1
DualFunc)on EpiFluorescence Op)cal Tweezers to Characterize Single Polymer Interac)ons in Complex Polymeric Fluids Kent Lee 1 , Cole D. Chapman 2 , & Rae M. Anderson 1 University of San Diego 1 , University of California San Diego 2 Introduc)on and Mo)va)on Apparatus Details A highly modified inverted fluorescence microscope is used as the base for this instrument. A 1064 nm Nd:Yag DPSS laser is used to form the two op)cal traps. Two beam expanders, a variable beam expander and a twolens Keplerian beam expander, are used to increase the beam diameter from 4 μm to 80 μm to fully fill the back focal aperture of the objec)ve. Two polarizing beam spliZers (PBS) are used to split the beam into two orthogonally polarized beams to allow forma)on of the two op)cal traps. The first PBS splits the beam towards a fixed mirror and a piezoelectric mirror. The second PBS recombines the beams. A 1.2 NA, 60X water immersion objec)ve is used to magnify the sample and )ghtly focus the laser to form the two op)cal traps. A 1.4 NA oil immersion condenser collects and collimates the exi)ng trapping beams for force detec)on. Each twoaxis PSD will track the laser deflec)on along both axes from each trap, which is used to determine the force exerted on a trapped object. A flipper mirror controls whether the sample is being viewed using brigh_ield or fluorescence imaging. Important Features Dual Imaging Capabili)es 20 μm Dual Traps With One Movable Trap Precise Movement of Sample Chamber 20 μm The microsphere circled in blue is trapped in the fixed op)cal trap while the microsphere circled in green is trapped in the movable op)cal trap that is steered by a piezoelectric mirror, allowing precise movements. In the sequence to the leb, the piezoelectric mirror is steered from 0 V (first image) to 10 V (fibh image) to allow the trap (and the trapped microsphere) to move 14.7 μm (1.47 μm/ V). The movable trap is able to move along both the x and y axes, allowing for easy manipula)on of samples. The microsphere circled in pink is trapped in an op)cal trap while the microspheres circled in orange are free in solu)on, represen)ng the environment of the trapped microsphere. During this sequence of images (top), the piezoelectric stage is driven sinusoidally according to the equa)on displayed in the graph (boZom). Note that the trapped microsphere does not move with the other microspheres. This func)onality allows for precise movements of the trapped object rela)ve to the sample chamber/environment in both the x and y direc)ons. From the first to third image displayed, the environment moves approximately 29.7 μm in 1.6 seconds. Stage Posi)on m) Two light sources and two cameras allow for both brigh_ield and fluorescence imaging. The two images to the leb are of fluorescently labeled microspheres (2 μm diameter) viewed using either the brigh_ield (top) or the fluorescence (boZom) light source and camera. Fluorescence imaging allows us to view fluorescently labeled DNA molecules to visualize singlemolecule conforma)ons and dynamics during a given experiment while simultaneously measuring the force exerted on the molecule by surrounding entangled molecules (using the op)cal tweezers). However, fluorescence imaging for extended periods of )me can destroy the fluorescent dye and/or degrade the DNA. Therefore, brigh_ield imaging can be used to set up the condi)ons for data collec)on (e.g. trapping the desired molecule, moving the traps to the desired separa)on, etc.). This can extend the possible dura)on of an experiment. Brigh_ield imaging can also be used to conduct experiments in which we are only interested in the force exerted on a trapped molecule. Time (s) y(t)=14.85sin(2t) 1. Pecora, R., Science 1991, 251 (4996), 893898. 2. Shaqfeh, E. S. G., Journal of NonNewtonian Fluid Mechanics 2005, 130 (1), 128. 3. Rickgauer, J. P.; Smith, D. E., SingleMolecule Studies of DNA: Visualiza)on and Manipula)on of Individual DNA Molecules with Fluorescence Microscopy and Op)cal Tweezers. In So< Ma=er: Sca=ering, Imaging, and ManipulaDon, Pecora, R.; Borsali, R., Eds. Springer: New York, 2007; Vol. 4. 4. Neuman, K. C.; Block, S. M., Review of ScienDfic Instruments 2004, 75 (9), 27872809. 5. Lang, M.; Fordyce, P.; Engh, A.; Neuman, K.; Block, S., Biophysical Journal 2003, 84 (2), 301A301A. 6. Perkins, T. T.; Quake, S. R.; Smith, D. E.; Chu, S., Science 1994, 264 (5160), 8226. 7. Robertson, R.M.; Smith, D. E., Macromolecules 2007, 40 (9), 33733377. 8. Robertson, R.M.; Smith, D. E., Physical Review Le=ers 2007, 99 (12). References Force Detec)on and Calibra)on Because op)cal traps behave similar to a spring, the force exerted on a trapped object can be described with Hooke’s Law, F = -kx, where x is the deflec)on of the laser forming the trap (measured using PSD). Before using a trap for force detec)on, it must be calibrated to find the trap s)ffness k along each axis. To do this, we need to relate a known force on a trapped object to the measured laser deflec)on along each axis. The drag force on a microsphere in water can be accurately calculated using Stoke’s Drag Theorem, F=8πrηv, where r is radius of the object, η is dynamic viscosity (10 3 Ns/m 2 for water) , and v is the velocity of the object. The ra)o of this calculated force versus the measured trap deflec)on gives us the trap s)ffness (F/x = k) and thus the calibra)on for the trap. To use this method, we trap a microsphere (2μm in diameter, in a water solu)on) and move the piezoelectric stage sinusoidally in either the x or y direc)on according to the equa)on s(t) = 14.85sin(5t) , where s is in μm and t is in seconds. The posi)on of the stage, the trap deflec)on, and the )me are recorded at a rate of 1 kHz using Labview. The stage velocity (and thus the velocity of the trapped microsphere) v(t) is calculated by differen)a)ng the stage posi)on (x(t) or y(t)) with respect to )me. The stage velocity and measured PSD signal (laser deflec)on) versus )me are ploZed for both the xdirec)on (top) and ydirec)on (boZom). Both stage veloci)es are reduced by a factor of 1000 to make the scales of velocity and laser deflec)on comparable. The average trap constants (using 10 trials of 10 seconds each for each axis) are k x = 94 pN/V and k y = 115 pN/V for x and y respec)vely. The two trap constants are very similar indica)ng the symmetry of the trap, and values are comparable to op)cal traps we have used in previous experiments that lack fluorescence detec)on and twoaxis force measurement capabili)es. Thus, the novel features we have incorporated into this instrument do not detract from the trap’s func)onality. 0.05 0.04 0.03 0.02 0.02 0.03 0.04 0.05 0.01 0 0.01 0 1 2 3 4 5 6 7 8 9 10 PSD X Signal (V) Stage X Velocity (V/s) Time (s) 0.04 0.03 0.02 0.02 0.03 0.04 0.05 0.01 0 0.01 0 1 2 3 4 5 6 7 8 9 10 0.05 PSD Y Signal (V) Stage Y Velocity (V/s) Time (s) k x = 94 pN/V k y = 115 pN/V When fluids consis)ng of many polymers are at high concentra)ons and the polymers are sufficiently long, the polymers may become entangled with each other, leading to highly complex and intriguing fluid proper)es that are s)ll not well understood. This situa)on could be compared to understanding how one strand of spagher in a pot of spagher would move and change shapes as it is being pulled through the pot of spagher. Experimental studies of entangled polymeric fluids have been focused predominantly on how entanglements affect fluid proper)es as a whole rather than the molecular proper)es of single polymer molecules in this environment that give rise to the overall fluid proper)es. Referring back to the spagher example, it would be as though many people studied how the whole pot of spagher behaves as it is poured out of the pot instead of studying how individual strands of spagher behave. Using DNA as a model for these polymer studies 1,2 has allowed for newer methods to be used to directly understand single polymer dynamics 3 within these complex fluids. Op)cal tweezers and epifluorescence microscopy are two such methods that have been used independently for force measurement and visualiza)on of DNA respec)vely. However, fluorescence microscopy and op)cal tweezers are rarely combined 4,5 , and even more rarely used to probe polymeric fluids 6 . Thus, combining the capabili)es that these two individual instruments offer will allow for enhanced elucida)on of single polymer proper)es in a polymeric fluid because of the ability to simultaneously visualize the dynamics and conformaDonal responses of single molecules while quanDtaDvely measuring the forces exerted on these molecules by neighboring polymers. By building and using this unique apparatus, we hope to elucidate the perplexing nature of single polymers in complex entangled polymeric fluids. Background Fluorescence microscopy allows for clear visualiza)on of samples that are tagged with fluorescent dye. Having the fluorescence capability allows us to see conforma)onal changes of a sample as it is entangled and interacted with. In this figure, the green represents fluorescently labeled DNA while the black is unlabeled DNA and would not be visible under the fluorescence microscope. By combining fluorescence microscopy with op)cal tweezers, forces measured by op)cal tweezers can be aZributed to conforma)onal changes visualized by fluorescence microscopy. Op)cal tweezers take advantage of the conserva)on of momentum of light par)cles to trap microscopic par)cles in place on a microscope slide with a laser. When there is no force ac)ng on the trapped par)cle (top leb), the deflec)on exi)ng the trap is centered on the PSD (top right). When there is a force ac)ng on the trapped par)cle (boZom leb), the deflec)on is off center of the PSD (boZom right). The force on the par)cle can be measured by this deflec)on. This will be useful in measuring the forces of other DNA pulling on a single strand of entangled DNA. F = k t x Op)cal tweezers are comparable to springs. An op)cally trapped par)cle is analogous to a par)cle that is bound to a spring with one fixed end. When a force pushes the par)cle away from the equilibrium posi)on of the trap (or spring), there is a restoring force that pulls it back towards the equilibrium posi)on. Because op)cal tweezers can be modeled as a spring, different tweezers setups have different trap constants (similar to how different springs have different spring constants). As a result, in order to accurately measure force, the op)cal tweezers must first be calibrated to determine the trap constant.

Creative Collaboration Draft Final - University of San …home.sandiego.edu/~randerson/KLAPS11.pdf · Dual%Func)on+Epi%Fluorescence+Op)cal+Tweezers+to+Characterize+Single+ Polymer+Interac)ons+in+Complex+Polymeric+Fluids+

Embed Size (px)

Citation preview

Page 1: Creative Collaboration Draft Final - University of San …home.sandiego.edu/~randerson/KLAPS11.pdf · Dual%Func)on+Epi%Fluorescence+Op)cal+Tweezers+to+Characterize+Single+ Polymer+Interac)ons+in+Complex+Polymeric+Fluids+

Dual-­‐Func)on  Epi-­‐Fluorescence  Op)cal  Tweezers  to  Characterize  Single  Polymer  Interac)ons  in  Complex  Polymeric  Fluids  

Kent  Lee1,  Cole  D.  Chapman2,  &  Rae  M.  Anderson1  University  of  San  Diego1,  University  of  California  San  Diego2  

Introduc)on  and  Mo)va)on   Apparatus  Details  

• A  highly  modified  inverted  fluorescence  microscope  is  used  as  the  base  for  this  instrument.  • A  1064  nm  Nd:Yag  DPSS  laser  is  used  to  form  the  two  op)cal  traps.  • Two  beam  expanders,  a  variable  beam  expander  and  a  two-­‐lens  Keplerian  beam  expander,  are  used  to  increase  the  beam  diameter  from  4  µm  to  80  µm  to  fully  fill  the  back  focal  aperture  of  the  objec)ve.  • Two  polarizing  beam  spliZers  (PBS)  are  used  to  split  the  beam  into  two  orthogonally  polarized  beams  to  allow  forma)on  of  the  two  op)cal  traps.  The  first  PBS  splits  the  beam  towards  a  fixed  mirror  and  a  piezoelectric  mirror.  The  second  PBS  recombines  the  beams.  • A  1.2  NA,  60X  water  immersion  objec)ve  is  used  to  magnify  the  sample  and  )ghtly  focus  the  laser  to  form  the  two  op)cal  traps.    • A  1.4  NA  oil  immersion  condenser  collects  and  collimates  the  exi)ng  trapping  beams  for  force  detec)on.  • Each  two-­‐axis  PSD  will  track  the  laser  deflec)on  along  both  axes  from  each  trap,  which  is  used  to  determine  the  force  exerted  on  a  trapped  object.  • A  flipper  mirror  controls  whether  the  sample  is  being  viewed  using  brigh_ield  or  fluorescence  imaging.  

Important  Features  Dual  Imaging  Capabili)es  

20  µm  

Dual  Traps  With  One  Movable  Trap  

Precise  Movement  of  Sample  Chamber  

20  µm  

         The  microsphere  circled  in  blue  is  trapped  in  the  fixed  op)cal  trap  while  the  microsphere  circled  in  green  is  trapped  in  the  movable  op)cal  trap  that  is  steered  by  a  piezoelectric  mirror,  allowing  precise  movements.  In  the  sequence  to  the  leb,  the  piezoelectric  mirror  is  steered  from  0  V  (first  image)  to  10  V  (fibh  image)  to  allow  the  trap  (and  the  trapped  microsphere)  to  move  14.7  µm  (1.47  µm/V).  The  movable  trap  is  able  to  move  along  both  the  x  and  y  axes,  allowing  for  easy  manipula)on  of  samples.  

           The  microsphere  circled  in  pink  is  trapped  in  an  op)cal  trap  while  the  microspheres  circled  in  orange  are  free  in  solu)on,  represen)ng  the  environment  of  the  trapped  microsphere.  During  this  sequence  of  images  (top),  the  piezoelectric  stage  is  driven  sinusoidally  according  to  the  equa)on  displayed  in  the  graph  (boZom).  Note  that  the  trapped  microsphere  does  not  move  with  the  other  microspheres.  This  func)onality  allows  for  precise  movements  of  the  trapped  object  rela)ve  to  the  sample  chamber/environment  in  both  the  x  and  y  direc)ons.  From  the  first  to  third  image  displayed,  the  environment  moves  approximately  29.7  µm  in  1.6  seconds.  

Stage    

Posi)o

n (µm)  

         Two  light  sources  and  two  cameras  allow  for  both  brigh_ield  and  fluorescence  imaging.  The  two  images  to  the  leb  are  of  fluorescently  labeled  microspheres  (2  µm  diameter)  viewed  using  either  the  brigh_ield  (top)  or  the  fluorescence  (boZom)  light  source  and  camera.              Fluorescence  imaging  allows  us  to  view  fluorescently  labeled  DNA  molecules  to  visualize  single-­‐molecule  conforma)ons  and  dynamics  during  a  given  experiment  while  simultaneously  measuring  the  force  exerted  on  the  molecule  by  surrounding  entangled  molecules  (using  the  op)cal  tweezers).  However,  fluorescence  imaging  for  extended  periods  of  )me  can  destroy  the  fluorescent  dye  and/or  degrade  the  DNA.  Therefore,  brigh_ield  imaging  can  be  used  to  set  up  the  condi)ons  for  data  collec)on  (e.g.  trapping  the  desired  molecule,  moving  the  traps  to  the  desired  separa)on,  etc.).  This  can  extend  the  possible  dura)on  of  an  experiment.    Brigh_ield  imaging  can  also  be  used  to  conduct  experiments  in  which  we  are  only  interested  in  the  force  exerted  on  a  trapped  molecule.      

Time  (s)  

y(t)=14.85sin(2t)  

1.  Pecora,  R.,  Science  1991,  251  (4996),  893-­‐898.    2.  Shaqfeh,  E.  S.  G.,  Journal  of  Non-­‐Newtonian  Fluid  Mechanics  2005,  130  (1),  1-­‐28.  3.  Rickgauer,  J.  P.;  Smith,  D.  E.,  Single-­‐Molecule  Studies  of  DNA:  Visualiza)on  and  Manipula)on  of  Individual  DNA  Molecules  with  Fluorescence  

Microscopy  and  Op)cal  Tweezers.  In  So<  Ma=er:  Sca=ering,  Imaging,  and  ManipulaDon,  Pecora,  R.;  Borsali,  R.,  Eds.  Springer:  New  York,  2007;  Vol.  4.  

4.  Neuman,  K.  C.;  Block,  S.  M.,  Review  of  ScienDfic  Instruments  2004,  75  (9),  2787-­‐2809.  5.  Lang,  M.;  Fordyce,  P.;  Engh,  A.;  Neuman,  K.;  Block,  S.,  Biophysical  Journal  2003,  84  (2),  301A-­‐301A.  6.  Perkins,  T.  T.;  Quake,  S.  R.;  Smith,  D.  E.;  Chu,  S.,  Science  1994,  264  (5160),  822-­‐6.  7.  Robertson,  R.M.;  Smith,  D.  E.,  Macromolecules  2007,  40  (9),  3373-­‐3377.  8.  Robertson,  R.M.;  Smith,  D.  E.,  Physical  Review  Le=ers  2007,  99  (12).  

References  

Force  Detec)on  and  Calibra)on  

 Because  op)cal  traps  behave  similar  to  a  spring,  the  force  exerted  on  a  trapped  object  can  be  described  with  Hooke’s  Law,  F = -kx,  where  x  is  the  deflec)on  of  the  laser  forming  the  trap  (measured  using  PSD).  Before  using  a  trap  for  force  detec)on,  it  must  be  calibrated  to  find  the  trap  s)ffness  k along  each  axis.  To  do  this,  we  need  to  relate  a  known  force  on  a  trapped  object  to  the  measured  laser  deflec)on  along  each  axis.  The  drag  force  on  a  microsphere  in  water  can  be  accurately  calculated  using  Stoke’s  Drag  Theorem,  F=8πrηv,  where  r  is  radius  of  the  object,  η  is  dynamic  viscosity  (10-­‐3  Ns/m2  for  water)  ,  and  v  is  the  velocity  of  the  object.    The  ra)o  of  this  calculated  force  versus  the  measured  trap  deflec)on  gives  us  the  trap  s)ffness  (F/x = k)  and  thus  the  calibra)on  for  the  trap.    To  use  this  method,  we  trap  a  microsphere  (2-­‐µm  in  diameter,  in  a  water  solu)on)  and  move  the  piezoelectric  stage  sinusoidally  in  either  the  x  or  y  direc)on  according  to  the  equa)on  s(t) = 14.85sin(5t) , where s is  in  µm  and  t  is  in  seconds.    The  posi)on  of  the  stage,  the  trap  deflec)on,  and  the  )me  are  recorded  at  a  rate  of  1  kHz  using  Labview.    The  stage  velocity  (and  thus  the  velocity  of  the  trapped  microsphere)  v(t)  is  calculated  by  differen)a)ng  the  stage  posi)on  (x(t)  or  y(t))  with  respect  to  )me.  The  stage  velocity  and  measured  PSD  signal  (laser  deflec)on)  versus  )me  are  ploZed  for  both  the  x-­‐direc)on  (top)  and  y-­‐direc)on  (boZom).  Both  stage  veloci)es  are  reduced  by  a  factor  of  1000  to  make  the  scales  of  velocity  and  laser  deflec)on  comparable.    The  average  trap  constants  (using  10  trials  of  10  seconds  each  for  each  axis)  are  kx  =  94  pN/V  and  ky  =  115  pN/V  for  x  and  y  respec)vely.    The  two  trap  constants  are  very  similar  indica)ng  the  symmetry  of  the  trap,  and  values  are  comparable  to  op)cal  traps  we  have  used  in  previous  experiments  that  lack  fluorescence  detec)on  and  two-­‐axis  force  measurement  capabili)es.    Thus,  the  novel  features  we  have  incorporated  into  this  instrument  do  not  detract  from  the  trap’s  func)onality.  

0.05  

0.04  

0.03  

0.02  

-­‐0.02  

-­‐0.03  

-­‐0.04  

-­‐0.05  

0.01  

0  

-­‐0.01  

0   1   2   3   4   5   6   7   8   9   10  

PSD  X  Signal  (V)  

Stage  X  Ve

locity  (V

/s)  

Time  (s)  

0.04  

0.03  

0.02  

-­‐0.02  

-­‐0.03  

-­‐0.04  

-­‐0.05  

0.01  

0  

-­‐0.01  

0   1   2   3   4   5   6   7   8   9   10  

0.05  

PSD  Y  Signal  (V)  

Stage  Y  Ve

locity  (V

/s)  

Time  (s)  

kx  =  94  pN/V  

ky  =  115  pN/V  

         When  fluids  consis)ng  of  many  polymers  are  at  high  concentra)ons  and  the  polymers  are  sufficiently  long,  the  polymers  may  become  entangled  with  each  other,  leading  to  highly  complex  and  intriguing  fluid  proper)es  that  are  s)ll  not  well  understood.  This  situa)on  could  be  compared  to  understanding  how  one  strand  of  spagher  in  a  pot  of  spagher  would  move  and  change  shapes  as  it  is  being  pulled  through  the  pot  of  spagher.  Experimental  studies  of  entangled  polymeric  fluids  have  been  focused  predominantly  on  how  entanglements  affect  fluid  proper)es  as  a  whole  rather  than  the  molecular  proper)es  of  single  polymer  molecules  in  this  environment  that  give  rise  to  the  overall  fluid  proper)es.  Referring  back  to  the  spagher  example,  it  would  be  as  though  many  people  studied  how  the  whole  pot  of  spagher  behaves  as  it  is  poured  out  of  the  pot  instead  of  studying  how  individual  strands  of  spagher  behave.              Using  DNA  as  a  model  for  these  polymer  studies1,2  has  allowed  for  newer  methods  to  be  used  to  directly  understand  single  polymer  dynamics3  within  these  complex  fluids.  Op)cal  tweezers  and  epi-­‐fluorescence  microscopy  are  two  such  methods  that  have  been  used  independently  for  force  measurement  and  visualiza)on  of  DNA  respec)vely.  However,  fluorescence  microscopy  and  op)cal  tweezers  are  rarely  combined4,5,  and  even  more  rarely  used  to  probe  polymeric  fluids6  .            Thus,  combining  the  capabili)es  that  these  two  individual  instruments  offer  will  allow  for  enhanced  elucida)on  of  single  polymer  proper)es  in  a  polymeric  fluid  because  of  the  ability  to  simultaneously  visualize  the  dynamics  and  conformaDonal  responses  of  single  molecules  while  quanDtaDvely  measuring  the  forces  exerted  on  these  molecules  by  neighboring  polymers.            By  building  and  using  this  unique  apparatus,  we  hope  to  elucidate  the  perplexing  nature  of  single  polymers  in  complex  entangled  polymeric  fluids.  

Background  

Fluorescence  microscopy  allows  for  clear  visualiza)on  of  samples  that  are  tagged  with  fluorescent  dye.  Having  the  fluorescence  capability  allows  us  to  see  conforma)onal  changes  of  a  sample  as  it  is  entangled  and  interacted  with.  In  this  figure,  the  green  represents  fluorescently  labeled  DNA  while  the  black  is  unlabeled  DNA  and  would  not  be  visible  under  the  fluorescence  microscope.      By  combining  fluorescence  microscopy  with  op)cal  tweezers,  forces  measured  by  op)cal  tweezers  can  be  aZributed  to  conforma)onal  changes  visualized  by  fluorescence  microscopy.  

Op)cal  tweezers  take  advantage  of  the  conserva)on  of  momentum  of  light  par)cles  to  trap  microscopic  par)cles  in  place  on  a  microscope  slide  with  a  laser.  When  there  is  no  force  ac)ng  on  the  trapped  par)cle  (top  leb),  the  deflec)on  exi)ng  the  trap  is  centered  on  the  PSD  (top  right).  When  there  is  a  force  ac)ng  on  the  trapped  par)cle  (boZom  leb),  the  deflec)on  is  off  center  of  the  PSD  (boZom  right).  The  force  on  the  par)cle  can  be  measured  by  this  deflec)on.  This  will  be  useful  in  measuring  the  forces  of  other  DNA  pulling  on  a  single  strand  of  entangled  DNA.  

F  =  -­‐ktx  

Op)cal  tweezers  are  comparable  to  springs.  An  op)cally  trapped  par)cle  is  analogous  to  a  par)cle  that  is  bound  to  a  spring  with  one  fixed  end.  When  a  force  pushes  the  par)cle  away  from  the  equilibrium  posi)on  of  the  trap  (or  spring),  there  is  a  restoring  force  that  pulls  it  back  towards  the  equilibrium  posi)on.  Because  op)cal  tweezers  can  be  modeled  as  a  spring,  different  tweezers  setups  have  different  trap  constants  (similar  to  how  different  springs  have  different  spring  constants).  As  a  result,  in  order  to  accurately  measure  force,  the  op)cal  tweezers  must  first  be  calibrated  to  determine  the  trap  constant.