57
CSE590B Lecture 7 Cubic Curves Implicit and Parametric James F. Blinn JimBlinn.Com http://courses.cs.washington.edu/courses/cse590b/13au/

CSE590B Lecture 7 Cubic Curves - University of Washington...CSE590B Lecture 7 Cubic Curves Implicit and Parametric James F. Blinn JimBlinn.Com

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • CSE590B Lecture 7

    Cubic Curves

    Implicit and Parametric

    James F. Blinn JimBlinn.Com

    http://courses.cs.washington.edu/courses/cse590b/13au/

    http://courses.cs.washington.edu/courses/cse590b/13au/

  • Resultant of Two Cubics

    C

    D

    CD

    CD

    216 r =

    D D

    D

    C

    C C

    + 9 + 9

    C C

    C

    D

    D D

    CD

    CD

    CD

    CD

    CD

    CD

    CD

    CD

    CD

    CD

    CD

    CD

    -36r(C,D) = -C +b a D=CDa,b

    x

    w

    Com

    mon

    root

  • Other Relations Between Cubics

    11

    11

    22

    1111

    211

    111

    1

    211

    31

    12

    1

    x

    w

    Com

    mon

    root

    x

    w

    Com

    mon

    root

    x

    w

    x

    w

    x

    w

    x

    w

    Com

    mon

    root

    Common root

    x

    w

    Com

    mon

    root

    Common root Etc…

  • x

    w

    A B C D

    P1 Space Visualizations

    D

    B

    ¥

    -1

    0

    +1C

    A

    A

    B C

    D

    x

    w

    A B C D

    2D lines in [x,w]

    xX

    w=

    P1

    Topology

    CD

    0B-1A

    x

    w

    C

    D+¥

    0B-1A

    360o generates P1 twice

  • P2 Space Visualizations

    w

    x

    y A

    CBD

    X

    Y

    A

    CB

    D

    x

    y

    DB C

    A

    w

    w

    x

    y A

    CBD

    X

    Y

    A

    CB

    D

    ef

    g

    ef

    g

    hh

  • P2 Space Visualizations

  • How Many Triangles?

  • Four

  • Other Space Topologies

    X

    Y

    A

    CB

    D

    ef

    g

    ef

    g

    hh

    A

    CB

    D

    e f g

    e f g

    h

    j

    h

    j

  • Point on a Line

    0Ax By Cw+ + =

    0A

    x y w B

    C

    =

    P L = 0

    L

    P

    L

  • Parametric Line

    ,a b a b= +P R S

    1 2 3

    1 2 3

    R R R

    S S Sa b

    =

    P

    =P aV

    P = a V

    R

    S

    P

    b

    a

  • Implicitize Parametric Line

    V

    R

    S

    R = 1,0 V

    S = 0,1 V

    R

    =

    1,0 V

    S 0,1 V

    L =

  • Implicitize Parametric Line

    VR

    S

    1,0 V

    0,1 V

    1,0 V

    0,1 V

    1,0 V

    0,1 V

    = -2

    1,0 V

    0,1 V

    1,0 V

    0,1 V

    = -

  • Implicitize Parametric Line

    V

    R

    S

    V

    V

    = L

    Parametric

    Implicit

  • Quadratic Curve

  • Point on a Quadratic Curve

    2

    2

    2

    2 2

    2

    0

    Ax Bxy Cxw

    Dy Eyw

    Fw

    + +

    + +

    + =

    0A B C x

    x y w B D E y

    C E F w

    =

    P Q P = 0

    P

    Q

  • Tangent to Quadratic at P

    2

    2

    2

    , , 2 2

    2

    x y w Ax Bxy Cxw

    Dy Eyw

    Fw

    = + +

    + +

    +

    Q

    2

    x

    y

    w

    Ax By Cw

    Bx Dy Ew

    Cx Ey Fw

    + +

    = + + + +

    Q

    Q

    Q

    PQ = L

    P

    Q

    L

    2

    A B C x

    C D E y

    B C F w

    =

  • Intersect Line And Quadratic

    = 0P Q P

    P

    Q

    P = a V

    = 0Qa V V a

    2x2 Matrix

    = 0a q a

    Parametric line Implicit Quadratic

  • Double Root Means Tangent

    Q VV

    Q VV

    = 0

    q

    q

    =

    P

    Q

    Q VVq =

  • Reinterpret Diagram Fragment

    V

    V

    1 1

    1 2 3

    2 2

    1 2 3

    3 3

    0 1

    1 0

    R SR R R

    R SS S S

    R S

    = -

    L

    1 2 3

    1 2 3

    R R R

    S S S

    =

    V

    L

    R

    S

    1

    2

    3

    L

    L

    L

    =

    L

    1 2 2 1 1 3 3 1

    2 1 1 2 2 3 3 2

    3 1 1 3 3 2 2 3

    0

    0

    0

    R S R S R S R S

    R S R S R S R S

    R S R S R S R S

    - -

    = - - - -

    3 2

    3 1

    2 1

    0

    0

    0

    L L

    L L

    L L

    - = - -

  • Line Tangent To Quadric

    =

    V

    V

    L

    Q

    Q

    = 0L L

    L

    Q

    Q VV

    Q VV

    = 0

    q

    q

    =

    Klebsch Transfer Principle

  • Klebsch Transfer Principle

    Q

    L

    Q

    Q

    = 0L L

    q

    q

    = 0

    Condition for a double root in 2D (P1)

    L

    Condition for tangency in 3D (P2)

    Make substitution

  • Parametric Quadratic curves

    2 22x y w

    x y w

    x y w

    A A A

    t ts s B B B x y w

    C C C

    =

    y yx x w w

    y yx x w w

    A BA B A B tt s x y w

    B CB C B C s

    =

    = x,y,w

    t

    t

    QP

    = x,y,wts2 QT

    2 2

    2 2

    2 2

    , 2

    , 2

    , 2

    x x x

    y y y

    w w w

    x s t A t B ts C s

    y s t A t B ts C s

    w s t A t B ts C s

    = + +

    = + +

    = + +

  • Points and Tangents

    t

    Qp

    tT

    t

    Qp

    u

    t

    Qp

    t

    t

    Qp

    u

    =t

    Qp

    t

    t

    Qp

    u

    -t

    Qp

    t

    t

    Qp

    u

    T =

  • Points and Tangents

    t

    Qp

    tT

    t

    Qp

    u

    T =t

    Qpt

    t Qpu

    - 1/2

  • Points and Tangents

    t

    Qp

    t

    u

    Qp

    u

    t

    Qpu

    t

    u

    0 1=

    1 1=If Bezier Control Points

    Plus:

    Homogeneous

    Scales of Points

  • Implicitizing A Parametric

    Quadratic Curve

    =

    t

    t

    pQP

    0A B C x

    x y w B D E y

    C E F w

    =

    y yx x w w

    y yx x w w

    A BA B A B tt s x y w

    B CB C B C s

    =

    p Q p = 0

    p

    Given

    Want

  • Implicitizing A Parametric Quadratic

    Curve p

    L=

    t

    t

    L

    t

    QL

    t

    QP

    p

    M

    =

    t

    t

    M

    t

    QM

    t

    QP

    =

    t

    t

    LM

    t

    QLM

    t

    a,b a,bQP

    p

    L

    M

    aL+bM LM a,b=

  • Implicitizing A Parametric Quadratic

    Curve

    =

    t

    t

    LM

    t

    QLM

    t

    a,b a,bQP

    L

    M

    aL+bMp

    LMLM

    LMLM

    QP QP

    QPQP

    =

    QLMQLM

    QLM QLM

    = 0

    =

    LM

    LM

    p = 0p p

    QPQP

    QP QP

    Use resultant:

  • Implicitizing A Parametric Quadratic Curve

    p

    = 0pp

    QPQP

    QP QP

    =

    t

    t

    pQP

    = 0QP

    QP

    QP

    =

    t

    u

    -

    t

    u

    t

    u

    Given the parametric form: The implicit form is:

  • Line Tangency to Param. Quadratic Curve

    p

    = 0pp

    QPQP

    QP QP

    =

    t

    t

    pQP

    QPQP

    QP QP

    QPQP

    QPQP

    =

    LL

    = 0QP

    QP

    QP

    =

    t

    u

    -

    t

    u

    t

    u

    0 =

    QPQP

    QP QP

    L

    QPQP

    QP QP

    L

    QPQP

    QP QP

    QPQP

    =

    QP

    QP

    QP

    QP

    QP

    QP

    Sign?

    In terms of the implicitized

    parametric form:

    The line tangency condition is:

    Sign is

    positive

  • Singularity in a Param. Quadratic Curve

    = 0

    QPQP

    QP QP

    QPQP

    t

    Qp

    t

    u

    Qp

    u

    t

    Qpu

    t

    Qp

    t

    u

    Qp

    u

    t

    Qp

    u=

    =

    t

    u

    -

    t

    u

    t

    u

    QP

    QP

    QP

    t

    u

    t

    u

    t

    u

    = 0QP

    QP

    QP

    What does mean?

    = 0 implies

  • E

    FB

    LL

    Q

    R

    F/E

    B/E

    Q

    R

    S

    t

    Qp

    t

    u

    Qp

    u

    t

    Qp

    u=QP

    QP

    QP

    t

    u

    t

    u

    t

    u

    = x,y,w

    t

    t

    QP 0

    0 1

    1

    y yx x w w

    y yx x w w

    A BA B A B tt t

    B CB C B C t

    =

    t u

    t

    u

    1 0=

    0 1=

    1=

    QP

    QP

    QP

    B

    C

    A

    =

    Forms of Singularity Condition

  • Forms of Singularity Condition F/E

    B/E

    Q

    R

    S

    = x,y,w

    t

    t

    QP y yx x w w

    y yx x w w

    A BA B A B tt s

    B CB C B C s

    =

    = x,y,wts2 QT

    2 22

    x y w

    x y w

    x y w

    A A A

    t ts s B B B

    C C C

    =

    QP

    QP

    QP

    B

    C

    A

    = X

    W

    Y

    =QT=

    QT

    QT

    A

    C

    B

    XY

    W

    A

    C

    B

    LL

    Q

    x,y,w coplanar in coefficient space

  • Sub-Forms of Singularity F/E

    B/E

    Q

    R

    S

    = x,y,wts2 QT

    2 2

    0 0

    2 0 1

    0 0

    x

    x

    x

    A

    t ts s B

    C

    =

    A

    C

    B

    X

    Y

    W

    A

    C

    B

    W

    YX

    X

    Y

    2 2

    1

    0

    1

    2

    x

    x

    x

    A

    B

    C

    t sX

    ts

    =

    += X

    Y

    2

    1

    0

    0

    2

    x

    x

    x

    A

    B

    C

    tX

    ts

    =

    = X

    Y

    2 2

    1

    0

    1

    2

    x

    x

    x

    A

    B

    C

    t sX

    ts

    = -

    -=

    A

    C

    B

    W

    Y

    X

  • Types of Quadratic

    F/E

    B/E

    x

    w

    y

    = x,y,wts2 QT

    2 22

    x y w

    x y w

    x y w

    A A A

    t ts s B B B

    C C C

    =

    X

    Y

    X

    Y

    X

    Y

    F/E

    B/E

    x

    w

    y F/E

    B/E

    x

    w

    y

    X

    Y

    F/E

    B/E

    x

    w

    y

  • Cubic Curve in P2 3 2 2 3

    2 2

    2 2

    3

    3 3

    3 6 3

    2 3

    0

    Ax Bx y Cxy Dy

    Ex w Fxyw Gyw

    Hxw Jyw

    Kw

    + + +

    + + +

    + +

    + =

    0A B E B C F E F H x x

    x y w B C F C D G F G J y y

    E F H F G J H J K w w

    =

    P = 0C

    P

    P

    P

    C

  • Cubic Curve Tangent at P

    = 0 C

    P

    P

    L =

    P

    C

    L

  • Is Line L Tangent to Cubic

    CC

    L

    LL

    L

    CC

    L L = 0

    CC

    CC

    = 0

    Clebsch Translation Principle

    C

    L

  • Wierstrass Standard Form

    2 3Y X cX d= + +

    -4

    -3

    -2

    -1

    0

    1

    2

    3

    4

    -4 -3 -2 -1 0 1 2 3 4

    c

    d

    3 2 3 2 0x cxw dw y w+ + - =

    C

    C

    C

    C

    4

    8

    9I c= = -

    C C

    CC C

    C

    6

    8

    9I d= =

    3 3 3 6 0x y w m xyw+ + + =

    c,d parameters along lines

    generate congruent curves

    Different lines

    generate different curves

  • Cubic Continuum

    c

    d

    3Y X cX d= + +

  • Nodes on a Cubic

    C

    C

    C

    C

    4I =

    C C

    CC C

    C

    6I =

    1 = 0C

    P

    P

    0=

    3 2

    4 66I I = -

  • Loop and Serpentine

    c

    d

    22 3 3 2 1 2Y X X X X= - + = - +

    22 3 3 2 1 2Y X X X X= - - = + -

    3 2

    4 6

    3 3 2

    6

    8

    3 3 2

    I I

    c d

    = -

    = - +

  • Parametric Cubic Curve

    Cp

    p

    p

    p

    3 2 2 33 3

    x y w

    x y w

    x y w

    x y w

    A A A

    B B Bt t s ts s x y w

    C C C

    D D D

    =

    A B B CA B B C A B B Cy y y yx x x x w w w w

    B C C D B C C D B C C Dx x x x y y y y w w w w

    t tt s x y w

    s s

    =

    = x,y,wts3 4 CT

  • Parametric Cubic Curve

    t

    Cp

    t

    t

    u

    Cp

    u

    u

    t

    Cp

    u

    t

    tCp

    u

    u

  • Parametric vs Implicit

    P I

  • Parametrizable Cubics

    = 0 C

    0,0,1

    0 =

    0,0,1

    C

    P

    P3 2 2 3

    2 2

    2 2

    3

    3 3

    3 6 3

    2 3

    Ax Bx y Cxy Dy

    Ex w Fxyw Gy w

    Hxw Jyw

    Kw

    + + +

    + + + =

    + + +

    P

    H=J=K=0

    Node at origin

    3 2 2 3

    2 2

    3 3

    3 2

    Ax Bx y Cxy Dyw

    Ex Fxy Gy

    + + +=

    - + +

  • Parametrizable Cubics

    C

    P

    P3 2 2 3

    2 2

    2 2

    3

    3 3

    3 6 3

    3 3

    Ax Bx y Cxy Dy

    Ex w Fxyw Gy w

    Hxw Jyw

    Kw

    + + +

    + + + =

    + + +

    P

    3 2 2 3

    2 2

    3 3

    3 2

    Ax Bx y Cxy Dyx y w x y

    Ex Fxy Gy

    + + + =

    - + +

    3 2 2 2 2 3 3 2 2 33 6 3 , 3 6 3 , 3 3

    x y w

    Ex Fx y Gxy Ex y Fxy Gy Ax Bx y Cxy Dy

    =

    - - - - - - + + +

    Parametrizable only if has Node

  • Tangent to Parametric Cubic Curve

    t

    Cp

    t

    t

    t

    Cp

    u

    t

    t

    Cp

    t

    t

    t

    Cp

    u

    t

    T =t

    Cp

    t

    t

    t

    Cpu

    t

    = - 1/2

  • Inflection point

    Cpt

    t

    t

    Cpt

    t

    u

    Cpu

    t

    u

    positionFirst

    derivative

    Second

    derivative

    Cpt

    t

    tCp

    t

    t

    u

    Cp

    u

    t

    u

    = 0 Cpt

    t

    Cp

    t

    Cp

    =

    u

    t

    t

    u

    t

    u

    =

    t

    u

    -

    t

    u

    t

    u

  • Inflection point

    Cp

    pi

    pi

    pi

    Cp

    Cp

    = G

    pi

    pi

    pi

    = 0

    G is Type 111 1

    Type 11

    Type 12

    Type 3?

  • Inflection points are colinear

    Cp

    pi

    pi

    pi

    Cp

    Cp

    = 0 = Cp

    pi

    pi

    pi

    Cp

    Cp

    K

    KK

    =

    Cp

    Cp

    K

  • Double Points

    Cp

    Cp

    Cp=

    pi

    pi

    piCp

    pi

    pi

    pi

    Cp

    Cp

    =G

    pi

    pi

    pi

    = G GH

    Parameters at double point are roots of Hessian(G)

  • Implicitization of Parametric Quad,Cubic

    QpQp

    Qp Qp

    p p

    CD

    CD

    CD

    CD

    CD

    CD

    CD

    CD

    CD

    CD

    CD

    CD

    +36+36

    p

    p

    pp

    p

    p

    CP

    CP

    CP

    CP

    CP

    CP

    CP

    CP

    CP

    CP

    CP

    CP

    QR QR

    QR QR

    Quadratic

    Cubic

    P1 resultant P2 implicitization

  • Analyzing Cubic Curves

    KL

    M

    N

    C

    LM

    N

    KK

    K+=

  • The Other Form of G

    Cp

    p

    p

    p

    A B B CA B B C A B B Cy y y yx x x x w w w w

    B C C D B C C D B C C Dx x x x y y y y w w w w

    t tt s

    s s

    =

    = x,y,wts3 4 CT

    3 2 2 33 3

    x y w

    x y w

    x y w

    x y w

    A A A

    B B Bt t s ts s

    C C C

    D D D

    =

    Cp

    Cp

    Cp

    = G

    A B B C

    B C C D

    =

    CT

    CT

    CT

    G=

    A

    B

    C

    D

    =

    det , det , det , det

    x y w x y w x y w x y w

    x y w x y w x y w x y w

    x y w x y w x y w x y w

    B B B A A A A A A A A A

    A C C C B C C C C B B B D B B B

    D D D D D D D D D C C C

    = = - = = -

  • x y

    w

    Forms and Singularities of Curve

    G is type 1

    11G is type 21G is type 111

    G is type 3

    xy w

    xy

    w

    x

    y

    w

    3 2 2 33 3

    x y w

    x y w

    x y w

    x y w

    A A A

    B B Bt t s ts s x y w

    C C C

    D D D

    =

    Look at plane in coefficient space containing x,y,w cubics