Crystalstructures 141008215641 Conversion Gate02

Embed Size (px)

Citation preview

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    1/69

    CRYSTAL STRUCTURES

    UNIT-I

    Hari Prasad

    Hari PrasadAssistantProfessor

    MVJCE-Bangalore

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    2/69

    Learning objectives

    • After the chapter is completed, you will be able toanswer:

    • Difference between crystalline and noncrystalline

    structures• Different crystal systems and crystal structures

    • Atomic packing factors of different cubic crystalsystems

    • Difference between unit cell and primitive cell

    • Difference between single crystals and polycrystals

    Hari Prasad

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    3/69

    What is space lattice?

    • Space lattice is the distribution of points in3D in such a way that every point hasidentical surroundings, i.e., it is an infinitearray of points in three dimensions inwhich every point has surroundingsidentical to every other point in the array.

    Hari Prasad

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    4/69

    Common materials: with various ‘viewpoints’ 

    Glass: amorphous

    Ceramics

    Crystal

    Graphite

    PolymersMetals

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    5/69

    Metals and alloys Cu, Ni, Fe, NiAl (intermetallic compound), Brass (Cu-Zn alloys)

    Ceramics (usually oides, nitrides, car!ides) Alumina (Al"#$), Zirconia (Zr "#$)

    Polymers (thermoplasts, thermosets) (%lastomers) Polythene, Poly&inyl chloride, Polypropylene

    Common materials: examples

    Based on %lectrical Conduction

    Conductors Cu, Al, NiAl

    'emiconductors Ge, 'i, GaAs

    nsulators Alumina, Polythene

    Based on *uctility

    *uctile Metals, Alloys

    Brittle Ceramics, nor+anic Glasses, Ge, 'i

    * some special polymers could be conducting 

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    6/69

    MA%A.' 'C%NC% / %NGN%%NG

    P01'CA. M%C0ANCA. %.%C#-

    C0%MCA.

    %C0N#.#GCA.

    • %tracti&e• Castin+• Metal Formin+• 2eldin+• Po3der Metallur+y

    • Machinin+

    • 'tructure• Physical

      Properties

    Science of Metallurgy

    • *e4ormation

      Beha&iour 

    • hermodynamics• Chemistry• Corrosion

    he !road scienti4ic and technolo+ical se+ments o4 Materials 'cience are sho3n

    in the dia+ram !elo35

    o +ain a comprehensi&e understandin+ o4 materials science, all these aspects

    ha&e to !e studied5

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    7/69

    Lattice  the underlying periodicity of the crystal

    Basis  Entityassociated with each lattice points

    Lattice  how to repeat

    Motif  what to repeat

    Crystal =Lattice +

    MotifMotif orBasis:typically an atom or a group of atoms associated with each lattice point

    Definition 1

    Translationally periodicarrangement ofmotifs

    Crystal

    Translationally periodicarrangement ofpoints

    Lattice

    http://var/www/apps/conversion/tmp/scratch_6/lattice.ppthttp://var/www/apps/conversion/tmp/scratch_6/Motifs.ppthttp://var/www/apps/conversion/tmp/scratch_6/Motifs.ppthttp://var/www/apps/conversion/tmp/scratch_6/Motifs.ppthttp://var/www/apps/conversion/tmp/scratch_6/Motifs.ppthttp://var/www/apps/conversion/tmp/scratch_6/lattice.ppt

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    8/69

    Hari Prasad

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    9/69

    An array of points such that every point has

    identical surroundings

    InEuclidean space ⇒

     infinite array

     We can have 1D, 2D or 3D arrays (lattices)

    Space Lattice

    Translationally periodic arrangement of points in space is called a lattice

    or

     A lattice is also called a Space Lattice

    http://var/www/apps/conversion/tmp/scratch_6/lattice.ppthttp://var/www/apps/conversion/tmp/scratch_6/space.ppthttp://var/www/apps/conversion/tmp/scratch_6/space.ppthttp://var/www/apps/conversion/tmp/scratch_6/lattice.ppt

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    10/69

    Unit cell:A unit cell is the sub-division of the space

    lattice that still retains the overall characteristics ofthe space lattice.

    Primitive cell:the smallest possible unit cell of a lattice,having lattice points at each of its eight vertices only.

    A primitive cell is a minimum volume cellcorresponding to a single lattice point of a structurewith translational symmetry in 2 dimensions, 3dimensions, or other dimensions.

    A lattice can be characterized by the geometry of its primitive cell.

    Hari Prasad

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    11/69

    ato!s "a#$ in "eriodi#% &' arra(s

    r(stalline !aterials)))

    -!etals-!an( #era!i#s-so!e "ol(!ers

    ato!s *a+e no "eriodi# "a#$ing

    on-#r(stalline !aterials)))

    -#o!"le, str#tres-ra"id #ooling

    #r(stalline Si./ 01art

    !or"*os4 5 Non#r(stalline

    Materials andPa#$ing

    Si .,(gen

    t("i#al of6

    o##rs for6

    non#r(stalline Si./ 07las

    Hari Prasad

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    12/69

    Cr(stal S(ste!s

      7 crystal systems

    14 crystal lattices

    Unit #ell6  smallest repetitive volumewhich contains the complete latticepattern of a crystal.

    a, b, and c are t*e latti#e #onstants

    Hari Prasad

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    13/69

    Hari Prasad

    The Unite Cell is the smallest group of atom showingthe characteristic lattice structure of a particular metal.It is the building block of a single crystal.A single crystal can have many unit cells.

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    14/69

    Crystal systemsCubic Three equal axes, mutually perpendicular  

    a=b=c α=β=γ =90˚

    Tetragnal Three perpendicular axes, nly t! equal

    a=b"c α=β=γ =90˚

    #exagnal Three equal cplanar axes at 1$0˚ and a %urth unequalaxis perpendicular t their plane

    a=b"c α=β= 90˚ γ =1$0˚

    &hmbhedral Three equal axes, nt at right angles

    a=b=c α=β=γ "90˚

    'rthrhmbic Three unequal axes, all perpendicular 

    a"b"c α=β=γ =90˚

    (nclinic Three unequal axes, ne % !hich is perpendicular t thether t!

    a"b"c α=γ =90˚" β

    Triclinic Three unequal axes, n t! % !hich are perpendicular 

    a"b"c α" β"γ "90˚Hari Prasad

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    15/69

    Hari Prasad

     Some engineering applications require

    single crystals:-dia!ond single  #r(stals for a8rasi+es  --tr8ine 8lades

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    16/69

    9*at is #oordination n!8er:

    • The coordination number   of a centralatom in a crystal is the number of itsnearest neighbours.

    9*at is latti#e "ara!eter:

    • The lattice constant , or lattice parameter , refers to the physicaldimension of unit cells in a crystal lattice.

    • Lattices  in three dimensions generallyhave three lattice constants, referred toas a, b, and c.

    Hari Prasad

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    17/69

    re de to lo; "a#$ing densit( 0onl( Po *as t*is str#tre3

    se-"a#$ed dire#tions are #8e edges)

    Coordination

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    18/69

    Hari Prasad

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    19/69

    Hari Prasad

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    20/69

    Hari Prasad

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    21/69

    ! Coordination " # $

    to!s to#* ea#* ot*er along #8e diagonals)Note6 All ato!s are identi#al> t*e #enter ato! is s*aded di?erentl( onl( for ease of +ie;ing)

    Bod( Centered C8i# Str#tre 0BCC3

    e,6 Cr% 9% @e 0 3% Tantal!% Mol(8den!

    / ato!snit #ell6 #enter D #orners , D

    Hari Prasad

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    22/69

    Hari Prasad

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    23/69

    Hari Prasad

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    24/69

    %tomic Pac&ing 'actor: CC

    a

    AP@ 5

    &

    π 0 &a 3&/

    ato!s

    nit #ell ato!

    +ol!e

    a&

    nit #ell

    +ol!e

    lengt* 5 R 5

    Close-"a#$ed dire#tions6

    & a

    P@ for a 8od(-#entered #8i# str#tre 5 F)=D

    aR

    a2

    a$

    Hari Prasad

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    25/69

    Coordination < 5 /

    to!s to#* ea#* ot*er along fa#e diagonals)

    ote6 All ato!s are identi#al> t*e fa#e-#entered ato!s are s*adi?erentl( onl( for ease of +ie;ing)

    @a#e Centered C8i# Str#tre 0@CC3

    e,6 Al% C% A% P8% Ni% Pt% Ag

    ato!snit #ell6 = fa#e , / D #orners , DHari Prasad

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    26/69

    Hari Prasad

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    27/69

    P@ for a fa#e-#entered #8i# str#tre 5 F)G

    Ato!i# Pa#$ing @a#tor6 @CC

    maximum achievable APF

    AP@ 5

    &π 0 /a3&

    ato!s

    nit #ell ato!+ol!e

    a&

    nit #ell

    +ol!e

    Close-"a#$ed dire#tions6

    lengt* 5 R 5 / a 

    Unit #ell #ontains6  = , / D , D

    5 ato!snit #ella

    $ a

    Hari Prasad

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    28/69

    A sites

    B B

    B

    BB

    B B

    Csites

    C C

    CA

    B

    Bsites

     ABCABC))) Sta#$ing Seen#e

     /' Proe#tion

    @CC Unit Cell

    @CC Sta#$ing Seen#e

    B B

    B

    BB

    B B

    Bsites

    C C

    CA

    C C

    CA

    A

    BC

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    29/69

     ) *

    + +

    CC

    =

    Putting atoms in the B position in the II layer and in C positions in the III layer we get

    a stacking sequence → ABC ABC ABC…. The CCP (CC! crystal

     )

    *C

     )

    *C

    C

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    30/69

    Coordination < 5 /

      ABAB))) Sta#$ing Seen#e

    AP@ 5 F)G

    &' Proe#tion /' Proe#tion

    He,agonal Close-Pa#$ed Str#tre 0HCP3

    6 atoms/unit cell

    ex: Cd, Mg, Ti, Zn

    ca 5 )=&&

    a

    A sites

    Bsites

    A sites Botto! la(er

    Middle la(er

    To"la(er

    Hari Prasad

    f

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    31/69

    APF for HCP

    Hari Prasad

    c

    a

    A sites

    B sites

    A sites

    C=1.633a

    Number of atoms in HCP unit cell=(12*1/6)+(2*1/2)+3=6atoms

    Vol.of HCP unit cell=area of the hexagonal face X height of the hexagonal

    Area of the hexagonal face=area of each triangle X6

    a

    ha

    Area of triangle =  Area of hexagon =

    Volume of HCP=

    APF=6

     

    a=2r

    APF =0.74

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    32/69

    SC-coordination number

    Hari Prasad

    6

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    33/69

    Hari Prasad

    •Coordination # = 6 (# nearest neighbors)

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    34/69

    BCC-coordination number

    Hari Prasad

    8

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    35/69

    Hari Prasad

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    36/69

    FCC-coordination number

    Hari Prasad

    4+4+4=12

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    37/69

    Hari Prasad

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    38/69

    HCP-coordination number

    Hari Prasad

    3+6+3=12

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    39/69

    T*eoreti#al 'ensit(% ρ

    ;*ere n 5 n!8er of ato!snit #ell   A 5 ato!i# ;eig*t

    V C 5 Vol!e of nit #ell 5 a& for

    #8i#  NA 5 A+ogadros n!8er 

    5 =)F/& , F/& ato!s!ol

    'ensit( 5 ρ  5

    V C  N 

    A

    n  Aρ  5

    CellUnitof Vol!eTotal

    CellUnitinAto!sof Mass

    Hari Prasad

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    40/69

    • E,6 Cr 0BCC3 A 5 K/)FF g!ol 

    R 5 F)/K n! 

    n 5 /

    ρ

    theoretical

    a = R  / ! = "#$%%& nm

    ρactual

    aR

    ρ 5a&

    K/)FF/

    ato!s

    nit #ell !ol

    g

    nit #ell

    +ol!e ato!s

    !ol

    =)F/& , F/&

    T*eoreti#al 'ensit(% ρ

    5 G)D g#!&

    5 G) g#!&

    Hari Prasad

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    41/69

    Pol(!or"*is!• T;o or !ore distin#t #r(stal str#tres

    for t*e sa!e !aterial0allotro"("ol(!or"*is!3 

    titani!

      % β-Ti

      #ar8on

    dia!ond% gra"*ite

    'CC

    FCC

    'CC

    ()!%*C

    (!+*C

     +($*C

    δ"Fe

    γ"Fe

     "Fe

    liuid

    iron s-stem

    Hari Prasad

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    42/69

    Miller indices

    Hari Prasad

    Miller indices: defined as the reciprocals of theintercepts made by the plane on thethree axes.

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    43/69

    Procedure for finding Miller indices

    Hari Prasad

    Determine theintercepts of the plane along the axesX,Y and Z in terms of thelattice constants a, b and c.

    Step 1 

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    44/69

    Hari Prasad

    Determine the

    reciprocals of thesenumbers.

    Step 2 

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    45/69

    Hari Prasad

    Find the least commondenominator (lcd)and multiply each bythislcd

    Step 3 

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    46/69

    Hari Prasad

    The result is written inparenthesis.

    This is called thèMillerIndices’ of the plane inthe form (h k l).

    Step 4 

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    47/69

     Find intercepts along axes → 2 3 1

     Take reciprocal → 1/2 1/3 1

     Convert to smallest integers in the same ratio → 3 2 6

     Enclose in parenthesis → (326)

    (2,0,0)

    (0,3,0)

    (0,0,1)

    #iller Indices $or planes

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    48/69

    Hari Prasad

    X

    Z

    Y

    Plane ABC has intercepts of2 unitsalong X-axis, 3 units along Y-axis and 2units along Z-axis.

    A

    C

    B

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    49/69

    Hari Prasad

     DETERMINATION OF ‘MILLER INDICES’ 

    Step 1:The intercepts are2, 3 and 2 on the threeaxes.

    Step 2:The reciprocals are1/2, 1/3 and 1/2.

    Step 3:The least common denominator is ‘6’.Multiplying each reciprocal by lcd,

      we get, 3,2 and 3.

    Step 4:HenceMiller indices for the plane ABC is (32 3)

    IMPORTANTFEATURESOFMILLERINDICES

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    50/69

    Hari Prasad

    For the cubic crystal especially, the important features ofMiller indices are, A plane which is parallel to any one of the co-ordinateaxes has an intercept of infinity (∞).

    Therefore the Miller index for that axis is zero; i.e. for anintercept at infinity, the corresponding index is zero.

    A plane passing through the origin is defined in termsof aparallel plane having non zero intercepts.

    Allequally spaced parallel planes have same ‘Millerindices’i.e. The Miller indices do not only define a

    particular plane but also a set of parallel planes. Thus the planes whose intercepts are 1, 1,1; 2,2,2; -3,-3,-3etc., are all represented by the same set of Miller indices.

    IMPORTANT FEATURES OF MILLER INDICES

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    51/69

    Hari Prasad

    Worked Example: Calculate the miller indices for the plane with intercepts 2a, - 3band 4c the along the crystallographic axes.

    The intercepts are 2, - 3 and 4

    Step 1:The intercepts are 2, -3 and 4 along the 3 axes

    Step 2: The reciprocals are

      Step 3: The least common denominator is 12.

    Multiplying each reciprocal by lcd, we get 6 -4 and 3

      Step 4: Hence the Miller indices for the plane is( )6 7 $

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    52/69

     Intercepts → 1 ∞   ∞  

     Plane → (100

     !amily → "100# → $

     Intercepts → 1 1 ∞  

     Plane → (110

     !amily → "110# → % 

     Intercepts → 1 1 1

     Plane → (111

     !amily → "111# → &

    (Octahedral plane)

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    53/69

    Hari Prasad

    Miller Indices : (100)

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    54/69

    Hari Prasad

    Intercepts :a ,a , ∞Fractional intercepts : 1 , 1 , ∞Miller Indices : (110)

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    55/69

    Hari Prasad

    Intercepts :a ,a ,a 

    Fractional intercepts : 1 , 1 , 1Miller Indices : (111)

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    56/69

    Hari Prasad

    Intercepts : ½a ,a , ∞Fractional intercepts : ½ , 1 , ∞Miller Indices : (210)

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    57/69

    Hari Prasad

    Z

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    58/69

    Hari Prasad

    (101)

    Z

    Y

    X

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    59/69

    Hari Prasad

    (122)

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    60/69

    Hari Prasad

    (211)

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    61/69

    Hari Prasad

    Crystallographic Directions

    The crystallographic directions are fictitious lineslinking nodes (atoms, ions or molecules) of acrystal.

    Similarly, the crystallographic planes arefictitious planes linking nodes.

    The length of the vector projection on each of the

    three axes is determined;these are measured interms of the unit cell dimensions a ,b ,and c.

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    62/69

    Hari Prasad

    To find the Miller indices of a direction,Choose a perpendicular plane to that direction.

    Find the Miller indices of that perpendicularplane.

    The perpendicular plane and the direction havethe same Miller indices value.

    Therefore, the Miller indices of theperpendicular plane is written within a squarebracket to represent the Miller indices of thedirection like [ ].

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    63/69

    Summary of notations

    SymbolAlternat

    e

    symbols

    Directio

    n

    [ ] [uvw] → Particular direction

    < > [[ ]] → Family of directions

    Plane( ) (hkl) → Particular plane

    { } {hkl} (( )) → Family of planes

    Point. . .xyz. [[ ]] → Particular point

    : : :xyz: → Family of point

    *A family is also referred to as a symmetrical set 

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    64/69

    Hari Prasad

    'or each of the three a*es+ there wille*ist both positive and negativecoordinates.

     ,hus negative indices are also possible+which are represented by a bar overthe appropriate inde*. 'or e*ample+ the-

    The above image shows [100], [110], and [111] directions within a

    unit cell

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    65/69

    Hari Prasad

    The vector, as drawn, passes through the origin of the coordinate system,and therefore no translation is necessary. Projections of this vector onto thex ,y , andzaxes are, respectively,1/2,b , and 0c , which become 1/2, 1, and 0 interms of the unit cell parameters (i.e., when thea ,b , andcare dropped).Reduction of these numbers to the lowest set of integers is accompanied bymultiplication of each by the factor 2.This yields the integers 1, 2, and 0,which are then enclosed in brackets as [120].

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    66/69

    Hari Prasad

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    67/69

    Hari Prasad

    Worked Example

     Find the angle between the directions [2 1 1] and [1 1 2] in acubic crystal.

    The two directions are [2 1 1] and [1 1 2]

    We know that the angle between the two directions,

    8 " 8 " 8 "

    " " " " " "

    8 8 8 " " "

    9 9

    u u & & 3 3cos

    (u & 3 ) (u & 3 )

    + +θ =

    + + × + +

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    68/69

    Hari Prasad

    In this case, u1 = 2, v1 = 1, w1 = 1, u2 = 1, v2 = 1, w2 = 2

    (or) cosθ = 0.833

    θ = 35° 3530′.

     

    " " " " " "

    (" 8) (8 8) (8 ") :cos

    6" 8 l 8 8 "

    × × × + ×∴ θ = =

    + + × + +

  • 8/21/2019 Crystalstructures 141008215641 Conversion Gate02

    69/69

    http://

    core.materials.ac.uk/repository/doitpoms/tlp/miller_indices/indexing_a_plane_e

    mbed.swf

    http://

    core.materials.ac.uk/repository/doitpoms/tlp/miller_indices/drawing_lattice_plane

    s.swf

    http://core.materials.ac.uk/repository/doitpoms/tlp/miller_indices/miller.swf

    Reference

    http://core.materials.ac.uk/repository/doitpoms/tlp/miller_indices/indexing_a_plane_embed.swfhttp://core.materials.ac.uk/repository/doitpoms/tlp/miller_indices/indexing_a_plane_embed.swfhttp://core.materials.ac.uk/repository/doitpoms/tlp/miller_indices/indexing_a_plane_embed.swfhttp://core.materials.ac.uk/repository/doitpoms/tlp/miller_indices/drawing_lattice_planes.swfhttp://core.materials.ac.uk/repository/doitpoms/tlp/miller_indices/drawing_lattice_planes.swfhttp://core.materials.ac.uk/repository/doitpoms/tlp/miller_indices/drawing_lattice_planes.swfhttp://core.materials.ac.uk/repository/doitpoms/tlp/miller_indices/miller.swfhttp://core.materials.ac.uk/repository/doitpoms/tlp/miller_indices/miller.swfhttp://core.materials.ac.uk/repository/doitpoms/tlp/miller_indices/miller.swfhttp://core.materials.ac.uk/repository/doitpoms/tlp/miller_indices/drawing_lattice_planes.swfhttp://core.materials.ac.uk/repository/doitpoms/tlp/miller_indices/drawing_lattice_planes.swfhttp://core.materials.ac.uk/repository/doitpoms/tlp/miller_indices/drawing_lattice_planes.swfhttp://core.materials.ac.uk/repository/doitpoms/tlp/miller_indices/indexing_a_plane_embed.swfhttp://core.materials.ac.uk/repository/doitpoms/tlp/miller_indices/indexing_a_plane_embed.swfhttp://core.materials.ac.uk/repository/doitpoms/tlp/miller_indices/indexing_a_plane_embed.swf