Crystallization and Precipitation Eng

Embed Size (px)

DESCRIPTION

Crystallization and Precipitation

Citation preview

  • CRYSTALLIZATION AND PRECIPITATION ENGINEERING

    Alan Jones, Rudi Zauner and Stelios Rigopoulos

    Department of Chemical Engineering

    University College London, UK

    www.chemeng.ucl.ac.uk

    Acknowledgements to: Mohsen Al-Rashed, Andreas Schreiner and Terry Kougoulos; EPSRC, EU and GSK

  • Outline of talk

    ! Introduction to crystals and crystallization! The ideal well-mixed crystallizer! Prediction of Crystal Size Distribution! Mixing effects in real crystallizers ! Precipitation processes! Crystallization processes! Scale up! Scale out! Conclusions

  • Crystallization Processes! Crystallization is a core technology of

    many sectors in the chemical processand allied industries

    ! Involves a variety of business sectors, e.g.

    Agrochemicals, catalysts, dyes/pigments, electronics, food/confectionery, health products, nano-materials,nuclear fuel, personal products & pharmaceuticals

    ! Processes can involve complex process chemistry together with non-ideal reactor hydrodynamics

    Hence can be difficult to understand and scale-up from laboratoryto production scale operation

    ! Crystallization also forms part of a wider process system

  • Crystallization Process Systems

    Convey

    Feed

    RecycleLiquor to recycle

    Liquor to recycle

    Hot air

    Water

    Clean air

    Liquor to recycle

    PRODUCT CRYSTALS

    Mix, convey, etc.

    Slurry

    Mill oversize

    Screen

    Jones, A.G. Crystallization Process Systems, Butterworth-Heinemann, 2002

  • CRYSTAL CHARACTERISTICS

    Crystals appear in many: ! sizes, ! shapes and ! forms,

    Which affect both: !performance during processing, and !quality in application

  • Phase Equilibria

    Understanding phase equilibria is crucial to crystallizer operation

    ! Undersaturated - crystals will dissolve

    ! Metastable - crystals will grow

    ! Labile - solution will nucleate spontaneously

    Solubility-supersolubility diagram

  • Supersaturation

    !Thermodynamically, solute in excess of solubility

    RTationSupersatur =

    where = chemical potential

    !For practical use

    *ccc = */ ccS =orwhere c = concentration of solution

    c* = saturation concentration

    Supersaturation, c, is sometimes called the concentration driving force

  • Crystallization Kinetics

    !Nucleation rate - rate of formation of new crystals

    where b = 'order of nucleationB = nucleation rate rate of increase of crystal number

    !Crystal growth rate of increase of crystal dimension

    where g = 'order of growth G = growth rate rate rate of increase in crystal size

    nuclei/s m3

    m/s

    bn ckBdt

    dN==

    gg ckGdt

    dL==

    Corresponding expressions exist for crystal agglomeration and breakage.

    Thus particle formation processes all depend upon supersaturation

  • The Well-mixed Crystallizer

    IN OUT Precipitation reactions! Reactants flow into vessel

    and form a reaction zone! Particles form from reacting

    species via crystallisation! Process kinetics can be

    dominated by mixing process! Can get undesired

    product forms, e.g. solvates from solvent drown out

    Note: For batch operation: Outflow of product is zero Hydrodynamic ratio (W/D) varies as function of fill during reaction Reactant mixing & hence precipitation kinetics require optimisation

  • Designing for Crystal Size Distribution (CSD)

    ! Key goal: Characterise inter-relationship between reactor residence time process kinetics product CSD

    ! Understand relationship as function of reactor scale size

    ! Design reactors and process operating conditions to yield desired CSD

    Kinetics

    Residence Time

    CSD

    The Crystallization Triangle

  • Conservation EquationsMass balance! concentration (inlet - outlet) Mass Yield! Only gives crystal yield not how mass distributed

    in crystal size the CSD! Need crystal number balance population balance

    Population balance! Accounts for number of crystals formed & their size! Hence CSD & mean particle size can be predicted! Incorporates terms for crystal nucleation, growth,

    agglomeration & breakage

  • Population Balance Model (PBM)! PBM (Randolph & Larson 1962) provides population of crystals as

    described by number density function n(L,t)

    L - crystal size and t - time Represents probability to have crystals with size L at moment t

    ! Numerical solution of PBE produces Crystal Size Distribution (CSD)

    0ddaao BDBDBnn

    L)nG(

    tn

    ++=

    ++

    ! G - growth rate! B & D - Birth & Death functions for agglomeration & breakage! B0 - nucleation rate! - residence time (for continuous crystallisation)! Indices a, d & 0 relate to agglomeration, breakage & nucleation

    A partial integro-differential equation solved by numerical methods eg finite element. For non well-mixed systems need to include velocity derivatives in addition to crystal growth rate.

  • Problems with Reactive Precipitation

    ! Spatial variation in reactant concentration & crystallizerperformance thus sensitive to mixing conditions processing scale size

    ! For fast supersaturation rises and large vessel sizesthis gives variability in particle formation rates

    ! Scale-dependant fluid mechanics also effect processkinetics through its impact on secondary nucleation

    ! Mixing effects tends to be particularly pronouncedfor fast precipitation systems (Danckwerts, 1958)

    Danckwerts, P. V., 1958. The effect of incomplete mixing on homogeneous reactions. Chemical Engineering Science., 8, 93-99.

  • Computational Fluid Dynamics

    Why use CFD?

    ! To investigate localised mixing effects and fluid hydrodynamics1. Local velocities2. Local energy dissipation (loc)3. Solid volume fraction*4. Heat transfer and temperature profile*

    ! For the development of crystallizer compartmental modelling framework

    ! To facilitate modelling, scale-up and design

    * Kougoulos et al., Scale-Up of Organic Crystallization Processes. In AIChE National Meeting, Recent Developments. In Crystallization and Evaporation. San Francisco, CA, USA, 16-21 November 2003, (New York: AIChE), Paper 310B

  • Agitated Vessel Mixing

    ! Real agitated vessels are not well-mixed except at small volumes and/or high power inputs, which may cause particle disruption

    ! Uniformity of mixing decreases as vessel size increases

    !Numerical solution of the Navier-Stokes Equations

  • Some CFD and Precipitation Studies

    !Seckler et al. 1993 Precipitation of calcium phosphate in a 2-D CFD jet mixer

    !Van Leeuwen et al. 1996 Zonal CFD model of BaSO4precipitation

    !Wei and Garside 1997 Precipitation of BaSO4 in stirred tanks

    !Al-Rashed & Jones 1999 CFD modelling of gas-liquid precipitation

    !Bezzo et al. 2000 Integration of CFD and process simulation

    !Baldyga and Orciuch, 2001 PDF CFD methods!Zauner and Jones 2002 CFD-Segregated Feed Model !Rigopoulos & Jones 2003 CFD-Reaction engineering model

  • Mixing Effects in Gas-liquid Precipitation

    0.0E+0

    2.0E-9

    4.0E-9

    6.0E-9

    8.0E-9

    1.0E-8

    1.2E-8

    1.4E-8

    0 1 2 3 4 5 6

    Time / (s)

    C

    r

    y

    s

    t

    a

    l

    M

    e

    a

    n

    S

    i

    z

    e

    /

    (

    m

    )

    CFD

    Penetration

    Film

    CFD + PBM simulations in qualitative agreement with experiment but v. slow compartmentalisation

    Al-Rashed, M.H. and A.G. Jones. "CFD modelling of gas-liquid reactive precipitation". Chem Engng Sci., 54 (1999), 4779-4784

  • Precipitated Calcium Carbonate Crystals

    Note presence of agglomerates and fines attrition?

  • Mixing Effects: Segregated Feed Model

    !Villermauxs (1989) Segregated Feed Model (SFM) based on physically meaningful mixing parameters involving diffusive micro-mixing time convective meso-mixing time

    !SFM particularly suitable for modelling mixing effects, as it combines advantages of both compartmental model physical model

  • Segregated Feed Model (SFM)

    Qf1 Qf2

    u1,2

    u1,3 u2,3

    Qb

    reaction plume f1

    reaction plume f2

    bulk b

    SFM divides reactor into three zones:

    two feed zones f1 and f2 bulk b

    Feed zones exchange mass with each other & with bulk

    Process depicted by flow rates u1,2, u1,3 and u2,3 respectively

    According to time constants characteristic for micro-mixing & meso-mixing

  • Characteristic Mixing Times

    Meso-mixing bulk blendingMicro-mixing molecular diffusionBased on time constants (Baldega et al 1995)

    Time constants tmicro & tmeso can be regarded as inverse coefficients for mass transfer by diffusion & convention, respectivelyEnergy dissipation rate () predictable from CFD

    2/1

    3.17

    =

    locmicrot

    sloc

    avgmeso

    dN

    QAt34

    31

    =

  • Precipitation Process: Scale-up Methodology

    Hydrodynamic model (CFD)

    Population balance

    Mixing model (Segregated Feed

    Model SFM)

    Laboratory-scale experiments

    Large-scale reactor

    ! Carry out laboratory scale measurements (kinetics etc)

    ! Model hydrodynamics via computational fluid dynamics (CFD)

    ! Use population balance model for particle properties (number/CSD)

    ! Link two models via segmented feed model (SFM)

    ! Predict precipitation performance as function of scale size

  • Process Scale-up: Semi-batch Precipitation

    !In contrast at high values of energy input breakage acts as size-reducing process!This leads to smaller particles1E-3 0.01 0.1 1 10

    5

    10

    15

    20

    25

    30

    1 l reactor, exp. 5 l reactor, exp. 25 l reactor, exp. 1 l reactor, model 5 l reactor, model 25 l reactor, model

    L

    4

    3

    [

    m

    ]

    Specific power input [W/kg]

    ! Note small particle sizes at low energy inputs! Results from local zones with high levels of supersaturation & nucleation

    Calcium Oxalate Precipitation: Particle Size vs Power Input

    Zauner, Rudolf and Alan G. Jones. "Scale-up of continuous and semi-batch precipitation processes." Ind Engng Chem Res, 39, (2000). 2392-2403.

  • Precipitation in Bubble Columns

    !The formation of a solid product via a gas-liquid reaction

    !Common applications: inorganic salts (e.g. CaCO3, CaSO4), fine chemicals

    !Apart from yield, the Particle Size Distribution (PSD) of the product is very important

  • Conventional Approaches to Bubble Column Modelling and Scale-up

    ! Experimental approach - use of empirical correlations Limited validity of correlations, often lead to

    contradictory conclusions

    ! Hydrodynamic approach - entirely based on CFD Not yet possible to couple with the non-linear

    dynamics of fast reactions and crystallisation mechanisms that occur at the gas-liquid interface

  • A Trade-off: Hybrid CFD - Dynamic Reaction Engineering Model

    Hydrodynamic scale

    (mesoscopic)C

    x

    Interfacial scale

    (microscopic)

    Bulk scale (macroscopic)

  • Model Assumptions

    ! Isothermal operation

    ! Only primary processes of particle formation (i.e. no secondary processes that involve particle-particle interactions such as agglomeration)

    ! Dilute suspension, i.e. negligible influence of solids presence on hydrodynamics

    ! Homogeneous bubbly flow, i.e. no bubble coalescence

  • CFD Modelling of Gas-liquid Flow in a Bubble Column

    ! Captures the gross hydrodynamic effects that determine the overall long-time-average gas hold-up and liquid circulation

    ! Eulerian-Eulerian two-dimensional dynamic model considered adequate for that purpose

    ! Use of CFX flow solver

    0

    2

    4

    6

    8

    10

    0 2 4 6 8 10gas flowrate, m3/s (x10-4)

    g

    a

    s

    h

    o

    l

    d

    -

    u

    p

    i

    n

    r

    i

    s

    e

    r

    ,

    %

    riser, modelriser, experimentdowncomer, modeldowncomer, experiment

    CFD and experimental gas hold-up

    Rigopoulos, Stelios and Alan G. Jones. "A hybrid CFD - reaction engineering framework for multiphase reactor modelling: Basic concept and application to bubble column reactors". Chem. Eng. Sci., 58, (2003), 3077-3089.

  • Case Study: CaCO3 Precipitation via CO2 Absorption in Ca(OH)2 Solution

    Equilibrium concentrations

    00.20.40.60.8

    1

    3 5 7 9 11 13pH

    m

    o

    l

    f

    r

    a

    c

    t

    i

    o

    n CO3

    HCO3

    CO2

    CO2 (g) CO2(aq) absorptionCO2(aq) + OH- HCO3- sub-reaction iHCO3- + OH- CO3= + H2O sub-reaction iiCa++ + CO3= CaCO3(s) crystal formation

  • Time Course of Concentration Profiles

    7

    8

    9

    10

    11

    12

    13

    0 20 40 60

    time (min)

    p

    H

    0

    5

    10

    15

    20

    25

    30

    0 20 40 60

    time (min)

    c

    o

    n

    c

    e

    n

    t

    r

    a

    t

    i

    o

    n

    (

    m

    o

    l

    /

    m

    3

    )

    CO2CO3HCO3

  • Evolution of Supersaturation

    0

    0.5

    11.5

    2

    2.5

    33.5

    4

    4.5

    0 2 4 6 8 10

    time (min)

    c

    o

    n

    c

    e

    n

    t

    r

    a

    t

    i

    o

    n

    (

    g

    m

    o

    l

    /

    m

    3

    )

    CO3= gmol/m3

    Ca++ gmol/m3

    Supersaturation

  • Evolution of Nucleation Rate

    10

    1000

    100000

    1E+07

    1E+09

    1E+11

    1E+13

    1E+15

    0 2 4 6 8 10

    time (min)

    l

    o

    g

    n

    u

    c

    l

    e

    a

    t

    i

    o

    n

    r

    a

    t

    e

    (

    n

    u

    c

    l

    e

    i

    /

    s

    e

    c

    )

  • Experimental Results and Model Predictions

    Agglomerate

    6

    7

    8

    9

    10

    11

    12

    13

    0 2 4 6 8 10

    time (min)

    p

    H

    0.0E+00

    2.0E-07

    4.0E-07

    6.0E-07

    8.0E-07

    1.0E-06

    1.2E-06

    1.4E-06

    P

    a

    r

    t

    i

    c

    l

    e

    s

    i

    z

    e

    (

    m

    )

    pH (model) pH (exper.)

    Size (model) Size (exper.)

    Reasonable agreement up to the onset of agglomeration

  • SEM Micrographs of Calcium Carbonate Crystal Agglomerates:

  • Effect of Crystal Agglomeration

    21 litres Ca(OH)2 = 3 mol/m3; 0.00001 : 0.0001 m3/s CO2: N2

  • Current Work

    !Compartmental model of batch cooling crystallization at high solids content

  • Batch Cooling Crystallization

    Pre-processing

    !CFX-Promixus

    !Multiple Frames of Reference

    Simulations

    !Multi-Fluid Model (MFM)

    !Modified Drag coefficient (Brucato, 1998)

    !Monodisperse particle sizes

    !Standard k- turbulence model

    !Heat transfer (estimated liquid side heat transfer coefficient)

  • Computational Fluid Dynamics at High(er) Solids Content

    CFD clips of [1] velocity profile development and [2] particle concentration

    [1] Shows flow dampening [2] Shows solids segregation

    Illustration based on 5L batch cooling crystallizer operating at 300 rpm 200 m 5 v/v% (7 % w/w)

  • Compartmental Model Flow (Rushton turbine)

    [2]

    3

    6

    7

    21

    45

    8

    9

    [1]

    [1] Shows overall flow pattern on different horizontal planes

    [2] Overall flow pattern on vertical scale 45o angle to baffles

  • Compartmental Model Heat (Rushton turbine)

    1. Heat transfer coefficient

    2. Simulate linear cooling profile(353K to 293K at -1oC min-1)

    3. Cooling zones evident4. Cooling profile influences

    temperature gradients

    cba PrReCkhdNu ==

    C

    o

    o

    l

    i

    n

    g

    Z

    o

    n

    e

    C

    o

    o

    l

    i

    n

    g

    Z

    o

    n

    e

    Uniform Bulk Temperature

    Temperature profile after 360s simulation

  • Compartmental Model Slurry (Rushton turbine)

    1 2 3

    456

    78

    9

    Q1,2 Q2,3

    Q3,4

    Q3,7Q3,9

    Q7,8

    Q8,9

    Q9,1

    Q4,5Q5,6

    Q4,2Q6,1

    Q9,2

    Q5,1Q5,2

    Network of ZonesNetwork of Zones

    Green: Bulk Zone

    Orange: Cooling Zone

    Blue: Impeller Zone

    Red: High Solids Content Zone

    Based on CFD modelling at different crystallizer scales using a Rushton impeller

  • Process Modelling! gPROMS (Process Systems Enterprise Limited)

    1. Dynamic Simulations

    2. Compartmental facility available

    3. Batch crystallization process can be simulated

    4. Optimisation can be carried out

    5. Population balance with crystallization kinetics

    ! New technology

    1. CFD (Fluent) and gPROMS interface

    2. Simultaneous CFD simulation & modelling in gPROMS

  • Simulations

    ! Initial boundary conditions

    1. Seed distribution 2. Supersaturation 3. Temperature

    ! Define time steps for batch process

    ! Define parameters, variables & algebraic expressions

    ! Population, mass and energy balances are ODEs

    Experimental CSD

    Theoretical CSD Prediction

    0123456

    0 50 100 150 200 250 300Crystal Size, (m)

    M

    a

    s

    s

    d

    i

    s

    t

    r

    i

    b

    u

    t

    i

    o

    n

    (

    %

    w

    /

    w

    )

  • A better way..?

    Scale out, rather than up

  • Segmented Flow Tubular Reactor (SFTR). After Lematre et al.

    Reagents are mixed and formed into well-mixed mini crystallizer droplets within a segmenting fluid, which are subsequently separated

    Donnet, M., P. Bowen, N.Jongen, J. Lematre, H. Hofmann, A. Schreiner, A.G. Jones, R. Schenk, C. Hofmann and S. De Carlo. Successful scale-up from millilitre batch optimisation to a small scale continuous production using the Segmented Flow Tubular Reactor. Example of calcium carbonate precipitation. In Industrial Crystallization, 15-18 September 2002, Sorrento, Italy. Chemical Engineering Transactions, 3, (2002), 1353-1358.

  • Interdigital Micro Mixer. (After Schenck et al. )

    Schenk, R., M. Donnet, V. Hessel, H. Hofmann, N. Jongen and H.Lwe, 2001. Suitability of various types of micromixers for the forced precipitation of calcium carbonate, In 5th International Conference on Microreaction Technology (IMRET 5), Strasbourg, France 27-30 May 2001.

  • Predicted Mean Particle Sizes of Calcium Carbonate

    0

    1

    2

    3

    4

    5

    6

    7

    0.001 0.01 0.1 1initial concentration [mol/l]

    m

    e

    a

    n

    s

    i

    z

    e

    d

    1

    ,

    0

    [

    m

    ]

    m (seeds) = 0 mg / Lm (seeds) = 0.1 mg / Lm (seeds) = 7.5 mg / Lm (seeds) = 10 mg / L

    Schreiner, A. and A. G. Jones. Precipitation in the Segmented Flow Tubular Reactor (SFTR). In Industrial Crystallization, 15-18 September 2002, Sorrento, Italy. Chemical Engineering Transactions, 3, (2002), 1245-1250.

  • Crystals From the SFTR

    a). Vaterite b). Y-Ba oxalate.

    (Courtesy www.bubbletube.com)

  • Conclusions! New computational techniques for the analysis and design of

    systems for the manufacture of particulate crystals have become available

    ! The more complex precipitation processes whereby crystallization follows fast chemical reactions have also been analysed more deeply

    ! This progress has been aided by the growing power of the population balance and kinetic models, CFD and mixing theory, respectively

    ! Further progress may reasonably be expected in the development of computer models, software and hardware

    ! Alternative techniques are under development to avoid mixing problems and obtain efficient processes and high quality products

    CRYSTALLIZATION AND PRECIPITATION ENGINEERINGOutline of talkCrystallization Process SystemsCRYSTAL CHARACTERISTICSPhase EquilibriaSupersaturationCrystallization KineticsThe Well-mixed CrystallizerConservation EquationsComputational Fluid DynamicsAgitated Vessel MixingSome CFD and Precipitation StudiesMixing Effects in Gas-liquid PrecipitationPrecipitated Calcium Carbonate CrystalsMixing Effects: Segregated Feed ModelSegregated Feed Model (SFM)Characteristic Mixing TimesPrecipitation Process: Scale-up MethodologyProcess Scale-up: Semi-batch PrecipitationPrecipitation in Bubble ColumnsConventional Approaches to Bubble Column Modelling and Scale-upA Trade-off: Hybrid CFD - Dynamic Reaction Engineering ModelModel AssumptionsCFD Modelling of Gas-liquid Flow in a Bubble ColumnCase Study: CaCO3 Precipitation via CO2 Absorption in Ca(OH)2 SolutionTime Course of Concentration ProfilesEvolution of SupersaturationEvolution of Nucleation RateExperimental Results and Model PredictionsSEM Micrographs of Calcium Carbonate Crystal Agglomerates:Effect of Crystal AgglomerationCurrent WorkBatch Cooling CrystallizationComputational Fluid Dynamics at High(er) Solids ContentCompartmental Model Flow (Rushton turbine)Compartmental Model Heat (Rushton turbine)Compartmental Model Slurry (Rushton turbine)Process ModellingSimulationsA better way..?Segmented Flow Tubular Reactor (SFTR). After Lematre et al.Interdigital Micro Mixer. (After Schenck et al. )Predicted Mean Particle Sizes of Calcium CarbonateCrystals From the SFTRConclusions