71
CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Embed Size (px)

Citation preview

Page 1: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

CS559: Computer Graphics

Lecture 12: OpenGL - TransformationLi Zhang

Spring 2008

Page 2: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Today• Finish transformation in OpenGL• Lighting

• Reading– Shirley, Ch 9.1, 9.2

Page 3: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Connecting primitives

glLoadIdentity();draw_block_A();glTranslate(0, h, 0);Draw_block_B();

glLoadIdentity();draw_block_A();glTranslate(0, h, 0);Draw_block_B();

glLoadIdentity();draw_block_A();glTranslate(0, h, 0);glRotate(-90, 0, 0, 1);Draw_block_B();

glLoadIdentity();draw_block_A();glTranslate(0, h, 0);glRotate(-90, 0, 0, 1);Draw_block_B();

A B

Page 4: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

3D Example: A robot arm• Consider this robot arm with 3 degrees of freedom:

– Base rotates about its vertical axis by – Upper arm rotates in its xy-plane by – Lower arm rotates in its xy-plane by

h1

h2h3

Base

Upper armLower arm

• Q: What matrix do we use to transform the base to the world?• R_y()

• Q: What matrix for the upper arm to the base?• T(0,h1,0)R_z()

• Q: What matrix for the lower arm to the upper arm?• T(0,h2,0)R_z()

z

x

y

x

y

x

Page 5: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Robot arm implementation• The robot arm can be displayed by keeping a global matrix and computing it at

each step:

Matrix M_model;

display(){

. . .

robot_arm();

. . .

}

robot_arm()

{

M_model = R_y(theta);

base();

M_model = R_y(theta)*T(0,h1,0)*R_z(phi);

upper_arm();

M_model = R_y(theta)*T(0,h1,0)*R_z(phi)*T(0,h2,0)*R_z(psi);

lower_arm();

}

Matrix M_model;

display(){

. . .

robot_arm();

. . .

}

robot_arm()

{

M_model = R_y(theta);

base();

M_model = R_y(theta)*T(0,h1,0)*R_z(phi);

upper_arm();

M_model = R_y(theta)*T(0,h1,0)*R_z(phi)*T(0,h2,0)*R_z(psi);

lower_arm();

}

Do the matrix computations seem wasteful?How to translate the whole robot?

• Q: What matrix do we use to transform the base to the world?• R_y()

• Q: What matrix for the upper arm to the base?• T(0,h1,0)R_z()

• Q: What matrix for the lower arm to the upper arm?• T(0,h2,0)R_z()

• Q: What matrix do we use to transform the base to the world?• R_y()

• Q: What matrix for the upper arm to the base?• T(0,h1,0)R_z()

• Q: What matrix for the lower arm to the upper arm?• T(0,h2,0)R_z()

Page 6: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

• Instead of recalculating the global matrix each time, we can just update it in place by concatenating matrices on the right:

Robot arm implementation, better

Matrix M_model;

display(){

. . .

M_model = identity;

robot_arm();

. . .

}

robot_arm()

{

M_model *= R_y(theta);

base();

M_model *= T(0,h1,0)*R_z(phi);

upper_arm();

M_model *= T(0,h2,0)*R_z(psi);

lower_arm();

}

Matrix M_model;

display(){

. . .

M_model = identity;

robot_arm();

. . .

}

robot_arm()

{

M_model *= R_y(theta);

base();

M_model *= T(0,h1,0)*R_z(phi);

upper_arm();

M_model *= T(0,h2,0)*R_z(psi);

lower_arm();

}

Page 7: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

• OpenGL maintains the model-view matrix, as a global state variable which is updated by concatenating matrices on the right.

display()

{

. . .

glMatrixMode( GL_MODELVIEW );

glLoadIdentity();

robot_arm();

. . .

}

robot_arm()

{

glRotatef( theta, 0.0, 1.0, 0.0 );

base();

glTranslatef( 0.0, h1, 0.0 );

glRotatef( phi, 0.0, 0.0, 1.0 );

lower_arm();

glTranslatef( 0.0, h2, 0.0 );

glRotatef( psi, 0.0, 0.0, 1.0 );

upper_arm();

}

display()

{

. . .

glMatrixMode( GL_MODELVIEW );

glLoadIdentity();

robot_arm();

. . .

}

robot_arm()

{

glRotatef( theta, 0.0, 1.0, 0.0 );

base();

glTranslatef( 0.0, h1, 0.0 );

glRotatef( phi, 0.0, 0.0, 1.0 );

lower_arm();

glTranslatef( 0.0, h2, 0.0 );

glRotatef( psi, 0.0, 0.0, 1.0 );

upper_arm();

}

Robot arm implementation, OpenGL

Page 8: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Hierarchical modeling

• Hierarchical models can be composed of instances using trees:

– edges contain geometric transformations– nodes contain geometry (and possibly drawing

attributes)

How might we draw the tree for the robot arm?

Page 9: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

A complex example: human figure

• Q: What’s the most sensible way to traverse this tree?

Page 10: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Human figure implementation, OpenGLfigure()

{

torso();

glPushMatrix();

glTranslate( ... );

glRotate( ... );

head();

glPopMatrix();

glPushMatrix();

glTranslate( ... );

glRotate( ... );

left_upper_arm();

glPushMatrix();

glTranslate( ... );

glRotate( ... );

left_lower_arm();

glPopMatrix();

glPopMatrix();

. . .

}

figure()

{

torso();

glPushMatrix();

glTranslate( ... );

glRotate( ... );

head();

glPopMatrix();

glPushMatrix();

glTranslate( ... );

glRotate( ... );

left_upper_arm();

glPushMatrix();

glTranslate( ... );

glRotate( ... );

left_lower_arm();

glPopMatrix();

glPopMatrix();

. . .

}

Page 11: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

So far…• We’ve talked exclusively about geometry.

– What is the shape of an object?• glBegin() … glEnd()

– How do I place it in a virtual 3D space?• glMatrixMode() …

– How to change viewpoints• gluLookAt()

– How do I know which pixels it covers?• Rasterization

– How do I know which of the pixels I should actually draw?

• Z-buffer, BSP

Page 12: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

So far

glColor(…);

Apply_transforms();

Draw_objects();

glColor(…);

Apply_transforms();

Draw_objects();

Lit surfaceFlat shaded

Page 13: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Next…• Once we know geometry, we have to ask one

more important question:– To what value do I set each pixel?

• Answering this question is the job of the shading model.

• Other names:– Lighting model– Light reflection model– Local illumination model– Reflectance model– BRDF

Page 14: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

An abundance of photons• Properly determining the right color is really

hard.

Particle Scattering

Page 15: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

An abundance of photons• Properly determining the right color is really

hard.

Translucency

Page 16: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

An abundance of photons• Properly determining the right color is really

hard.

Refraction

Page 17: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

An abundance of photons• Properly determining the right color is really

hard.

Global Effect

Page 18: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Our problem• We’re going to build up to an approximation of

reality called the Phong illumination model.• It has the following characteristics:

– not physically based– gives a “first-order” approximation to physical light

reflection– very fast– widely used

• In addition, we will assume local illumination, i.e., light goes: light source -> surface -> viewer.

• No interreflections, no shadows.

Page 19: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Setup…

• Given:– a point P on a surface visible through pixel p– The normal N at P– The lighting direction, L, and intensity, L,at P– The viewing direction, V, at P– The shading coefficients at P

• Compute the color, I, of pixel p.• Assume that the direction vectors are normalized:

N L V 1

Page 20: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

“Iteration zero”• The simplest thing you can do is…• Assign each polygon a single color:

• where– I is the resulting intensity– ke is the emissivity or intrinsic shade associated with

the object

• This has some special-purpose uses, but not really good for drawing a scene.

eI = k

Page 21: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

“Iteration one”• Let’s make the color at least dependent on the

overall quantity of light available in the scene:

– ka is the ambient reflection coefficient.

• really the reflectance of ambient light• “ambient” light is assumed to be equal in all directions

– La is the ambient light intensity.

• Physically, what is “ambient” light?

e a aI k k L

Page 22: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Ambient Term• Hack to simulate multiple bounces, scattering of

light• Assume light equally from all directions

Slide from Ravi Ramamoorthi

Page 23: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Wavelength dependence• Really, ke, ka, and La are functions over all wavelengths .

• Ideally, we would do the calculation on these functions. For the ambient shading equation, we would start with:

• then we would find good RGB values to represent the spectrum I().

• Traditionally, though, ka and Ia are represented as RGB triples, and the computation is performed on each color channel separately:

a aI = k L( ) ( ) ( )

R a,R a,R

G a,G a,G

B a,B a,B

I = k L

I = k L

I = k L

Page 24: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Diffuse reflection

• So far, objects are uniformly lit.– not the way things really appear– in reality, light sources are localized in position or

direction

• Diffuse, or Lambertian reflection will allow reflected intensity to vary with the direction of the light.

e a aI k k L

Page 25: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Diffuse reflectors• Diffuse reflection occurs from dull, matte

surfaces, like latex paint, or chalk.• These diffuse or Lambertian reflectors

reradiate light equally in all directions.

Page 26: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Diffuse reflectors• Diffuse reflection occurs from dull, matte surfaces, like latex

paint, or chalk.• These diffuse or Lambertian reflectors reradiate light equally

in all directions.• Picture a rough surface with lots of tiny microfacets.

Page 27: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Diffuse reflectors• …or picture a surface with little pigment particles

embedded beneath the surface (neglect reflection at the surface for the moment):

• The microfacets and pigments distribute light rays in all directions.

• Embedded pigments are responsible for the coloration of diffusely reflected light in plastics and paints.

• Note: the figures above are intuitive, but not strictly (physically) correct.

Page 28: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Diffuse reflectors, cont.• The reflected intensity from a diffuse surface does not

depend on the direction of the viewer. The incoming light, though, does depend on the direction of the light source:

Page 29: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

“Iteration two”• The incoming energy is proportional to cos ,

giving the diffuse reflection equations:

• where:– kd is the diffuse reflection coefficient

– Ld is the intensity of the light source

– N is the normal to the surface (unit vector)– L is the direction to the light source (unit vector)

)( NL LkLkkI daae

),0max( NL LkLkk daae

Page 30: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Specular reflection

• Specular reflection accounts for the highlight that you see on some objects.

• It is particularly important for smooth, shiny surfaces, such as:– Metal, polished stone, plastics, apples, Skin

Page 31: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Specular reflection• Properties:

– Specular reflection depends on the viewing direction V.

– For non-metals, the color is determined solely by the color of the light.

– For metals, the color may be altered (e.g., brass)

Page 32: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Specular reflection “derivation”

• For a perfect mirror reflector, light is reflected about N, so

• For a near-perfect reflector, you might expect the highlight to fall off quickly with increasing angle .

• Also known as:– “rough specular” reflection– “directional diffuse” reflection– “glossy” reflection

if

0 otherwise

LI

V R

Page 33: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Derivation, cont.

• One way to get this effect is to take (R·V), raised to a power ns.

• As ns gets larger,– the dropoff becomes {more,less} gradual– gives a {larger,smaller} highlight– simulates a {more,less} mirror-like surface

Page 34: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

“Iteration three”• The next update to the Phong shading model is

then:

• where:– ks is the specular reflection coefficient

– ns is the specular exponent or shininess

– R is the reflection of the light about the normal (unit vector)

– V is viewing direction (unit vector)

L L se a a d + s +

nI = k + k I + k + k( ) ( )N L V R

Page 35: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Specular Reflection Improvement

• Compute based on normal vector and “halfway” vector, H– Always positive when the light and eye are above the

tangent plane– Not quite the same result as the other formulation

(need 2H)

p

s Lk )(

/

NH

VLVLH

L VNH

Page 36: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Putting It Together

• Just sum all the terms• If there are multiple lights, sum contributions from each light• Several variations, and approximations …

psdaae kkLLkkI )()( NHNL

Page 37: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Lights• OpenGL supports three different kinds of lights:

ambient, directional, and point. Spot lights are also supported as a special form of point light.

• We’ve seen ambient light sources, which are not really geometric.

• Directional light sources have a single direction and intensity associated with them.

Page 38: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Point lights• The direction of a point light sources is determined by

the vector from the light position to the surface point.

• Physics tells us the intensity must drop off inversely with the square of the distance:

• Sometimes, this distance-squared dropoff is considered too “harsh.” A common alternative is:

• with user-supplied constants for a, b, and c.

E-PL=

E-P

d=E-P

2a+ bd + cdatten1

f

2datten1

f

Page 39: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Spotlights• OpenGL also allows one to apply a directional

attenuation of a point light source, giving a spotlight effect.

• The spotlight intensity factor is computed in OpenGL as:

• where– L is the direction to the point light.– S is the center direction of the spotlight.– is the cutoff angle for the spotlight– e is the angular falloff coefficient–

f =spot

eL S

max acos , 0e ex x

Page 40: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

“Iteration four”• Since light is additive, we can handle multiple lights by

taking the sum over every light.• Our equation is now:

• This is the Phong illumination model.• Which quantities are spatial vectors?

• Which are RGB triples?

• Which are scalars?

jj j

j

eL S

s

e a a

n

j d j s j2 + +j j j j j j

I = k + k L +

L k + ka + b d + c d

N L V R

Page 41: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Choosing the parameters• Experiment with different parameter settings. To get you started, here are a

few suggestions:– Try ns in the range [0,100]

– Try ka + kd + ks < 1

– Use a small ka (~0.1)

ns kd ks

Metal largeSmall, color of metal

Large, color of metal

Plastic mediumMedium, color of plastic

Medium, white

Planet 0 varying 0

Page 42: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Materials in OpenGL• The OpenGL code to specify the surface shading

properties is fairly straightforward. For example:GLfloat ke[] = { 0.1, 0.15, 0.05, 1.0 };GLfloat ka[] = { 0.1, 0.15, 0.1, 1.0 };GLfloat kd[] = { 0.3, 0.3, 0.2, 1.0 };GLfloat ks[] = { 0.2, 0.2, 0.2, 1.0 };GLfloat ns[] = { 50.0 };glMaterialfv(GL_FRONT, GL_EMISSION, ke); glMaterialfv(GL_FRONT, GL_AMBIENT, ka); glMaterialfv(GL_FRONT, GL_DIFFUSE, kd); glMaterialfv(GL_FRONT, GL_SPECULAR, ks); glMaterialfv(GL_FRONT, GL_SHININESS, ns);

• Notes: – The GL_FRONT parameter tells OpenGL that we are

specifiying the materials for the front of the surface. – Only the alpha value of the diffuse color is used for

blending. It’s usually set to 1.

Page 43: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Shading in OpenGL• The OpenGL lighting model allows you to associate

different lighting colors according to material properites they will influence.

• Thus, our original shading equation:

• becomes:

• where you can have a global ambient light with intensity La in addition to having an ambient light intensity La j associated with each individual light.

s

e a a

na a j d d j j + s s j j +2

j j j j j j

I = k + k L +

k L + k L + k La + b d + c d

N L V R

jj j

j

eL S

( ) ( )

jj j

j

eL S

s

e a a

n

j d j s j2 + +j j j j j j

I = k + k L +

L k + ka + b d + c d

N L V R

Page 44: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

BRDF• The Phong illumination model is really a function that

maps light from incoming (light) directions in to outgoing (viewing) directions out:

• This function is called the Bi-directional Reflectance Distribution Function (BRDF).

• Here’s a plot with in held constant:

• BRDF’s can be quite sophisticated…

( , )outinrf

( , )outinrf in

Page 45: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

BRDF measurement

Stanford Graphics Lab

Page 46: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

More sophisticated BRDF’s

Westin, Arvo, Torrance 1992

Cook and Torrance, 1982

Page 47: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Gouraud vs. Phong interpolation• Now we know how to compute the color at a

point on a surface using the Phong lighting model.

• Does graphics hardware do this calculation at every point? Typically not (although this is changing)…

• Smooth surfaces are often approximated by polygonal facets. So How do we compute the shading for such a surface?

Page 48: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Faceted shading• Assume each face has a constant normal:

• If we have constant material properties over the surface, how will the color of each triangle vary?

• Result: faceted, not smooth, appearance.

Page 49: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Faceted shading (cont’d)

Page 50: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Gouraud interpolation• To get a smoother result that is easily performed in hardware,

we can do Gouraud interpolation.• Here’s how it works:

1. Compute normals at the vertices.2. Shade only the vertices.3. Interpolate the resulting vertex colors.

Page 51: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Facted shading vs. Gouraud interpolation

Page 52: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Gouraud interpolation artifacts• Gouraud interpolation has significant limitations.

– If the polygonal approximation is too coarse, we can miss specular highlights.

Page 53: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Phong interpolation• To get an even smoother result with fewer

artifacts, we can perform Phong interpolation.• Here’s how it works:

1. Compute normals at the vertices.2. Interpolate normals and normalize.3. Shade using the interpolated normals.

Page 54: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Gouraud vs. Phong interpolation

Page 55: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Define a light in OpenGL

GLfloat light_ambient[] = { 0.0, 0.0, 0.0, 1.0 }; GLfloat light_diffuse[] = { 1.0, 1.0, 1.0, 1.0 }; GLfloat light_specular[] = { 1.0, 1.0, 1.0, 1.0 }; GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 }; glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient); glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse); glLightfv(GL_LIGHT0, GL_SPECULAR, light_specular); glLightfv(GL_LIGHT0, GL_POSITION, light_position);

GLfloat light_ambient[] = { 0.0, 0.0, 0.0, 1.0 }; GLfloat light_diffuse[] = { 1.0, 1.0, 1.0, 1.0 }; GLfloat light_specular[] = { 1.0, 1.0, 1.0, 1.0 }; GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 }; glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient); glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse); glLightfv(GL_LIGHT0, GL_SPECULAR, light_specular); glLightfv(GL_LIGHT0, GL_POSITION, light_position);

Page 56: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Light.c

void init(void) { GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 }; GLfloat mat_shininess[] = { 50.0 }; GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 }; glClearColor (0.0, 0.0, 0.0, 0.0); glShadeModel (GL_SMOOTH); glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess); glLightfv(GL_LIGHT0, GL_POSITION, light_position); glEnable(GL_LIGHTING); glEnable(GL_LIGHT0); glEnable(GL_DEPTH_TEST);

}

void init(void) { GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 }; GLfloat mat_shininess[] = { 50.0 }; GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 }; glClearColor (0.0, 0.0, 0.0, 0.0); glShadeModel (GL_SMOOTH); glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess); glLightfv(GL_LIGHT0, GL_POSITION, light_position); glEnable(GL_LIGHTING); glEnable(GL_LIGHT0); glEnable(GL_DEPTH_TEST);

}

void display(void) { glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glutSolidSphere (1.0, 20, 16); glFlush ();

}

void display(void) { glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glutSolidSphere (1.0, 20, 16); glFlush ();

}

Page 57: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Light.c

Page 58: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Demo

Page 59: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Complex lighting• How to have multiple lights?• How to change lighting positions?• How to change color material?

Page 60: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Multiple lights

GLfloat light1_ambient[] = { 0.2, 0.2, 0.2, 1.0 }; GLfloat light1_diffuse[] = { 1.0, 1.0, 1.0, 1.0 }; GLfloat light1_specular[] = { 1.0, 1.0, 1.0, 1.0 }; GLfloat light1_position[] = { -2.0, 2.0, 1.0, 1.0 }; GLfloat spot_direction[] = { -1.0, -1.0, 0.0 }; glLightfv(GL_LIGHT1, GL_AMBIENT, light1_ambient); glLightfv(GL_LIGHT1, GL_DIFFUSE, light1_diffuse); glLightfv(GL_LIGHT1, GL_SPECULAR, light1_specular); glLightfv(GL_LIGHT1, GL_POSITION, light1_position); glLightf(GL_LIGHT1, GL_CONSTANT_ATTENUATION, 1.5); glLightf(GL_LIGHT1, GL_LINEAR_ATTENUATION, 0.5); glLightf(GL_LIGHT1, GL_QUADRATIC_ATTENUATION, 0.2); glLightf(GL_LIGHT1, GL_SPOT_CUTOFF, 45.0); glLightfv(GL_LIGHT1, GL_SPOT_DIRECTION, spot_direction); glLightf(GL_LIGHT1, GL_SPOT_EXPONENT, 2.0); glEnable(GL_LIGHT1);

GLfloat light1_ambient[] = { 0.2, 0.2, 0.2, 1.0 }; GLfloat light1_diffuse[] = { 1.0, 1.0, 1.0, 1.0 }; GLfloat light1_specular[] = { 1.0, 1.0, 1.0, 1.0 }; GLfloat light1_position[] = { -2.0, 2.0, 1.0, 1.0 }; GLfloat spot_direction[] = { -1.0, -1.0, 0.0 }; glLightfv(GL_LIGHT1, GL_AMBIENT, light1_ambient); glLightfv(GL_LIGHT1, GL_DIFFUSE, light1_diffuse); glLightfv(GL_LIGHT1, GL_SPECULAR, light1_specular); glLightfv(GL_LIGHT1, GL_POSITION, light1_position); glLightf(GL_LIGHT1, GL_CONSTANT_ATTENUATION, 1.5); glLightf(GL_LIGHT1, GL_LINEAR_ATTENUATION, 0.5); glLightf(GL_LIGHT1, GL_QUADRATIC_ATTENUATION, 0.2); glLightf(GL_LIGHT1, GL_SPOT_CUTOFF, 45.0); glLightfv(GL_LIGHT1, GL_SPOT_DIRECTION, spot_direction); glLightf(GL_LIGHT1, GL_SPOT_EXPONENT, 2.0); glEnable(GL_LIGHT1);

Page 61: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Moving light source

• Method 1: – Use glLightfv(GL_LIGHT1, GL_POSITION, light1_position);

• Method 2:– Use transformation

Page 62: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Moving a light source• Use glLightfv(GL_LIGHT1, GL_POSITION, light1_position);

Page 63: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Moving light source

static GLdouble spin; void display(void) {

GLfloat light_position[] = { 0.0, 0.0, 1.5, 1.0 }; glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glPushMatrix();

gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0); glPushMatrix();

glRotated(spin, 1.0, 0.0, 0.0); glLightfv(GL_LIGHT0, GL_POSITION, light_position);

glPopMatrix(); glutSolidTorus (0.275, 0.85, 8, 15);

glPopMatrix(); glFlush();

}

static GLdouble spin; void display(void) {

GLfloat light_position[] = { 0.0, 0.0, 1.5, 1.0 }; glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glPushMatrix();

gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0); glPushMatrix();

glRotated(spin, 1.0, 0.0, 0.0); glLightfv(GL_LIGHT0, GL_POSITION, light_position);

glPopMatrix(); glutSolidTorus (0.275, 0.85, 8, 15);

glPopMatrix(); glFlush();

}

Page 64: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

• Rotating a light source demo.

Page 65: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

glColorMaterial

glEnable(GL_COLOR_MATERIAL);

glColorMaterial(GL_FRONT, GL_DIFFUSE); /* now glColor* changes diffuse reflection */ glColor3f(0.2, 0.5, 0.8); /* draw some objects here */

glColorMaterial(GL_FRONT, GL_SPECULAR); /* glColor* no longer changes diffuse reflection */ /* now glColor* changes specular reflection */ glColor3f(0.9, 0.0, 0.2);

/* draw other objects here */ glDisable(GL_COLOR_MATERIAL);

glEnable(GL_COLOR_MATERIAL);

glColorMaterial(GL_FRONT, GL_DIFFUSE); /* now glColor* changes diffuse reflection */ glColor3f(0.2, 0.5, 0.8); /* draw some objects here */

glColorMaterial(GL_FRONT, GL_SPECULAR); /* glColor* no longer changes diffuse reflection */ /* now glColor* changes specular reflection */ glColor3f(0.9, 0.0, 0.2);

/* draw other objects here */ glDisable(GL_COLOR_MATERIAL);

Page 66: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

glColorMaterial• Demo

Page 67: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

glColorMaterialvoid mouse(int button, int state, int x, int y) { switch (button) {

case GLUT_LEFT_BUTTON: if (state == GLUT_DOWN) {

/* change red */ diffuseMaterial[0] += 0.1; if (diffuseMaterial[0] > 1.0) diffuseMaterial[0] = 0.0; glColor4fv(diffuseMaterial); glutPostRedisplay();

} break;

case GLUT_MIDDLE_BUTTON: if (state == GLUT_DOWN) {

/* change green */ diffuseMaterial[1] += 0.1; if (diffuseMaterial[1] > 1.0) diffuseMaterial[1] = 0.0; glColor4fv(diffuseMaterial); glutPostRedisplay();

} break;

case GLUT_RIGHT_BUTTON: if (state == GLUT_DOWN) {

/* change blue */ diffuseMaterial[2] += 0.1; if (diffuseMaterial[2] > 1.0) diffuseMaterial[2] = 0.0; glColor4fv(diffuseMaterial); glutPostRedisplay();

} break;

default: break;

} }

void mouse(int button, int state, int x, int y) { switch (button) {

case GLUT_LEFT_BUTTON: if (state == GLUT_DOWN) {

/* change red */ diffuseMaterial[0] += 0.1; if (diffuseMaterial[0] > 1.0) diffuseMaterial[0] = 0.0; glColor4fv(diffuseMaterial); glutPostRedisplay();

} break;

case GLUT_MIDDLE_BUTTON: if (state == GLUT_DOWN) {

/* change green */ diffuseMaterial[1] += 0.1; if (diffuseMaterial[1] > 1.0) diffuseMaterial[1] = 0.0; glColor4fv(diffuseMaterial); glutPostRedisplay();

} break;

case GLUT_RIGHT_BUTTON: if (state == GLUT_DOWN) {

/* change blue */ diffuseMaterial[2] += 0.1; if (diffuseMaterial[2] > 1.0) diffuseMaterial[2] = 0.0; glColor4fv(diffuseMaterial); glutPostRedisplay();

} break;

default: break;

} }

Page 68: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Shading in OpenGL, cont’dNotes:

You can have as many as GL_MAX_LIGHTS lights in a scene. This number is system-dependent.

For directional lights, you specify a light direction, not position, and the attenuation and spotlight terms are ignored.

The directions of directional lights and spotlights are specified in the coordinate systems of the lights, not the surface points as we’ve been doing in lecture.

Page 69: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Compute vertex normals

Page 70: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008
Page 71: CS559: Computer Graphics Lecture 12: OpenGL - Transformation Li Zhang Spring 2008

Stationary Light• We know how to