25
Crystal structure prediction Klaus Doll Max-Planck-Institute for Solid State Research Stuttgart MSSC 2009, Turin, September 2009

Crystal structure prediction · 2009-10-02 · Why ab initio? • model potentials good for ionic systems, less for covalent or metallic systems • ab initio calculations more generally

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Crystal structure prediction · 2009-10-02 · Why ab initio? • model potentials good for ionic systems, less for covalent or metallic systems • ab initio calculations more generally

Crystal structure prediction

Klaus Doll

Max-Planck-Institute for Solid State Research Stuttgart

MSSC 2009, Turin, September 2009

Page 2: Crystal structure prediction · 2009-10-02 · Why ab initio? • model potentials good for ionic systems, less for covalent or metallic systems • ab initio calculations more generally

Contents

• structure prediction:

global search on potential surface;

minima correspond to (meta)stable structures

• method:

simulated annealing: start from atoms, perform moves until solid is formed => change atom positions and lattice constant new: ab initio energies in all steps

• examples: LiF (bulk; cluster), BN bulk

Page 3: Crystal structure prediction · 2009-10-02 · Why ab initio? • model potentials good for ionic systems, less for covalent or metallic systems • ab initio calculations more generally

Why ab initio ?

• model potentials good for ionic systems, less for covalent or metallic systems

• ab initio calculations more generally applicable, also if type of bond unknown

• important to test whether ab initio landscape explorations find the same minima as calculations based on model potentials

Page 4: Crystal structure prediction · 2009-10-02 · Why ab initio? • model potentials good for ionic systems, less for covalent or metallic systems • ab initio calculations more generally

Method, part I

I) simulated annealing with „G42“ code

0) guess structure -> compute energy 1) create new structure (atoms moved or exchanged, lattice constant changed …), compute new energy 2) accept new structure according to probability exp (-ΔE / kT) (Metropolis algorithm) goto step 1

reduce temperature during the run; stop after ~104 … 106 steps;

followed by quench (~104 steps at T=0)

J. C. Schön and M. Jansen, Angew. Chem., Int. Ed. Engl. 35, 1286 (1996)

Page 5: Crystal structure prediction · 2009-10-02 · Why ab initio? • model potentials good for ionic systems, less for covalent or metallic systems • ab initio calculations more generally

Method, parts II, III

II) local optimisation: start from geometry after quench, optimise with analytical gradients (CRYSTAL06 code)

III) symmetry analysis with KPLOT (R. Hundt, Bonn)

in total: ~100…1000 runs required (different run=different initialisation of random number generator)

Page 6: Crystal structure prediction · 2009-10-02 · Why ab initio? • model potentials good for ionic systems, less for covalent or metallic systems • ab initio calculations more generally

Ab initio calculations: with CRYSTAL-Code

Idea: use methods from molecular quantum chemistry for periodic systems -> Gaussian type functions used (i.e. local basis set)

• 1975 Turin: Begin of the code development• 1988 first release: CRYSTAL88• further releases:1992, 1995, 1998, 2003, 2006

R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, Ph. D‘Arco, M. Llunell, CRYSTAL2006

www.crystal.unito.it

Page 7: Crystal structure prediction · 2009-10-02 · Why ab initio? • model potentials good for ionic systems, less for covalent or metallic systems • ab initio calculations more generally

New: Ab initio simulated annealing

• Idea: connect code for simulated annealing with ab initio code

• Problem: CPU time

e.g. LiF: 4 Li atoms, 4 F atoms, experimental geometry

1 calculation with good parameters: 16 seconds 1 calculation with good parameters, no symmetry: 13 minutes

100000 calculations for 1 simulated annealing and quench run: 13 minutes*100000: ~ 2 years

~100 runs required: ~200 years of CPU time

Page 8: Crystal structure prediction · 2009-10-02 · Why ab initio? • model potentials good for ionic systems, less for covalent or metallic systems • ab initio calculations more generally

How to speed up the ab initio calculations?

Necessary: fast reasonably stable (convergence at random geometry required!)

Important: energy does not have to be very accurate

Faster: 1) Gaussian basis set used: => increase thresholds for integral selection e.g. neglect integrals with overlap < 10-4 (default: 10-6, molecules: 10-12) advantage of local basis set: calculations are faster in the low density limit Li F

2) small basis set (no polarisation functions, outermost exponents less diffuse)

3) stop SCF cycles earlier (full convergence not necessary)

4) fewer k-points ...

Page 9: Crystal structure prediction · 2009-10-02 · Why ab initio? • model potentials good for ionic systems, less for covalent or metallic systems • ab initio calculations more generally

Example: LiF (3d-periodic)

Why LiF ?

3) ionic => easy to converge (like point charges, no covalency)

2) few electrons: quick

3) earlier studies with model potentials exist:

J. C. Schön and M. Jansen, Comput. Mater. Sci. 4, 43 (1995) Ž. Čančarević, PhD thesis (2006); Ž. Čančarević, J. C. Schön and M. Jansen, Chemistry: An Asian Journal 3, 561 (2008)

Page 10: Crystal structure prediction · 2009-10-02 · Why ab initio? • model potentials good for ionic systems, less for covalent or metallic systems • ab initio calculations more generally

Simulated annealing: Choice of parameters

I) unit cell: 4 Li, 4 F atoms, initial volume ~3 times larger than estimated volume (using atomic or ionic radii)

II) Move classes: 1) move atom (70% of suggested moves) 2) exchange 2 atoms (10%) 3) change lattice constant (20%)

Restriction: minimum distance of atoms= ~0.7 * sum of atomic or ionic radii (radius from databases, charge from Mulliken population)

III) ~5000 simulated annealing steps sufficient, followed by ~5000 quench steps

Page 11: Crystal structure prediction · 2009-10-02 · Why ab initio? • model potentials good for ionic systems, less for covalent or metallic systems • ab initio calculations more generally

Local optimisation

• little CPU time required, high accuracy wanted => use default parameters, better basis set

• usually density functional theory (standard or hybrid functional)

• CRYSTAL06, analytical gradients+optimiser

analytical gradient with respect to atom positions: K. Doll, V. R. Saunders, N. M. Harrison, Int. J. Quant. Chem. 82, 1 (2001) and unit cell: K. Doll, R. Dovesi, R. Orlando, Theor. Chem. Acc. 112, 394 (2004)

Page 12: Crystal structure prediction · 2009-10-02 · Why ab initio? • model potentials good for ionic systems, less for covalent or metallic systems • ab initio calculations more generally

LiF: structures found

NaCl 5-5 Wurtzite

others, space group: Pnma (62) Pc (7) Cmc21 (36)

• Confirmation of the calculations with model potential Model potential: J. C. Schön and M. Jansen, Comput. Mater. Sci. 4, 43 (1995)

ab initio: K. Doll, J. C. Schön, M. Jansen, Phys. Chem. Chem. Phys. 9, 6128 (2007)

• new experiment (new LiBr structure: wurtzite): Y. Liebold Ribeiro, D. Fischer, M. Jansen, Angew. Chemie, 120, 4500 (2008)

zinc blende NiAs

Page 13: Crystal structure prediction · 2009-10-02 · Why ab initio? • model potentials good for ionic systems, less for covalent or metallic systems • ab initio calculations more generally

Energetics

structure type relative energy, number of times found per 1 formula unit (eV) (local optimization may end up in different structure with different functional) HF LDA HF LDArock salt 0 0 9 11 zincblende -0.001 +0.15 10 9 5-5 -0.01 +0.09 4 12 wurtzite -0.03 +0.12 8 4 NiAs +0.11 +0.10 1 1 LiF(I) +0.03 - 4 0LiF(II) +0.08 +0.20 1 1 LiF(III) +0.11 - 1 0

total: 70 runs, 38 give structure

Page 14: Crystal structure prediction · 2009-10-02 · Why ab initio? • model potentials good for ionic systems, less for covalent or metallic systems • ab initio calculations more generally

A covalent system: BN (3d periodic)

Difficulties:

convergence for random geometry necessary

(more difficult for covalent system than for ionic system)

experiment: layered structures (similar to graphite)

and „3d“ structures (zinc blende,wurtzite)

Page 15: Crystal structure prediction · 2009-10-02 · Why ab initio? • model potentials good for ionic systems, less for covalent or metallic systems • ab initio calculations more generally

Convergence for initial structure:

gap: LDA ~0.1 eV; B3LYP ~ 0.5 eV; HF ~6 eV

Page 16: Crystal structure prediction · 2009-10-02 · Why ab initio? • model potentials good for ionic systems, less for covalent or metallic systems • ab initio calculations more generally

Results for BN:

convergence:

Hartree-Fock quickest! (large gap helps convergence) B3LYP possible, but more time consuming (factor 4) -> most important to have many runs; only rough position of minima required, local optimisation on any level possible

several hundred runs with Hartree-Fock, ~ 15 % give „good“ structure10 runs with B3LYP

K. Doll, J. C. Schön, M. Jansen, Phys. Rev. B 78, 144110 (2008)

Page 17: Crystal structure prediction · 2009-10-02 · Why ab initio? • model potentials good for ionic systems, less for covalent or metallic systems • ab initio calculations more generally

BNstructures found: wurtzite, zinc blende, hexagonal BN …., no rock salt

space group P42/mnm : different view:

β-BeO (isoelectronic with BN)

(D. Proserpio,Milano)

B N

P63mmc (194) R3m (160) P6m2 (187)_

Page 18: Crystal structure prediction · 2009-10-02 · Why ab initio? • model potentials good for ionic systems, less for covalent or metallic systems • ab initio calculations more generally

SrAl2 like structure:

SrAl2 is isoelectronic: ignore Sr2+ , then: Al isoelectronic with B Al2- isoelectronic with Nnote: BN has space group Pnma (62) SrAl2 has space group Imma (74) G. Cordier, E. Czech, H. Schäfer, Z. Naturforsch. 37 b, 1442 (1982)

identified with TOPOS software (V. A. Blatov, A. P. Shevchenko, V.N. Serezhkin, Samara, Russia)

Page 19: Crystal structure prediction · 2009-10-02 · Why ab initio? • model potentials good for ionic systems, less for covalent or metallic systems • ab initio calculations more generally

pressure driven phase transition: enthalpy required

use ; H=E+pVE

pV

Page 20: Crystal structure prediction · 2009-10-02 · Why ab initio? • model potentials good for ionic systems, less for covalent or metallic systems • ab initio calculations more generally

layered structures become unfavorable at high pressure(due to their low coordination number)synthesis of new β - BeO phase: not feasible by just applying pressure

Page 21: Crystal structure prediction · 2009-10-02 · Why ab initio? • model potentials good for ionic systems, less for covalent or metallic systems • ab initio calculations more generally

Pressure and enthalpy calculation

CRYSTAL06: compute E(V), obtain and H=E+pV

analytical gradients with respect to cell parameters available:

stress tensor:

hydrostatic pressure => i.e.

Ep

V

1 1 1 2 2 2 3 3 3

, , , , , , , ,x y z x y z x y z

E E E E E E E E E

a a a a a a a a a

1 2 3, , a a ar r r

K. Doll, R. Dovesi, R. Orlando, Theor. Chem. Acc. 112, 394 (2004)

3

1

1 1lm im

ilm il

E Ea

V V a

lm lmp 0 0

0 0

0 0

p

p

p

K. Doll, Mol. Phys. (2010), online version published at journal website (iFirst)

Page 22: Crystal structure prediction · 2009-10-02 · Why ab initio? • model potentials good for ionic systems, less for covalent or metallic systems • ab initio calculations more generally

hydrostatic pressure: corresponds to

OPTGEOM

FULLOPTG

CVOLOPT

ENDOPT

obtain pressure as the diagonal element of stress tensor after constant volume

optimization:

new feature: add to stress tensor: constant pressure optimization etc

externallm

K. Doll, Mol. Phys. (2010), online version published at journal website (iFirst)

0 0

0 0

0 0

p

p

p

Page 23: Crystal structure prediction · 2009-10-02 · Why ab initio? • model potentials good for ionic systems, less for covalent or metallic systems • ab initio calculations more generally

(LiF)n Clusters

n=1 n=2

n=3

n=4

Li F

Page 24: Crystal structure prediction · 2009-10-02 · Why ab initio? • model potentials good for ionic systems, less for covalent or metallic systems • ab initio calculations more generally

Tree graph from threshold run

Threshold run: start from one structure accept all moves up to a certain value, then quench -> possible transition to new structure after quench

Page 25: Crystal structure prediction · 2009-10-02 · Why ab initio? • model potentials good for ionic systems, less for covalent or metallic systems • ab initio calculations more generally

Conclusion

• ab initio structure prediction based on simulated annealing feasible

• LiF: ab initio results agree with earlier results based on empirical potentials

• BN: example of structure prediction for a covalent system, 2 new modifications

• LiF cluster: up to now up to (LiF)8 , threshold run feasible