14
CS-321 Dr. Mark L. Hornick 1 Graphics Display Hardware Display technologies CRT LCD Storage tube Drawing methods Vector Raster Architecture

CS-321 Dr. Mark L. Hornick 1 Graphics Display Hardware Display technologies CRT LCD Storage tube Drawing methods Vector Raster Architecture

Embed Size (px)

Citation preview

Page 1: CS-321 Dr. Mark L. Hornick 1 Graphics Display Hardware Display technologies CRT LCD Storage tube Drawing methods Vector Raster Architecture

CS-321Dr. Mark L. Hornick

1

Graphics Display Hardware

Display technologies CRT LCD Storage tube

Drawing methods Vector Raster

Architecture

Page 2: CS-321 Dr. Mark L. Hornick 1 Graphics Display Hardware Display technologies CRT LCD Storage tube Drawing methods Vector Raster Architecture

CS-321Dr. Mark L. Hornick

2

Sketchpad 1962 @ MIT Light pen Powered by

“Whirlwind”, MIT’s prototype of the 1st interactive computer

Req’d high bandwidth Vector display Monochromatic

Page 3: CS-321 Dr. Mark L. Hornick 1 Graphics Display Hardware Display technologies CRT LCD Storage tube Drawing methods Vector Raster Architecture

CS-321Dr. Mark L. Hornick

3

“Modern” Cathode Ray Tube (CRT)

Quasi-spherical screen

Phosphorescence period = 1/30 s to 1/60 s

Page 4: CS-321 Dr. Mark L. Hornick 1 Graphics Display Hardware Display technologies CRT LCD Storage tube Drawing methods Vector Raster Architecture

CS-321Dr. Mark L. Hornick

4

CRT – Sony Trinitron

Slotted shadow mask Curvilinear screen Larger holes -- brighter image

Page 5: CS-321 Dr. Mark L. Hornick 1 Graphics Display Hardware Display technologies CRT LCD Storage tube Drawing methods Vector Raster Architecture

CS-321Dr. Mark L. Hornick

5

Vector Scanning• Electron beam can be arbitrarily directed• Number of displayable vectors is finite• Non-standard drive electronics

Page 6: CS-321 Dr. Mark L. Hornick 1 Graphics Display Hardware Display technologies CRT LCD Storage tube Drawing methods Vector Raster Architecture

CS-321Dr. Mark L. Hornick

6

1200-9600 baud serial

Begin

COLOR(a)MOVE(ix,iy)DRAW(ix,iy)

COLOR(b)DRAW(…)

End

Early hi-performance displays

MinicomputerDisplay Processor

Page 7: CS-321 Dr. Mark L. Hornick 1 Graphics Display Hardware Display technologies CRT LCD Storage tube Drawing methods Vector Raster Architecture

CS-321Dr. Mark L. Hornick

7

Page 8: CS-321 Dr. Mark L. Hornick 1 Graphics Display Hardware Display technologies CRT LCD Storage tube Drawing methods Vector Raster Architecture

CS-321Dr. Mark L. Hornick

8

TektronixVector Display

T4010 512 x 512 ~$8,000

T4014 4096 x 3172 ~$18,000

PersistentStorage Phosphor

No digital memory

Page 9: CS-321 Dr. Mark L. Hornick 1 Graphics Display Hardware Display technologies CRT LCD Storage tube Drawing methods Vector Raster Architecture

CS-321Dr. Mark L. Hornick

9

Direct View Storage Tube

Two electron guns Primary electron gun draws the picture by knocking out electrons from the storage

grid, producing a positively charged pattern. Low speed electrons from the flood gun are attracted to the storage grid, and pass

through the positively charge pattern spots (past the collector grid) to hit the screen.

Once a picture is drawn it stays until erased by putting a charge over all of the storage grid so that the electrons hit all of the screen (producing a green flash on a green screen monitor).

Much cheaper then a regular random scan system did not require a built in CPU host computer was used to draw the image once

Page 10: CS-321 Dr. Mark L. Hornick 1 Graphics Display Hardware Display technologies CRT LCD Storage tube Drawing methods Vector Raster Architecture

CS-321Dr. Mark L. Hornick

10

1200-9600 baud serial

MOVE(ix,iy)DRAW(ix,iy)POINT(ix,iy)DASH(ix,iy,idash)

Page 11: CS-321 Dr. Mark L. Hornick 1 Graphics Display Hardware Display technologies CRT LCD Storage tube Drawing methods Vector Raster Architecture

CS-321Dr. Mark L. Hornick

11Circa 1981

Page 12: CS-321 Dr. Mark L. Hornick 1 Graphics Display Hardware Display technologies CRT LCD Storage tube Drawing methods Vector Raster Architecture

CS-321Dr. Mark L. Hornick

12

Raster Scanning

Page 13: CS-321 Dr. Mark L. Hornick 1 Graphics Display Hardware Display technologies CRT LCD Storage tube Drawing methods Vector Raster Architecture

CS-321Dr. Mark L. Hornick

13

Video Display

Video graphics adapter Television monitor

Page 14: CS-321 Dr. Mark L. Hornick 1 Graphics Display Hardware Display technologies CRT LCD Storage tube Drawing methods Vector Raster Architecture

CS-321Dr. Mark L. Hornick

14

Early graphics adapters

Bus

CPUSystemMemory

Scan Converter

video, vga

Frame buffer

Pixel construction

• CPU constructs “virtual image” in System Memory • Scan converter reads virtual image and converts to video or vga signals