35
1 CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier transforms (DTFT) •DTFT Properties •Relations among Fourier methods

CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

  • Upload
    others

  • View
    47

  • Download
    1

Embed Size (px)

Citation preview

Page 1: CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

1

CTFT, DTFT and PropertiesMonday 12/04/2010

•Properties of CTFT•DTFS to DTFT transition•Discrete-time Fourier transforms (DTFT)•DTFT Properties•Relations among Fourier methods

Page 2: CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

2

The “Uncertainty” PrincipleThe time and frequency scaling properties indicate that if a signal is expanded in one domain it is compressed in the other domain.This is called the “uncertainty principle” of Fourier analysis.

e−π t

2

2

F← → 2e−π 2 f( )2

e−πt2 F← → e−πf 2

Page 3: CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

3

CTFT Properties

Transform of a Conjugate

x* t( ) F← → X * − f( )

x* t( ) F← → X * − jω( )

Multiplication-Convolution

Duality

x t( )∗y t( ) F← → X f( )Y f( )

x t( )∗y t( ) F← → X jω( )Y jω( )

x t( )y t( ) F← → X f( )∗ Y f( )

x t( )y t( ) F← →

12π

X jω( )∗Y jω( )

Page 4: CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

4

Multiplication-convolution duality

Page 5: CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

5

Transfer functionAn important consequence of multiplication-convolutionduality is the concept of the transfer function.

In the frequency domain, the cascade connection multipliesthe transfer functions instead of convolving the impulseresponses.

Page 6: CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

6

CTFT Properties

Time Differentiation

ddt

x t( )( ) F← → j2πf X f( )

ddt

x t( )( ) F← → jω X jω( )

Modulation x t( )cos 2πf0t( ) F← →

12

X f − f0( )+ X f + f0( )[ ]

x t( )cosω 0t( ) F← →

12

X j ω − ω0( )( )+ X j ω +ω 0( )( )[ ]

Transforms ofPeriodic Signals

x t( )= X k[ ]e− j 2π kfF( )t

k =−∞

∑ F← → X f( )= X k[ ]δ f − kf0( )k=−∞

x t( )= X k[ ]e− j kω F( )t

k =−∞

∑ F← → X jω( )= 2π X k[ ]δ ω − kω0( )k=−∞

Page 7: CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

7

CTFT Properties

Page 8: CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

8

CTFT Properties

Parseval’s Theorem

x t( )2dt

−∞

∫ = X f( )2df

−∞

x t( )2dt

−∞

∫ =1

2πX jω( )2

df−∞

Integral Definitionof an Impulse

e− j2πxy

−∞

∫ dy = δ x( )

Duality X t( ) F← → x − f( ) and X −t( ) F← → x f( )

X jt( ) F← → 2π x −ω( ) and X − jt( ) F← → 2π x ω( )

Page 9: CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

9

CTFT Properties

Total-AreaIntegral

X 0( )= x t( )e− j2πftdt−∞

f →0

= x t( )dt−∞

x 0( )= X f( )e+ j 2πftdf−∞

t→0

= X f( )df−∞

X 0( )= x t( )e− jωtdt−∞

ω→0

= x t( )dt−∞

x 0( )=1

2πX jω( )e+ jωtdω

−∞

t→0

=1

2πX jω( )dω

−∞

Integration x λ( )dλ

−∞

t

∫F← →

X f( )j2πf

+12

X 0( )δ f( )

x λ( )dλ

−∞

t

∫F← →

X jω( )jω

+ π X 0( )δ ω( )

Page 10: CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

10

CTFT Properties

x 0( )= X f( )df−∞

X 0( )= x t( )dt−∞

Page 11: CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

11

CTFT Properties

Page 12: CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

12

Extending the DTFS

• Analogous to the CTFS, the DTFS is a good analysis tool for systems with periodic excitation but cannot represent an aperiodic DT signal for all time

• The discrete-time Fourier transform (DTFT) can represent an aperiodic DT signal for all time

Page 13: CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

13

DT Pulse Train

This DT periodic rectangular-wave signal is analogous to theCT periodic rectangular-wave signal used to illustrate the transition from the CTFS to the CTFT.

Page 14: CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

14

DTFS of DT Pulse Train

As the period of the rectangular wave increases, the period of the DTFS increases and the amplitude of the DTFS decreases.

Page 15: CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

15

Normalized DTFS of DT Pulse Train

By multiplying the DTFS by its period and plotting versus instead of k, the amplitude of the DTFS stays the same as the period increases and the period of the normalized DTFS stays at one.

kF0

22X0.5

1/22

Page 16: CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

16

DTFS-to-DTFT TransitionThe normalized DTFS approaches this limit as the DTperiod approaches infinity.

Page 17: CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

17

Definition of the DTFT

x n[ ]= X F( )e j 2πFndF

1∫F← → X F( )= x n[ ]e− j 2πFn

n=−∞

F Form

x n[ ]=

12π

X jΩ( )e jΩndΩ2π∫

F← → X jΩ( )= x n[ ]e− jΩn

n=−∞

Ω Form

ForwardInverse

ForwardInverse

Page 18: CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

18

Linearity

α x n[ ]+ β y n[ ] F← → α X F( )+ β Y F( )

α x n[ ]+ β y n[ ] F← → α X jΩ( )+ β Y jΩ( )

Page 19: CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

19

Time Shifting

x n − n0[ ] F← → e− jΩn0 X jΩ( )

x n − n0[ ] F← → e− j 2πFn0 X F( )

Page 20: CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

20

Frequency Shifting

ej2πF0n x n[ ] F← → X F − F0( )

ejΩ0n x n[ ] F← → X j Ω − Ω0( )( )

Page 21: CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

21

Time Reversal

x −n[ ] F← → X −F( )

x −n[ ] F← → X − jΩ( )

Page 22: CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

22

Differencing

x n[ ]− x n −1[ ] F← → 1− e− j 2πF( )X F( )

x n[ ]− x n −1[ ] F← → 1− e− jΩ( )X jΩ( )

Page 23: CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

23

Accumulation

x m[ ]m=−∞

n

∑ F← → X F( )

1− e− j2πF +12

X 0( )comb F( )

x m[ ]

m=−∞

n

∑ F← → X jΩ( )

1− e− jΩ +12

X 0( )combΩ2π

Page 24: CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

24

Multiplication-Convolution Duality

As in other transforms, convolution in the time domain is equivalent to multiplication in the frequency domain

x n[ ]∗y n[ ] F← → X F( )Y F( ) x n[ ]∗y n[ ] F← → X jΩ( )Y jΩ( )

x n[ ]y n[ ] F← →

12π

X jΩ( ) Y jΩ( ) x n[ ]y n[ ] F← → X F( ) Y F( )

Page 25: CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

25

DTFT Properties

Page 26: CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

26

DTFT Properties

AccumulationDefinition of a Comb Function

e j 2πFn

n=−∞

∑ = comb F( )

The signal energy is proportional to the integral of the squared magnitude of the DTFT of the signal over one period.

Parseval’sTheorem x n[ ]2

n=−∞

∑ =1

2πX jΩ( )2

dΩ2π∫

x n[ ]2

n=−∞

∑ = X F( )2dF

1∫

Page 27: CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

27

The Four Fourier Methods

Page 28: CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

28

Relations Among Fourier MethodsDiscrete Frequency Continuous Frequency

CT

DT

Page 29: CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

29

CTFT - CTFS Relationship

X f( )= X k[ ]δ f − kf0( )k=−∞

Page 30: CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

30

CTFT - CTFS Relationship

X p k[ ]= fp X kfp( )

Page 31: CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

31

CTFT - DTFT Relationship

Let xδ t( )= x t( ) 1Ts

combt

Ts

= x nTs( )δ t − nTs( )n=−∞

and let x n[ ]= x nTs( )

X DTFT F( )= Xδ fs F( ) Xδ f( )= XDTFT

f

fs

X DTFT F( )= fs XCTFT fs F − k( )( )k =−∞

There is an “information equivalence” between and . They are both completely described bythe same set of numbers.

xδ t( )x n[ ]

Page 32: CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

32

CTFT - DTFT Relationship

Page 33: CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

33

DTFS - DTFT Relationship

X F( )= X k[ ]δ F − kF0( )k=−∞

Page 34: CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

34

DTFS - DTFT Relationship

X p k[ ]=1

Np

X kFp( )

Page 35: CTFT, DTFT and Properties[1] - kau DTFT and Properties.pdf · CTFT, DTFT and Properties Monday 12/04/2010 •Properties of CTFT •DTFS to DTFT transition •Discrete-time Fourier

35

Duties for next lecture 24/04/2010

• No lecture on Wednesday• No class next week• Study exercises with Fourier transforms

from the book chapter 5.9 (pg 353 - 370)