.CorbinD,GreenplateJ,WongE,PurcellJ(1994)Cloningofaninsecticidalcholesteroloxidasegeneanditsexpres-sioninbacteriaandinplantprotoplasts.ApplEnvironMicrobiol.60:4239–4244.

98.LangeY,SwaisgoodMH,RamosBV,SteckTL(1989)Plasmamembranescontainhalfthephospholipidand90%ofthecholesterolandsphingomyelininculturedhumanfibroblasts.JBidChem.264:3786−3793.

99.LangeY,YeJ,SteckTL(2005)Activationofmembranecholesterolbydisplacementfromphospholipids.JBiolChem.280:36126–36131.

100.LangeY(1992)Trackingcellcholesterolwithcholesteroloxidase.Journaloflipidresearch33:315−321.

101.Rouquette-JazdanianAK,PelassyC,BreittmayerJP,AusselC(2006)Revaluationoftheroleofcholesterolinsta-bilizingraftsimplicatedinTcellreceptorsignaling.CellSignal.18:105–122.

102.SimonsK,IkonenE(1997)Functionalraftsincellmembranes.Nature.387:569–572.

103.XuX,BittmanR,DuportailG,HeisslerD,VilchezeC,LondonE(2001)Effectofthestructureofnaturalsterolsandsphingolipidsontheformationoforderedsphingolipid/steroldomains(rafts).Comparisonofcholesteroltoplant,fungal,anddiseaseassociatedsterolsandcomparisonofsphingomyelin,cerebrosides,andceramide.JBiolChem.276:33540–33546.

104.YeD,LeiJ,LiW,GeF,WuK,XuW,YongB(2008)Purificationandcharacterizationofextracellularcholesteroloxidasefromenterobactorsp.WorldJMicrobiolandBiotechnol.24:2227–2233.

105.WeinstockDM,BrownAE(2002)Rhodococcus equi:anemergingpathogen.ClinInfectDis.34:1379–1385.

106.KumariL,KanwarSS(2012)CholesteroloxidaseandItsapplications.AdvMicrobiol.2:49−65.

107.CaldinelliL,IamettiS,BarbiroliA,FessasD,BonomiF,LucianoPiubelliL,MollaG,PollegioniL(2008)Rel-evanceof theflavinbinding to thestabilityandfoldingofengineeredcholesteroloxidasecontainingnoncovalentlyboundFAD.ProteinSci.17:409–419.

108.MendesMV,RecioE,AntónN,GuerraSM,Santos-AberturasJetal.(2007)Cholesteroloxidasesactassignalingproteinsforthebiosynthesisofthepolyenemacrolidepimaricin.ChemBiol.14:279–290.

109.LiuJ,XianG,LiM,ZhangY,YangM,YYu,HLv,SXuan,YLin,LGao(2014)CholesteroloxidasefromBor-detellaspeciespromotesirreversiblecellapoptosisinlungadenocarcinomabycholesteroloxidation.CellDeathand

Page 20: Current Research in Microbiology - Open Access. eBooks · Current Research in Microbiology 5 to be optimally active at neutral pH and are stable over a wide pH range. The enzymes

CurrentResearchinMicrobiology

20

Disease.5:1372.

110.GuarnerF,SchaafsmaG(1998)Probiotics.IntJFoodMicrobiol.39:237–238.

111.OoiLG,LiongMT(2010)Cholesterol-loweringeffectsofprobioticsandprebiotics:areviewofin vivo and in vitro findings.IntJMolSci.11:2499–2522.

112.PereiraDIA,GibsonGR(2002)Effectsofconsumptionofprobioticsandprebioticsonserumlipidlevelsinhuman.CritRevBiochemMolBiol.37:259–281.

113.LeeYK,SalminenS(1995)Thecomingageofprobiotics.TrenFoodSciTechnol.6:241–245.

114.LyeHS,RusulG,LiongMT(2010)Mechanismsofcholesterol removalbyLactobacilli under conditions that mimicthehumangastrointestinaltract.IntDairyJ.20:169–175.

115.GarciaJL,UhiaI,GalanB(2012)Catabolismandbiotechnologicalapplicationsofcholesteroldegradingbacteria.MicrobBiotechnol.5:679–699.

116.PaniangvaitP,King,AJ,JonesAD,GermanBG(1995)Cholesteroloxidesinfoodsofanimalorigin.JFoodSci.60:1159–1174.

117.KhirallaGM (2015)Cholesterol degradationby somebacteria isolated from food.FoodSciTechnolRes. 21:685–693.

118.HoriiM,IshizakiT,PaikSY,ManomeT,MurookaY(1990)AnoperoncontainingthegenesforcholesteroloxidaseandacytochromeP-450-likeproteinfromaStreptomycessp.JBacteriol.172:3644–3653.

119.SomkutiGA,DanielKY,SolaimanDK,SteinberDH(1992)ExpressionofStreptomycessp.cholesteroloxidaseinLactobacillus casei.ApplMicrobiolBiotechnol.37:330–334.

120.BrigidiP,BolognatiF,RossiM,CerreC,MatteuzziD(1993)CloningofthegeneforcholesteroloxidaseinBacil-lusspp.,Lactobacillus reuterianditsexpressioninEscherichia coli.LettApplMicrobiol.17:61–64.

121.SomkutiGA,SolaimanDK,SteinbergDH(1995)Nativepromoter-plasmidvectorsystemforheterologouscholes-teroloxidasesynthesisinStreptococcus thermophillus.Plasmid.33:7–14.

122.RossiM,BrigidiP,MatteuzziD(1998)ImprovedcloningvectorsforBifidobacteriumspp.LettApplMicrobiol.26:101–104.

123.ParkMS,KwonB,ShimJJ,HuhCS,JiGE(2008)HeterologousexpressionofcholesteroloxidaseinBifidobacte-rium longumunderthecontrolof16SrRNAgenepromoterofbifidobacteria.BiotechnolLett.30:165–172.

124.Watanabe,K.,Aihara,H.andNakamura,R.1989Degradationofcholesterolinlardbyextracellularandcell-boundenzymesfromRhodococcus equiNo.23.LebensmittelWissenshaftenundTechnologie.22:98–99.

125.SaxenaU,DasAB(2016)Nanomaterialstowardsfabricationofcholesterolbiosensors:Keyrolesanddesignap-proaches.BiosensBioelectron.75:196–205.

126.D’OrazioP(2003)Biosensorsinclinicalchemistry.ClinChimActa.334:41–69.

127.MarazuelaMD,CuestaB,Moreno-BondiMC,QuejidoA(1997)Freecholesterolfiber-opticbiosensorforserumsampleswithsimplexoptimization.BiosensBioelectron.12:233–240.

128.KimKE,KimT,SungYM(2012)Fluorescentcholesterolsensingusingenzyme-modifiedCdSe/ZnSquantumdots.JNanopartRes.14:1–9.

129.UmarA,RahmanMM,Al-HajryA,HahnYB(2009)Highly-sensitivecholesterolbiosensorbasedonwell-crystal-lizedflower-shapedZnOnanostructures.Talanta.78:284–289.

Page 21: Current Research in Microbiology - Open Access. eBooks · Current Research in Microbiology 5 to be optimally active at neutral pH and are stable over a wide pH range. The enzymes

CurrentResearchinMicrobiology

21

130.MoonlaC,PreechaworapunA,TangkuaramT(2017)AsingledropfabricationofthecholesterolbiosensorbasedonsynthesizedNiFe2O4NPsdispersedonPDDA-CNTs.Electroanalysis.29:1–11.

131.WisitsoraatA, SritongkhamP,KaruwanC, PhokharatkulD,MaturosT,TuantranontT (2010) Fast cholesteroldetectionusingflowinjectionmicrofluidicdevicewithfunctionalizedcarbonnanotubesbasedelectrochemicalsensor.BiosensBioelectron.26:1514–1520.

132.MiaoP,HanK,SunH,YinJ,ZhaoJ(2014)Melaminefunctionalizedsilvernanoparticlesastheprobeforelectro-chemicalsensingofclenbuterol.ACSApplMaterInterfaces.6:8667–8672.

133.ChauhanN,PundirCS(2014)Amperometricdeterminationofacetylcholine-Aneurotransmitter,bychitosan/gold-coatedferricoxidenanoparticlesmodifiedgoldelectrode.BiosensBioelectron.61:1–8.

134.BahadirEB,SezginturkMK(2015)Applicationsofcommercialbiosensorsinclinical,food,environmental,andbiothreat/biowarfareanalyses.AnalBiochem.478:107–120.