13
Solar Cells © F.-J. Haug, ETH Zürich Cu(InGa)Se 2 solar cells n-ZnO glass Mo p-CIGS n-CdS Efficiencies up to 18.8% (NREL, USA), 15.7% (ETHZ) Solar Cells © F.-J. Haug, ETH Zürich Crystallographic properties of CIGS Diamond (element semiconductors: Ge and Si) Zincblende (optoelectronic materials: GaAs, InP, GaN) Photovoltaic materials: CdTe (Zincblende) CuInSe 2 (Chalcopyrite) Cu In,Ga Se a c

Cu(InGa)Se solar cells

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Cu(InGa)Se solar cells

Solar Cells© F.-J. Haug, ETH Zürich

Cu(InGa)Se2 solar cells

n-ZnO

glass

Mo

p-CIGS

n-CdS

Efficiencies up to 18.8% (NREL, USA), 15.7% (ETHZ)

Solar Cells© F.-J. Haug, ETH Zürich

Crystallographic properties of CIGS

Diamond (element semiconductors: Ge and Si)

Zincblende (optoelectronic materials: GaAs, InP, GaN)

Photovoltaic materials: CdTe (Zincblende)CuInSe2 (Chalcopyrite) Cu

In,GaSe

a

c

Page 2: Cu(InGa)Se solar cells

Solar Cells© F.-J. Haug, ETH Zürich

Phase diagram of CuInSe2

15 20 25 30

100

300

500

700

900

Cu [at%]

t [°C

]

α

α

α+β

α+δ

δ

β

β+δ

δ

α+Cu2Se (HT)

α+Cu2Se

Cu In

Se

In2Se3

Cu2Se

CuInSe2

CuIn3Se5CuIn5Se8

Pseudo-binary cut through ternary diagram

Device quality: Cu-poor; Cu-rich: Cu2-xSe seggregations

Fearheiley, SC, 16, p. 91

Solar Cells© F.-J. Haug, ETH Zürich

Substrate and back contact

Substrate:Soda lime glass (supply of Na)steel foils (Kovar, Invar; rough surfaces)Polyimides (Kapton, Upilex, other; poor adhesion)

Back contact:Mo (formation of MoSe2, back surface field)Cr (Na barrier)Cu (CIS Cut process)TCOs (superstrate cells, reversed configuration)

Page 3: Cu(InGa)Se solar cells

Solar Cells© F.-J. Haug, ETH Zürich

Absorber layer

CuInSe2 with Ga addition Cu(In,Ga)Se2 (CIGS)

Compound formation ~400-500°C; growth ~550°C

“one stage” process: low quality material

Cu-poor material: single phase chalcopyriteCu-rich material: Cu2-xSe segregates,

conducting (undesired), flux (large grain)

“bilayer” or “three stage” superior quality

Solar Cells© F.-J. Haug, ETH Zürich

Spectral absorption

Direct bandgap (CuInSe2) Indirect bandgap (Si) (additional phonon required)

1.0 1.5 2.0 2.5 3.0

0.0

2.0x104

4.0x104

6.0x104

8.0x104

1.0x105

1.2x105

1.4x105

1.6x105

Photon energy [eV]

Abs

orpt

ion

coef

ficie

nt [c

m-1]

CuInSe2

c-Si

1.0 1.5 2.0 2.5 3.0101

102

103

104

105

Abs

orpt

ion

coef

ficie

nt [c

m-1]

Page 4: Cu(InGa)Se solar cells

Solar Cells© F.-J. Haug, ETH Zürich

Transmission (absorber layer)

1.0 1.5 2.0 2.5 3.0 3.5 4.00

20

40

60

80

100

0.2

0.25

x=0.3

CuGa3Se5

CuIn1-xGaxSe2

CuGaSe2

Tra

nsm

issi

on [%

]

Band gap energy [eV]

1200 900 600 300

Wavelength [nm]

Bandgap depends on I/(I+III) and Ga/(Ga+In) ratio

Solar Cells© F.-J. Haug, ETH Zürich

Deposition methods

co-evaporation(Best results)

Selenisation of precursors(low cost, difficulty of complete conversion)

Vacuum Multilayers(sputtering, evaporation)

Pastes(Screen printing)

Se or H2Se

Page 5: Cu(InGa)Se solar cells

Solar Cells© F.-J. Haug, ETH Zürich

Morphology of absorber layers

Cu-rich Cu-poor

“one step”

“two step”

Solar Cells© F.-J. Haug, ETH Zürich

Band offsets

Gereference

-0.32 eV

1.04 eV1.68 eV

CuIn1-xGaxSe

-0.6 eV

1.3 eV

OVC

-1.4 eV

CdS Zn1-xMgxO

-2.7 eV

3.3 eV

2.4 eV

-0.6 eV

1.5 eV

CuInS1-xSex

Schmid et.al. SEM 41/42, p. 281Klein et.al. APL 70(19), p. 1299Minemoto et.al. JAP 89(12), p. 8327

Turcu et.al. APA 73, p. 769

Page 6: Cu(InGa)Se solar cells

Solar Cells© F.-J. Haug, ETH Zürich

Band alignment (equilibrium)

ZnO CdS

OVC

CuIn0.7Ga0.3Se

“Spike” type, ~0.2 eV

Spike <0.3 uncritical

Niemegeers et.al.APL, 67(6), p. 843

Spike <0.4 favourableMinemoto et.al.SEM, 67, p. 83

Solar Cells© F.-J. Haug, ETH Zürich

Buffer layer

Formation of pn-junction

(Historically: also front contact)

Deposition of CdS in chemical bath process (CBD)

Cd(Ac)2, (H2N)2CS (Thiourea), NH3, precipitation of CdS

Alternate:In(OH)xSy, ZnSe, ZnS; (CBD process)ZnS, ZnSe; (evaporation)Cd, Zn; (partial electrolyte treatment)

Page 7: Cu(InGa)Se solar cells

Solar Cells© F.-J. Haug, ETH Zürich

Transmission (window layer)

CdS buffer absorbs at 600 nm => reduced photocurrent

1.0 1.5 2.0 2.5 3.0 3.5 4.00

20

40

60

80

100

AM 1.5 CdS (400nm)

ITO

CdS (50nm)

ZnO

Tra

nsm

issi

on [%

]

Band gap energy [eV]

1200 900 600 300

Wavelength [nm]

Solar Cells© F.-J. Haug, ETH Zürich

Buffer layer and cell efficiency

ZnO direct

CdS/ZnO

Cd-treatment

Zn-treatment

Performance of CdS buffer layer is unsurpassed

Canava et.al.TSF 361/362, p. 187

Page 8: Cu(InGa)Se solar cells

Solar Cells© F.-J. Haug, ETH Zürich

Alternate buffers

Thickness of CdS may be reduced

ZnSe and ZnS are promising

Engelhardt et. al., PPV 7, p 423

Solar Cells© F.-J. Haug, ETH Zürich

Transmission (solar cell)

1.0 1.5 2.0 2.5 3.0 3.5 4.00

20

40

60

80

100

CdS (50nm)

ZnO

x=0.3

CuIn1-xGaxSe2

Tra

nsm

issi

on [%

]

Band gap energy [eV]

1200 900 600 300

Wavelength [nm]

Absorption in CdS does not contribute to current

Page 9: Cu(InGa)Se solar cells

Solar Cells© F.-J. Haug, ETH Zürich

Transparent conducting oxides(TCOs)

Suppress absorption in visible range => Eg>3.3 eV

Oxides: ZnO, CdO, SnO2, In2O3, (CdSnO4)

Doping: ZnO: B, Al, Ga, In; SnO2: F (FTO)

Multinary compounds: In2O3-SnO2 (ITO)

n-type

ZnO:N, ZnO:N,Ga

p-typeCuGaO2, CuInO2, SrCu2O2

Difficulty to dope p-type

Solar Cells© F.-J. Haug, ETH Zürich

Spectral response

Higher mobility in ZnO:BHigher Transmission in IRHigher current density

Hagiwara et.al, SEM 67, p. 267

Page 10: Cu(InGa)Se solar cells

Solar Cells© F.-J. Haug, ETH Zürich

Module interconnectionMo P1

CIGS P2

ZnO/CdS P3

Problem: corrosion of ZnO/Mo contact

Solar Cells© F.-J. Haug, ETH Zürich

Superstrate solar cells

Reversed structure

n-ZnO

glass

Au

p-CIGS

Challenges:•thermally stable ZnO:Al•no CdS buffer layer•no Na (ZnO diffusion barrier)

n++-ZnO:Al

Efficiencies up to 12.8% (AGU, Japan), 11.2% (ETHZ)

Prospects:•low cost encapsulation•dry processing

Page 11: Cu(InGa)Se solar cells

Solar Cells© F.-J. Haug, ETH Zürich

Flexible solar cells

Challenges:•processing on polymer•low temperature•no Na supply

Prospects:•flexibility (“wearable”)•light weight

Efficiencies up to 12.8% (ETH)

Solar Cells© F.-J. Haug, ETH Zürich

Tandem solar cells

CuInSe2 and CuGaSe2 are an ideal combination

Page 12: Cu(InGa)Se solar cells

Solar Cells© F.-J. Haug, ETH Zürich

Mechanically stacked tandem

no current matching necessary separate HT from LT processes

Top cell: 15% minimum, present CGS cell ~9% on Mo

Also: Bifacial approach

Four terminal device

Solar Cells© F.-J. Haug, ETH Zürich

Monolithically integrated tandem

“blue” absorber

p++n++ tunnel junction

“red” absorber

Two terminal device

Monolithic GaInP-GaAs cells: >30%

Disadvantage: current matching required

Page 13: Cu(InGa)Se solar cells

Solar Cells© F.-J. Haug, ETH Zürich

n++

III-V tandem solar cells

Top cell (InGaP):•blue: absorption (Eg~1.7 eV)•red: transmission

Bottom cell (GaAs):•red absorption (Eg~1.0 eV)

n

pp++

n++

np

Junction:• transparent