24
1/23/2014 1 Chapter 3 - 1 Non dense, random packing Dense, ordered packing Dense, ordered packed structures tend to have lower energies. Energy and Packing Energy r typical neighbor bond length typical neighbor bond energy Energy r typical neighbor bond length typical neighbor bond energy Chapter 3 - 2 atoms pack in periodic, 3D arrays Crystalline materials... -metals -many ceramics -some polymers atoms have no periodic packing Noncrystalline materials... -complex structures -rapid cooling crystalline SiO2 noncrystalline SiO2 "Amorphous" = Noncrystalline Adapted from Fig. 3.23(b), Callister & Rethwisch 8e. Adapted from Fig. 3.23(a), Callister & Rethwisch 8e. Materials and Packing Si Oxygen typical of: occurs for:

Crystal Structure Slides

Embed Size (px)

DESCRIPTION

sadsafrfsfdfd

Citation preview

  • 1/23/2014

    1

    Chapter 3 - 1

    Non dense, random packing

    Dense, ordered packing

    Dense, ordered packed structures tend to havelower energies.

    Energy and PackingEnergy

    r

    typical neighborbond length

    typical neighborbond energy

    Energy

    r

    typical neighborbond length

    typical neighborbond energy

    Chapter 3 - 2

    atoms pack in periodic, 3D arraysCrystalline materials...

    -metals-many ceramics-some polymers

    atoms have no periodic packingNoncrystalline materials...

    -complex structures-rapid cooling

    crystalline SiO2

    noncrystalline SiO2"Amorphous" = NoncrystallineAdapted from Fig. 3.23(b),Callister & Rethwisch 8e.

    Adapted from Fig. 3.23(a),Callister & Rethwisch 8e.

    Materials and Packing

    Si Oxygen

    typical of:

    occurs for:

  • 1/23/2014

    2

    Chapter 3 - 3

    Metallic Crystal Structures How can we stack metal atoms to minimize

    empty space?2-dimensions

    vs.

    Now stack these 2-D layers to make 3-D structures

    Chapter 3 -

    Polycrystals

    4

  • 1/23/2014

    3

    Chapter 3 -

    Crystal Structure

    5

    Chapter 3 -

    Bravais Lattice

  • 1/23/2014

    4

    Chapter 3 - 7

    Rare due to low packing density (only Po has this structure) Close-packed directions are cube edges.

    Coordination # = 6(# nearest neighbors)

    Simple Cubic Structure (SC)

    Click once on image to start animation(Courtesy P.M. Anderson)

    Chapter 3 - 8

    Body Centered Cubic Structure (BCC)

    ex: Cr, W, Fe (), Tantalum, Molybdenum

  • 1/23/2014

    5

    Chapter 3 - 9

    Face Centered Cubic Structure (FCC)

    Chapter 3 - 10

    A sites

    B B

    B

    BB

    B B

    C sites

    C C

    CA BB sites

    ABCABC... Stacking Sequence 2D Projection

    FCC Unit Cell

    FCC Stacking Sequence

    B B

    B

    BB

    B BB sites

    C C

    CAC C

    CA

    AB

    C

  • 1/23/2014

    6

    Chapter 3 - 11

    ABAB... Stacking Sequence 3D Projection 2D Projection

    Adapted from Fig. 3.3(a),Callister & Rethwisch 8e.

    Hexagonal Close-Packed Structure (HCP)

    c

    a

    A sites

    B sites

    A sites Bottom layer

    Middle layer

    Top layer

    Chapter 3 - 12

    Theoretical Density,

    where n = number of atoms/unit cellA = atomic weight VC = Volume of unit cell = a3 for cubicNA = Avogadros number

    = 6.022 x 1023 atoms/mol

    Density = =

    VCNAn A =

    CellUnitofVolumeTotalCellUnitinAtomsofMass

  • 1/23/2014

    7

    Chapter 3 - 13

    Ex: Cr (BCC) A = 52.00 g/molR = 0.125 nmn = 2 atoms/unit cell

    theoretical

    a = 4R/ 3 = 0.2887 nm

    actual

    aR

    = a3

    52.002atoms

    unit cellmolg

    unit cellvolume atoms

    mol

    6.022x 1023

    Theoretical Density,

    = 7.18 g/cm3

    = 7.19 g/cm3

    Adapted from Fig. 3.2(a), Callister & Rethwisch 8e.

    Chapter 3 - 14

    Densities of Material Classesmetals > ceramics > polymers

    Why?

    Data from Table B.1, Callister & Rethwisch, 8e.

    (g/

    cm )3

    Graphite/ Ceramics/ Semicond

    Metals/ Alloys

    Composites/ fibersPolymers

    1

    2

    20

    30Based on data in Table B1, Callister

    *GFRE, CFRE, & AFRE are Glass,Carbon, & Aramid Fiber-ReinforcedEpoxy composites (values based on60% volume fraction of aligned fibers

    in an epoxy matrix).10

    345

    0.30.40.5

    Magnesium

    Aluminum

    Steels

    Titanium

    Cu,NiTin, Zinc

    Silver, Mo

    TantalumGold, WPlatinum

    GraphiteSiliconGlass -sodaConcreteSi nitrideDiamondAl oxide

    Zirconia

    HDPE, PSPP, LDPEPC

    PTFE

    PETPVCSilicone

    Wood

    AFRE*CFRE*GFRE*Glass fibers

    Carbon fibersAramid fibers

    Metals have... close-packing

    (metallic bonding) often large atomic masses

    Ceramics have... less dense packing often lighter elements

    Polymers have... low packing density

    (often amorphous) lighter elements (C,H,O)

    Composites have... intermediate values

    In general

  • 1/23/2014

    8

    Chapter 3 - 15

    Some engineering applications require single crystals:

    Properties of crystalline materials often related to crystal structure.

    (Courtesy P.M. Anderson)

    -- Ex: Quartz fractures more easily along some crystal planes than others.

    -- diamond singlecrystals for abrasives

    -- turbine bladesFig. 8.33(c), Callister & Rethwisch 8e. (Fig. 8.33(c) courtesy of Pratt and Whitney).

    (Courtesy Martin Deakins,GE Superabrasives, Worthington, OH. Used with permission.)

    Crystals as Building Blocks

    Chapter 3 - 16

    Most engineering materials are polycrystals.

    Nb-Hf-W plate with an electron beam weld. Each "grain" is a single crystal. If grains are randomly oriented,

    overall component properties are not directional. Grain sizes typically range from 1 nm to 2 cm

    (i.e., from a few to millions of atomic layers).

    Adapted from Fig. K, color inset pages of Callister 5e.(Fig. K is courtesy of Paul E. Danielson, Teledyne Wah Chang Albany)

    1 mm

    Polycrystals

    Isotropic

    Anisotropic

  • 1/23/2014

    9

    Chapter 3 - 17

    Single Crystals-Properties vary withdirection: anisotropic.

    -Example: the modulusof elasticity (E) in BCC iron:

    Data from Table 3.3, Callister & Rethwisch 8e. (Source of data is R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 3rd ed., John Wiley and Sons, 1989.)

    Polycrystals-Properties may/may notvary with direction.

    -If grains are randomlyoriented: isotropic.(Epoly iron = 210 GPa)

    -If grains are textured,anisotropic.

    200 m Adapted from Fig. 4.14(b), Callister & Rethwisch 8e.(Fig. 4.14(b) is courtesy of L.C. Smith and C. Brady, the National Bureau of Standards, Washington, DC [now the National Institute of Standards and Technology, Gaithersburg, MD].)

    Single vs PolycrystalsE (diagonal) = 273 GPa

    E (edge) = 125 GPa

    Chapter 3 - 18

    Polymorphism Two or more distinct crystal structures for the same

    material (allotropy/polymorphism)

    titanium, -Ti

    carbondiamond, graphite

    BCC

    FCC

    BCC

    1538C

    1394C

    912C

    -Fe

    -Fe

    -Fe

    liquidiron system

  • 1/23/2014

    10

    Chapter 3 - 19Fig. 3.4, Callister & Rethwisch 8e.

    Crystal Systems

    7 crystal systems

    14 crystal lattices

    Unit cell: smallest repetitive volume which contains the complete lattice pattern of a crystal.

    a, b, and c are the lattice constants

    Chapter 3 - 20

    Point CoordinatesPoint coordinates for unit cell

    center area/2, b/2, c/2

    Point coordinates for unit cell corner are 111

    Translation: integer multiple of lattice constants identical position in another unit cell

    z

    x

    ya b

    c

    000

    111

    y

    z

    2c

    b

    b

  • 1/23/2014

    11

    Chapter 3 - 21

    Crystallographic Directions

    1. Vector repositioned (if necessary) to pass through origin.

    2. Read off projections in terms of unit cell dimensions a, b, and c

    3. Adjust to smallest integer values4. Enclose in square brackets, no commas

    [uvw]

    ex: 1, 0, => 2, 0, 1 => [ 201 ]-1, 1, 1

    families of directions

    z

    x

    Algorithm

    where overbar represents a negative index

    [111 ]=>

    y

    Chapter 3 - 22

    ex: linear density of Al in [110] direction

    a = 0.405 nm

    Linear Density Linear Density of Atoms LD =

    a

    [110]Unit length of direction vector

    Number of atoms

    # atoms

    length

    13.5 nma2

    2LD ==Adapted fromFig. 3.1(a),Callister & Rethwisch 8e.

  • 1/23/2014

    12

    Chapter 3 - 23

    HCP Crystallographic Directions

    1. Vector repositioned (if necessary) to pass through origin.

    2. Read off projections in terms of unitcell dimensions a1, a2, a3, or c

    3. Adjust to smallest integer values4. Enclose in square brackets, no commas

    [uvtw]

    [ 1120 ]ex: , , -1, 0 =>

    Adapted from Fig. 3.8(a), Callister & Rethwisch 8e.

    dashed red lines indicate projections onto a1 and a2 axes a1

    a2

    a3

    -a32

    a2

    2a1

    -

    a3

    a1

    a2

    z

    Algorithm

    Chapter 3 - 24

    HCP Crystallographic Directions Hexagonal Crystals

    4 parameter Miller-Bravais lattice coordinates are related to the direction indices (i.e., u'v'w') as follows.

    =

    =

    =

    'ww

    t

    v

    u

    )vu( +-)'u'v2(

    31

    -

    )'v'u2(31

    -=

    ]uvtw[]'w'v'u[

    Fig. 3.8(a), Callister & Rethwisch 8e.

    -

    a3

    a1

    a2

    z

  • 1/23/2014

    13

    Chapter 3 - 25

    Crystallographic Planes

    Adapted from Fig. 3.10, Callister & Rethwisch 8e.

    Chapter 3 - 26

    Crystallographic Planes Miller Indices: Reciprocals of the (three) axial

    intercepts for a plane, cleared of fractions & common multiples. All parallel planes have same Miller indices.

    Algorithm1. Read off intercepts of plane with axes in

    terms of a, b, c2. Take reciprocals of intercepts3. Reduce to smallest integer values4. Enclose in parentheses, no

    commas i.e., (hkl)

  • 1/23/2014

    14

    Chapter 3 - 27

    Crystallographic Planesz

    x

    ya b

    c

    4. Miller Indices (110)

    example a b c z

    x

    ya b

    c

    4. Miller Indices (100)

    1. Intercepts 1 1 2. Reciprocals 1/1 1/1 1/

    1 1 03. Reduction 1 1 0

    1. Intercepts 1/2 2. Reciprocals 1/ 1/ 1/

    2 0 03. Reduction 2 0 0

    example a b c

    Chapter 3 - 28

    Crystallographic Planesz

    x

    ya b

    c

    4. Miller Indices (634)

    example1. Intercepts 1/2 1 3/4

    a b c

    2. Reciprocals 1/ 1/1 1/2 1 4/3

    3. Reduction 6 3 4

    (001)(010),

    Family of Planes {hkl}

    (100), (010),(001),Ex: {100} = (100),

  • 1/23/2014

    15

    Chapter 3 - 29

    Crystallographic Planes (HCP) In hexagonal unit cells the same idea is used

    example a1 a2 a3 c

    4. Miller-Bravais Indices (1011)

    1. Intercepts 1 -1 12. Reciprocals 1 1/

    1 0 -1-1

    11

    3. Reduction 1 0 -1 1a2

    a3

    a1

    z

    Adapted from Fig. 3.8(b), Callister & Rethwisch 8e.

    Chapter 3 - 30

    Crystallographic Planes We want to examine the atomic packing of

    crystallographic planes Iron foil can be used as a catalyst. The

    atomic packing of the exposed planes is important.

    a) Draw (100) and (111) crystallographic planes for Fe.

    b) Calculate the planar density for each of these planes.

  • 1/23/2014

    16

    Chapter 3 - 31

    Planar Density of (100) IronSolution: At T < 912C iron has the BCC structure.

    (100)

    Radius of iron R = 0.1241 nm

    R3

    34a =

    Adapted from Fig. 3.2(c), Callister & Rethwisch 8e.

    2D repeat unit

    = Planar Density =a2

    1atoms

    2D repeat unit=

    nm2atoms12.1

    m2atoms

    = 1.2 x 10191

    2R

    334area

    2D repeat unit

    Chapter 3 - 32

    Planar Density of (111) IronSolution (cont): (111) plane 1 atom in plane/ unit surface cell

    333 22

    R3

    16R3

    42a3ah2area =

    ===

    atoms in planeatoms above planeatoms below plane

    ah23

    =

    a2

    1= =

    nm2atoms7.0

    m2atoms0.70 x 1019

    3 2R3

    16Planar Density =

    atoms2D repeat unit

    area

    2D repeat unit

  • 1/23/2014

    17

    Chapter 3 - 33

    X-Ray Diffraction

    Diffraction gratings must have spacings comparable to the wavelength of diffracted radiation.

    Cant resolve spacings < Spacing is the distance between parallel planes of

    atoms.

    Chapter 3 - 34

    X-Rays to Determine Crystal Structure

    X-ray intensity (from detector)

    c

    d = n2 sin c

    Measurement of critical angle, c, allows computation of planar spacing, d.

    Incoming X-rays diffract from crystal planes.

    Adapted from Fig. 3.20, Callister & Rethwisch 8e.

    reflections must be in phase for a detectable signal

    spacing between planes

    d

    extra distance travelled by wave 2

  • 1/23/2014

    18

    Chapter 3 - 35

    X-Ray Diffraction Pattern

    Adapted from Fig. 3.22, Callister 8e.

    (110)

    (200)

    (211)

    z

    x

    ya b

    c

    Diffraction angle 2

    Diffraction pattern for polycrystalline -iron (BCC)

    Inte

    nsi

    ty (re

    lativ

    e)z

    x

    ya b

    c

    z

    x

    ya b

    c

    Chapter 3 -

    Octahedral and Tetrahedral Voids

    36

  • 1/23/2014

    19

    Chapter 3 -

    Voids in FCC

    37

    Chapter 3 -

    Octahedral Voids in HCP

    38

  • 1/23/2014

    20

    Chapter 3 -

    Tetrahedral Voids in HCP

    39

    Chapter 3 -

    Voids in BCC

    40

  • 1/23/2014

    21

    Chapter 3 - 41

    Adapted from Fig. 2.7, Callister & Rethwisch 8e. (Fig. 2.7 is adapted from Linus Pauling, The Nature of the Chemical Bond, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 byCornell University.)

    Degree of ionic character may be large or small:

    Atomic Bonding in Ceramics

    SiC: smallCaF2: large

    Chapter 3 - 42

    Factors that Determine Crystal Structure1. Relative sizes of ions Formation of stable structures:

    --maximize the # of oppositely charged ion neighbors.

    Adapted from Fig. 12.1, Callister & Rethwisch 8e.

    - -

    - -

    +

    unstable

    - -

    - -

    +

    stable

    - -

    - -

    +

    stable2. Maintenance of

    Charge Neutrality :--Net charge in ceramic

    should be zero.--Reflected in chemical

    formula:

    CaF2: Ca2+

    cationF-

    F-

    anions+

    AmXpm, p values to achieve charge neutrality

  • 1/23/2014

    22

    Chapter 3 - 43

    Coordination # and Ionic Radii

    Centre of Triangle

    Centre of Tetrahedron

    Centre of Octahedron

    Centre of Cube

    Chapter 3 - 44

    Rock Salt StructureSame concepts can be applied to ionic solids in general. Example: NaCl (rock salt) structure

    rNa = 0.102 nm

    rNa/rCl = 0.564

    cations (Na+) prefer octahedral sites

    Adapted from Fig. 12.2, Callister & Rethwisch 8e.

    rCl = 0.181 nm

  • 1/23/2014

    23

    Chapter 3 - 45

    AX Crystal Structures

    939.0181.0170.0

    Cl

    Cs==

    +

    r

    r

    Adapted from Fig. 12.3, Callister & Rethwisch 8e.

    Cesium Chloride structure:

    Since 0.732 < 0.939 < 1.0, cubic sites preferred

    So each Cs+ has 8 neighbor Cl-

    Chapter 3 -

    Zinc Blende Structure

    46

    402.0184.0074.0Zn

    ==

    Sr

    r

    Tetrahedral sites

  • 1/23/2014

    24

    Chapter 3 - 47

    AmXp Crystal Structures

    Calcium Fluorite (CaF2) Cations in cubic sites

    UO2, ThO2, ZrO2, CeO2

    Adapted from Fig. 12.5, Callister & Rethwisch 8e.

    Fluorite structure 752.0133.0100.0

    Cl

    Ca==

    +

    r

    r

    Chapter 3 - 48

    AmBnXp Crystal Structures

    Adapted from Fig. 12.6, Callister & Rethwisch 8e.

    Perovskite structure

    Ex: complex oxideBarium Titanate- BaTiO3