36
Critical Loop Gases and Worm Algorithm Thomas Neuhaus Jülich Supercomputing Centre, JSC Forschungszentrum Jülich Jülich, Germany e-mail : [email protected] in collaboration with W. Janke, A. Schakel January 2013

Critical Loop Gases and Worm Algorithm

Embed Size (px)

Citation preview

Page 1: Critical Loop Gases and Worm Algorithm

Critical Loop Gases and Worm Algorithm

Thomas Neuhaus

Jülich Supercomputing Centre, JSCForschungszentrum Jülich

Jülich, Germany

e-mail : [email protected] collaboration with W. Janke, A. Schakel

January 2013

Page 2: Critical Loop Gases and Worm Algorithm

general directions:

develop efficient MONTE CARLOinterpret critical phaenomena geometricalconnected spins = CLUSTERSclosed loops = LOOP GASclosed surfaces = SURFACE GAS

T. Neuhaus, JSC Critical Loop Gases and Worm Algorithm 2/36

Page 3: Critical Loop Gases and Worm Algorithm

e.g. : VORTEX LOOP PERCOLATION

a paper in 2000

contains a comment on loop tracing

T. Neuhaus, JSC Critical Loop Gases and Worm Algorithm 3/36

Page 4: Critical Loop Gases and Worm Algorithm

finding:

the loop percolation critical point did not agree with the positionof the thermodynamic singularity

T. Neuhaus, JSC Critical Loop Gases and Worm Algorithm 4/36

Page 5: Critical Loop Gases and Worm Algorithm

Vortex loop length distribution and LINE TENSION

T. Neuhaus, JSC Critical Loop Gases and Worm Algorithm 5/36

Page 6: Critical Loop Gases and Worm Algorithm

Singular Loop Percolation

T. Neuhaus, JSC Critical Loop Gases and Worm Algorithm 6/36

Page 7: Critical Loop Gases and Worm Algorithm

Monte Carlo Simulation with CLUSTERS

Metropolis, Rosenbluth2 and Teller, J. Chem. Phys. 21 (1953)1087, spin flips:

Pacc = min[1,e−β∆H ]

R.H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58 (1987) 86:non-local updates in the Ising model via the map to abond-percolated auxiliary system

P = 1− e−K

with dynamical critical exponent z ≈ 0.35 < 2 (2d Ising)Fortuin Kasteleyn representation for the Q state Potts model

ZFK =∑

bonds Pb (1− P)B−b QNc

DESCENDANTS: Wolff algorithm for O(N) spin models, but notefficient for either frustration, disorder or gauge fields

T. Neuhaus, JSC Critical Loop Gases and Worm Algorithm 7/36

Page 8: Critical Loop Gases and Worm Algorithm

Monte Carlo Simulation with LOOPS

N. Prokof’ev and B. Svistunov, “Worm Algorithms for ClassicalStatistical Models”, PRL 87 (2001) 160601 : local updates ofwormlike open chains, that are allowed to close and to form aloop gas with dynamical critical exponent z < 2loop gas representation of 2d O(N) models

Zloop =∑

loops KbNl

critical points on the Honeycomb Lattice, B. Nienhuis, PRL 49(1982) 1062:

Kc = [2 +√

(2− N)]−1/2

ANCESTOR: G. Evertz and M. Marcu, “The Loop-ClusterAlgorithm for the full 6 Vertex Model” (1992) DESCENDANTS:directed worm algorithms of F. Alet and E. S. Sorensen (2003)

T. Neuhaus, JSC Critical Loop Gases and Worm Algorithm 8/36

Page 9: Critical Loop Gases and Worm Algorithm

specific : Worm Algorithm

samples the graphs of the HTSE i.e., high temperature seriesexpansion of classical spin models directlyis best suited for Quantum Monte Carlo Simulations whereclosed loops and open chains ' world linesat least in 2d can deal with frustration, J. S. Wang, PRE 72,(2005) 036706.sign problem for fermions ? , see U. Wolff, “Simulating theAll-Order Hopping Expansion. II. Wilson Fermions”, NPB 814(2009) 549.worm algorithm possibly are more flexible, than the clusteralgorithms

T. Neuhaus, JSC Critical Loop Gases and Worm Algorithm 9/36

Page 10: Critical Loop Gases and Worm Algorithm

Ising model examplificationtwo point function in the 2d Ising model

G(x , y) =Z(x , y)

Z(z = z)

generating partition function with two spin insertions

Z(x , y) =∑conf

e−β∑

nn si sj s(x)s(y)

is dimerized with dimers kl = 0,1 on the bonds

Z(x , y) =∑

dimers

Θ(k , x , y)tanh(β)∑

l kl

Θ: even number of dimers for z 6= x and z 6= yΘ: odd number of dimers for z = x and z = ydimer chemical potential: µ

µ = −ln[tanh(β)]

Z(x , y) =∑

Loops,Worm(x,y) e−µ∑

l kl

T. Neuhaus, JSC Critical Loop Gases and Worm Algorithm 10/36

Page 11: Critical Loop Gases and Worm Algorithm

Metropolis Algorithm Worm Update

randomly choose either head or tail of the worm : α or βrandomly choose a direction : ηinitial dimer value : kl = kα,ηpropose a flip : kl → 1− klMetropolis acceptance probability : Paccept = min[1,eµ(2kl−1)]move the positions of head or tail in case of acceptancein case of worm closure: α = β, KICK α = β to any random site[translational invariance] and continueUlli Wolff, Simulating the all-order strong coupling expansion I:Ising model demo, NPB, 810(2009) 491-502.

-50

-40

-30

-20

-10

0

10

-70 -60 -50 -40 -30 -20 -10 0 10

T. Neuhaus, JSC Critical Loop Gases and Worm Algorithm 11/36

Page 12: Critical Loop Gases and Worm Algorithm

Exact versus Monte Carlo

i G(1, i)exact G(1, i) G(1, i)/G(1, i)exact

1 1.0 1.0 1.0 12 0.768360 0.768353(30) 0.999991(39) 13 0.708394 0.708385(23) 0.999987(33) 14 0.708394 0.708342(38) 0.999927(54) 05 0.768360 0.768354(32) 0.999993(41) 16 0.768360 0.768350(40) 0.999987(52) 17 0.722100 0.722082(38) 0.999976(52) 18 0.695433 0.695370(33) 0.999910(48) 09 0.695433 0.695422(39) 0.999986(56) 1

10 0.722100 0.722175(31) 1.000103(42) 011 0.708394 0.708360(35) 0.999952(49) 112 0.695433 0.695412(37) 0.999970(53) 1

T. Neuhaus, JSC Critical Loop Gases and Worm Algorithm 12/36

Page 13: Critical Loop Gases and Worm Algorithm

Examplification : 2D Ising on Honeycomb Lattice

T. Neuhaus, JSC Critical Loop Gases and Worm Algorithm 13/36

Page 14: Critical Loop Gases and Worm Algorithm

Wolfhard Janke, Thomas Neuhaus, Adriaan M.J. Schakel, Criticalloop gases and the worm algorithm, NPB 829 (2010) 573-599

T. Neuhaus, JSC Critical Loop Gases and Worm Algorithm 14/36

Page 15: Critical Loop Gases and Worm Algorithm

Loop Gases

PERCOLATION

small β is mapped to large µ, where loops are suppressedlarge β is mapped to small µ, where loops are abundantthe 2D Ising model is self-dual

2βDual = −ln[tanh(β)]

as a function of βDual

loops are Peierls contours for the dual model on the triangular lattice

if the number of loops is even

that are closed on the periodic box

percolation order parameter

IL(βDual) = (0[Even],1[Odd])

T. Neuhaus, JSC Critical Loop Gases and Worm Algorithm 15/36

Page 16: Critical Loop Gases and Worm Algorithm

Loop Gases

the graphs of the HTSE can be characterized by geometricalindicesat criticality : fractal dimension Dradius of gyration of loops as well as worms

< R2g >=<

1n

n∑k=1

(xk − x)2 >∝ n2/D

end to end distance of worms

< R2e >=< (xα − xΩ)2 >∝ n2/D

exact determination of D in 2d O(N), Vanderzande, J. Phys. A25 (1992) at N = 1 (Ising)

D =118

= 1.375

T. Neuhaus, JSC Critical Loop Gases and Worm Algorithm 16/36

Page 17: Critical Loop Gases and Worm Algorithm

Loop Gases

as in polymer physics one can consider the fixed worm length nEnsemble and define the radial end to end distance distributionfunction Pn(r) for worms

< R2e >= Ωd

∫ ∞0

rd−1r2Pn(r)

algebraic behavior around r = 0 is described by θ = 38 = 0.375

(Ising)Pn(r) ∝ rθ

scaling of Pn(r)Pn(r) = n−d/DP(r/n1/D)

universal scaling function: P(t) with the suggested form

P(t) = atθe−btδ Cloizeaux Scaling Form

with δ = (1− 1D )−1 = 11

3 : J. des Cloizeaux, PRA 10 (1974) 1665.

T. Neuhaus, JSC Critical Loop Gases and Worm Algorithm 17/36

Page 18: Critical Loop Gases and Worm Algorithm

Loop Gases

relations of the standard critical exponents : γ, η and νto their geometrical counterparts : D, σ(line tension scaling exponent) and θ

ν =1σD

; η = 2− D − θ ; γ =D + θ

σD

the values for O(N) theories in 2d :

Model N γ η ν D σ θ

Gaussian -2 1 0 12

54

85

34

SAW 0 4332

524

34

43 1 11

24Ising 1 7

414 1 11

88

1138

XY 2 ∞ 14 ∞ 3

2 0 14

Spherical ∞ ∞ 0 ∞ 2 0 0

T. Neuhaus, JSC Critical Loop Gases and Worm Algorithm 18/36

Page 19: Critical Loop Gases and Worm Algorithm

Numerical Findings

the loop percolation critical point agrees with the field theoreticonethe FSS analysis of a loop percolation parameter at criticalityyields ν−1 = 1.0001(15)

the fractal dimension is measured to be D = 1.3752(35),compare to Dexact = 1.375we use analytic scaling corrections in a carefully choosen nwindow

< R2g,e >= an

2D (1 +

bn

)

the universal end to end distance scaling function: P(t) isnumerically determined and we find a perfect match with theCloizeaux Scaling Form. The fitted value for the θ exponentvalue is: θ = 0.3769(24), compare to to θexact = 0.375

T. Neuhaus, JSC Critical Loop Gases and Worm Algorithm 19/36

Page 20: Critical Loop Gases and Worm Algorithm

percolation order parameter scaledν−1 = 1.0001(15)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-1 -0.5 0 0.5 1

<I L

>

(βDual-βc,Dual)L1/ν

326496

T. Neuhaus, JSC Critical Loop Gases and Worm Algorithm 20/36

Page 21: Critical Loop Gases and Worm Algorithm

Derivative IL(βDual) with respect to βDual

-50

0

50

100

150

200

250

300

350

400

450

0 50 100 150 200 250 300 350 400

I L(β

Dua

l,c)’

L

ν−1 = 1.0001(15)

T. Neuhaus, JSC Critical Loop Gases and Worm Algorithm 21/36

Page 22: Critical Loop Gases and Worm Algorithm

T. Neuhaus, JSC Critical Loop Gases and Worm Algorithm 22/36

Page 23: Critical Loop Gases and Worm Algorithm

fractal dimension

LBOX χ2dof D 8D

11160 0.68198 1.43(14) 1.04(10)192 0.58752 1.475(46) 1.073(33)224 0.28772 1.381(16) 1.004(11)256 0.45341 1.364(12) 0.9924(90)288 0.62414 1.3733(79) 0.9987(58)320 0.79112 1.3733(67) 0.9988(49)352 0.98460 1.3789(55) 1.0028(40)∞ 1.3752(35) 1.0002(25)

T. Neuhaus, JSC Critical Loop Gases and Worm Algorithm 23/36

Page 24: Critical Loop Gases and Worm Algorithm

polymer end to end distribution

T. Neuhaus, JSC Critical Loop Gases and Worm Algorithm 24/36

Page 25: Critical Loop Gases and Worm Algorithm

Conlusion

the field theoretic geoemetric indices of the loop gas at N = 1can be reproduced efficientlysince thenQingquan Liu, Youjin Deng, Timothy M. Garoni, Worm MonteCarlo study of the honeycomb-lattice loop model, NPB 846(2011) 283-315.”We present a Markov-chain Monte Carlo algorithm of worm typethat correctly simulates the O(N) loop model on any (finite andconnected) bipartite cubic graph, for any real N>0, and any edgeweight, including the fully-packed limit of infinite edge weight.”

N = 0.5,1.0,1.5,2.0

lets do some bread and butter statistical physics, calculate thetwo point function in 3D Ising model for the symmetric phase

T. Neuhaus, JSC Critical Loop Gases and Worm Algorithm 25/36

Page 26: Critical Loop Gases and Worm Algorithm

Evertz and Linden Trick

H.G. Evertz and W. von der Linden in ”Simulation on InfiniteLattices” PRL 86, 5164 (2001)

T. Neuhaus, JSC Critical Loop Gases and Worm Algorithm 26/36

Page 27: Critical Loop Gases and Worm Algorithm

Evertz and Linden Trick

”infinite hypercubic boxes” an example

U. Wolff single cluster update, PRL 1989: a single bond-cluster isflipped, that contains a randomly choosen initial starting site x0

E+L:x0 = const

e.g. : x0 origin of an Cartesian coordinate system

T. Neuhaus, JSC Critical Loop Gases and Worm Algorithm 27/36

Page 28: Critical Loop Gases and Worm Algorithm

Metropolis Algorithm Worm Update

randomly choose either head or tail of the worm : α or βrandomly choose a direction : ηinitial dimer value : kl = kα,ηpropose a flip : kl → 1− klMetropolis acceptance probability : Paccept = min[1,eµ(2kl−1)]move the positions of head or tail in case of acceptancein case of worm closure: α = β, DO NOT KICK α = β to anyrandom site [thus break translational invariance] and continueUlli Wolff, Simulating the all-order strong coupling expansion I:Ising model demo, NPB, 810(2009) 491-502.

-50

-40

-30

-20

-10

0

10

-70 -60 -50 -40 -30 -20 -10 0 10

T. Neuhaus, JSC Critical Loop Gases and Worm Algorithm 28/36

Page 29: Critical Loop Gases and Worm Algorithm

Biased Sampling [Multicanonical] Trick

biased

Z (u, v , s) =∑

Dimers

e−µ∑

i,η ki,η × δ1(1−mod(Σ(u),2))

× δ1(1−mod(Σ(v),2))

×∏

i 6=u,v

δ1(0−mod(Σ(i),2))

× e+(1− 1s )(ux−vx )/ξexp

Z ∝ exp[−ux − vx

ξexp+ (1− 1

s)ux − vx

ξexp] ∝ exp[−ux − vx

sξexp]

domain size boost : s = 1.4

T. Neuhaus, JSC Critical Loop Gases and Worm Algorithm 29/36

Page 30: Critical Loop Gases and Worm Algorithm

3D Ising 2 point functionβ = 0.22130 with βc = 0.22165463(8)

-20

-15

-10

-5

0

5

-400 -200 0 200 400

ττ=8ξτ=1ξ

Γ=e-29.12τ

Γ(τ)δΓ(τ)

T. Neuhaus, JSC Critical Loop Gases and Worm Algorithm 30/36

Page 31: Critical Loop Gases and Worm Algorithm

we obtain extremely precise infinite volume data for ξexp and χ

in the temperature scaling analysis we tend to include scalingcorrections as suggested by Campbell

the final exponent values are not yet out

T. Neuhaus, JSC Critical Loop Gases and Worm Algorithm 31/36

Page 32: Critical Loop Gases and Worm Algorithm

10

20

30

40

50

60

0.22 0.2204 0.2208 0.2212 0.2216

ξ exp

β

βc

49.1(2)

0.61

0.62

0.63

0.64

0.65

0 0.04 0.08 0.12

[1/ ξexp]0.832

νeff=d ln[ξexp/β0.5] / d lntb

ν=0.6309(16)

open circles and squares: Kim, Souza, Landau, PRE 1996,Hasenbusch 2012

T. Neuhaus, JSC Critical Loop Gases and Worm Algorithm 32/36

Page 33: Critical Loop Gases and Worm Algorithm

0

2000

4000

6000

8000

10000

0.22 0.2204 0.2208 0.2212 0.2216

χ

β

βc

8960(40)

1.2

1.21

1.22

1.23

1.24

1.25

1.26

1.27

1.28

0 0.04 0.08 0.12

[1/ ξexp]0.832

γeff=d lnχ/d lntb

γ=1.2380(11)

T. Neuhaus, JSC Critical Loop Gases and Worm Algorithm 33/36

Page 34: Critical Loop Gases and Worm Algorithm

I.A. Campbell and P.H. Lundow, Extended scaling analysis of theS = 1/2 Ising ferromagnet on the simple cubic lattice, PRB 83 (2011)014411.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.22 0.2204 0.2208 0.2212 0.2216

χ

β

ADDITIONAL MATERIAL FIT IN ACCORD WITH CAMPBELL 2011

χ=1.1070(3)τ-1.2390[1-0.068(3)τ0.5-0.016τ]

χ=1.1060(x)τ-1.2390[1-0.080(x)τ0.5-0.016τ]

T. Neuhaus, JSC Critical Loop Gases and Worm Algorithm 34/36

Page 35: Critical Loop Gases and Worm Algorithm

0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000 12000 14000 16000

ξ/β0.

5

χ

0.49

0.5

0.51

0.52

0.53

0 0.04 0.08 0.12

[1/ ξexp]0.832

d ln[ξ/β0.5]/d lnχ=1/(2-ηeff)

η=0.371(40)

T. Neuhaus, JSC Critical Loop Gases and Worm Algorithm 35/36

Page 36: Critical Loop Gases and Worm Algorithm

Conlusion

simple straightforward local update for

two-point function Γ(r)

of classical ferromagnetsit is easy to implement loop updates, without recurrence to ZLoop,for O(2) classical spin models in dimension 2 and 3, in whichcase Integer Z degrees (Integer valued Currents) circulate theloopsQuantum Monte Carlo two point functionsthere is no direct access to the magnetization and no Bindercumulantobservables of loop winding at the percolation threshold have thepotential to replace the Binder cumulant [Helicity Modulus incase of O(2)]

T. Neuhaus, JSC Critical Loop Gases and Worm Algorithm 36/36