43
1 UČNI NAČRT PREDMETA / COURSE SYLLABUS Predmet: Izbrana poglavja iz sodobne fizike Course title: Selected Topics in Contemporary Physics Študijski program in stopnja Study programme and level Študijska smer Study field Letnik Academic year Semester Semester Univerzitetni študijski program 3.stopnje Matematika in fizika Fizika 1 prvi Third cycle academic study program Mathematics and Physics Physics 1 first Vrsta predmeta / Course type obvezni predmet/compulsory course Univerzitetna koda predmeta / University course code: ??? Predavanja Lectures Seminar Seminar Vaje Tutorial Klinične vaje work Druge oblike študija Samost. delo Individ. work ECTS 60 300 12 Nosilec predmeta / Lecturer: Prof. dr. Boštjan Golob / Prof. dr. Boštjan Golob Jeziki / Languages: Predavanja / Lectures: Slovensko/Slovene Vaje / Tutorial: Slovensko/Slovene Pogoji za vključitev v delo oz. za opravljanje študijskih obveznosti: Prerequisits: Vpis v letnik študija. Enrollment into the program. Vsebina: Content (Syllabus outline):

Course title: Letnik Semester Academic Study field ... file1 UČNI NAČRT PREDMETA / OURSE SYLLAUS Predmet: Izbrana poglavja iz sodobne fizike Course title: Selected Topics in Contemporary

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

1

UČNI NAČRT PREDMETA / COURSE SYLLABUS

Predmet: Izbrana poglavja iz sodobne fizike

Course title: Selected Topics in Contemporary Physics

Študijski program in stopnja Study programme and level

Študijska smer Study field

Letnik Academic

year

Semester Semester

Univerzitetni študijski program 3.stopnje Matematika in fizika

Fizika 1 prvi

Third cycle academic study program Mathematics and

Physics Physics 1 first

Vrsta predmeta / Course type obvezni predmet/compulsory course

Univerzitetna koda predmeta / University course code: ???

Predavanja Lectures

Seminar Seminar

Vaje Tutorial

Klinične vaje work

Druge oblike študija

Samost. delo Individ.

work ECTS

60 300 12

Nosilec predmeta / Lecturer: Prof. dr. Boštjan Golob / Prof. dr. Boštjan Golob

Jeziki / Languages:

Predavanja / Lectures:

Slovensko/Slovene

Vaje / Tutorial: Slovensko/Slovene

Pogoji za vključitev v delo oz. za opravljanje študijskih obveznosti:

Prerequisits:

Vpis v letnik študija. Enrollment into the program.

Vsebina:

Content (Syllabus outline):

2

Teme A. Gomboc: Izzivi moderne visoko-energijske astrofizike, sodoben pogled na razvoj galaksij, modeli nastanka osončij in eksoplanetov.

Teme T. Zwittra: Galaktična arheologija; dinamika, zgodovina in nastanek Galaksije in njenih komponent vključno z medzvezdnim prostorom in temno snovjo; populacijske lastnosti osnovnih parametrov zvezd (starost, masa, velikost, rotacija, aktivnost in podrobna kemična sestava) od prvih zvezd v vesolju do danes in v prihodnje. Populacijske lastnosti samostojnih, dvojnih, večkratnih zvezdnih sistemov, ter planetov v takih sistemih.

Teme S. Fajfer: Fizika izven Standardnega modela, izvor nevtrinskih mas, teorije poenotenja osnovnih interakcij, super-simetrične teorije, teorije v več-dimenzionalnih prostorih.

Teme P. Križana in B. Goloba: sodobne metode v fiziki jedra in osnovnih delcev, rezultati raziskav eksperimentov na pospeševanikih v območju največjih energij oziroma pri velikih pogostostih reakcij; meritve redkih procesov pri poskusih globoko pod zemljo; rezultati raziskav v astrofiziki osnovnih delcev.

Teme J. Bonče: Modeli močno koreliranih elektronov, spinski ter frustrirani spinski modeli, Mottovi izolatorji, Kondo sistemi, topološki izolatorji, neravnovesni sistemi, relaksacijska dinamika koreliranih elektronskih sistemov, gnani večdelčni sistemi; numerične metode za reševanje koreliranih elektronskih sistemov: Lanczoseva metoda, metoda renormalizacijske grupe, metoda dinamičnega povprečnega polja, časovno odvisne metode.

Teme I. Muševiča: fizika tekočekristalnih površin in koloidov - površine in struktura mejnih plasti tekočih kristalov. Eksperimentalne tehnike: strukturne sile, AFM, STM, optična nelinearna spektroskopija.

Topics of A. Gomboc: Challenges in modern high-energy astrophysics, contemporary view on evolution of galaxies, models of planetary systems and exoplanets formation.

Topics of T. Zwitter: Galactic archaeology; dynamics, history and formation of our Galaxy and its components, including interstellar matter and dark matter; population properties of basic stellar parameters (age, mass, size, rotation, activity and detailed chemical composition) from the first stars in the Universe to the ones today and in the future. Population properties of single, double, multiple stellar systems, and of planets in such systems.

Topics of S. Fajfer: Physics beyond standard model, origin of neutrino masses, grand unified theories of fundamental interactions, supersymetric theories, theories in extra dimensional space.

Topics of P. Križan and B. Golob: contemporary experimental methods in nuclear and particle physics, research results from energy and intensity frontier experiments; measurements of rare processes in underground experiments; research results in astroparticle physics.

Topics of J. Bonča: Model with strongly correlated electrons, spin and frustrated spin systems, Mott insulators, Kondo systems, topological insulators, nonequilibrium systems, relaxation dynamics of correlated electron systems, driven many body systems; numerical metods: Lanczos method, metod of numerical renormalisation group, dynamical mean field method, time-dependent methods.

Topics of I. Muševič: Physics of liquid crystal surfaces and colloids – surfaces and structure of liquid crystal interfaces. Experimental techniques: structural forces, AFM, STM, nonlinear optical spectroscopy. Nematic colloids, topological defects in liquid crystals, topology of nematic and chiral nematic colloids.

3

Nematski koloidi, topološki defekti v tekočih kristalih, topologija nematskih in kiralnih nematskih koloidov. Eksperimentalne tehnike: konfokalna fluorescenčna mikroskopija, optična pinceta in nelinearne tehnike mikroskopije v mehki snovi.

Teme R. Podgornika, M. Ravnika in P. Ziherla: Tekoči kristali: elastična teorija nematske, lamelarne, kolumnarne in smektične faze; nematodinamika; dislokacije, disklinacije in topološki točkasti defekti; fazni prehodi v tekočih kristalih. Polimeri: statistika polimerov; Edwardsova teorija; skalirni zakoni za polimere; samousklajena teorija polja; Floryjeva teorija in segregacija; interakcija polimerov s površinami; dinamika posamezne verige in sistema več verig; Rousova in Zimmova dinamika; prepletenost. Koloidi: efektivne interakcije v koloidih; koloidna stekla in otrpla stanja snovi; hidrodinamika koloidov. Teme I. Drevenšek Olenik: Sodobna optična spektroskopija, časovno ločene metode, optične tehnike na osnovi sipanja svetlobe, izbrani nelinearni optični pojavi, optične komunikacije, optično procesiranje signalov, specialni materiali za uporabo v fotoniki, integrirana fotonska vezja.

Teme R. Jeraja: Sodobne metode v medicinski fiziki; sodobne metodologije v fiziki medicinskega slikanja (PET, SPECT, MRI, CT) in biomedicinske optike; sodobne metodologije v fiziki terapije (radioterapija, tarčne terapije); rezultati kliničnih raziskav v onkologiji, nevrologiji in kardiologiji; modeliranje bioloških sistemov (tumorski sistemi, nevrološki sistemi, kardiovaskularni sistemi)

Experimental techniques: confocal fluorescent microscopy, optical tweezers and nonlinear microscopy methods in soft matter.

Topics of R. Podgornik, M. Ravnik and P. Ziherl: Liquid crystals: elasticity of nematic, lamellar, columnar, and smectic phases; nematodynamics; dislocations, disclinations, and topological point defects; phase transitions in liquid crystals. Polymers: polymer statistics; Edwards theory; polymer scaling; self-consistent field theory; Flory theory and segregation; polymer-surface interctions; dynamics of single chain and many-chain systems; Rouse and Zimm dynamics, entanglement effects. Colloids: effective interactions in colloids; colloidal glasses and arrested states of matter; hydrodynamics of colloids.

Topics of I. Drevenšek Olenik: modern optical spectroscopy, time-resolved methods, optical techniques based on light scattering, selected nonlinear optical phenomena, optical communications, optical signal processing, special materials for applications in photonics, integrated photonics units.

Topics of R. Jeraj: Advanced methods in medical physics; advanced methodologies in medical imaging (PET, SPECT, MRI, CT) and biomedical optics; advanced methodologies in therapy (radiotherapy, targeted therapies); results of clinical studies in oncology, neurology and cardiology; modeling of biological systems (tumors, neuro, cardiovascular systems)

Temeljni literatura in viri / Readings:

4

S. Rosswog, M. Bruggen, Introduction to High-Energy Astrophysics, (Cambridge University Press), 2007.

M. van Putten, A. Levinson, Relativistic Astrophysics of the Transient Universe, (Cambridge University Press), 2012.

H. Mo, F. van den Bosch, S. White,Galaxy Formation and Evolution, (Cambridge University Press), 2010.

P.J. Armitage, Astrophysics of Planet Formation, (Cambridge University Press), 2013.

B.W.Carroll, D.A.Ostlie: An introduction to Modern Astrophysics, Addison-Wesley, 2006.

D.F. Gray: The Observation and Analysis of Stellar Atmospheres, Cambridge Univ. Press, 2005.

A.G.G.M Tielens: The Physics and Chemistry of the Interstellar Medium, Cambridge Univ. Press, 2005.

K.Freeman, J. Bland-Hawthorn: The New Galaxy: Signatures of its Formation, Annual Review of Astronomy and Astrophysics (2002) 40, 487.

Y. Nagashima, Beyond the standard Model of Elementary Particle Physics Wiley/VCH, 2012;

O.M.Boyarkin, The Standard Model and Beyond II, CRC Press 2011.

The Physics of the B Factories, Bevan, A., Golob, B., Mannel, Th., Prell, S., Yabsley, B. (Eds.), Springer 2015;

LHC Phenomenology, Einan Gardi, Nigel Glover, Aidan Robson (Eds.), Springer 2015

Y. Nagashima, Beyond the standard Model of Elementary Particle Physics Wiley/VCH, 2012;

O.M.Boyarkin, The Standard Model and Beyond II, CRC Press 2011.

Gerald. D. Mahan, Many-Particle Physics, Plenum Press, New York 1990

A. Avella, F. Mancini, Strongly Correlated Systems, Springer Series in Solid-State Sciences 176, Spinger-Verlag Berlin Heilderberg 2013.

J. Israelachvili, Intermolecular and Surface Forces, Academic Press, 1992.

P. G. de Gennes, J. Prost, The Physics of Liquid Crystals, Oxford Science Publications, 1993.

P. M. Chaikin, T. C. Lubensky, Principles of condensed matter physics, Cambridge University Press, 1995.

M. Kleman in O. Lavrentovich, Soft Matter - An Introduction (Springer, Berlin, 2003).

T. A. Witten (s P. A. Pincusom), Structured Fluids: Polymers, Colloids, Surfactants (Oxford University Press, Oxford, 2004).

M. Daoud in C. E. Williams (ur.), Soft Matter Physics (Springer, Berlin, 1999).

P. G. de Gennes in J. Prost, The Physics of Liquid Crystals (Oxford University Press, Oxford, 2003).

P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979).

M. Muthukumar, Polymer Translocation (CRC Press, Boca Raton, 2011).

G. R. Strobl, The Physics of Polymers (Springer, Berlin, 2007).

C. Bechinger, F. Sciortino in P. Ziherl (ur.), Physics of Complex Colloids (IOS Press, Amsterdam, 2013).

W. Demtroder, Laser Spectroscopy, 2. izdaja, Springer, 1995.

G. H. Rieke, Detection of Light, Cambridge University Press, 2003.

A. Yariv, Optical Electronics in Modern Communications, Oxford University Press, 1997.

Y. R. Shen, Principles of Nonlinear Optics, John Wiley & Sons, 2002.

R. Weissleder, B. Ross, A. Rehemtulla, S Gambhir, Editors, 2009, Molecular Imaging, People's Medical Publication House, ISBN: 978-1607950059

J. Van Dyk, Editor. 2013, The Modern Technology of Radiation Oncology, Medical Physics Publishing, ISBN: 978-1930524576

V. Cristini and J. Lowengrub, 2010, Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach, Cambridge University Press, ISBN: 978-0521884426

Cilji in kompetence:

Objectives and competences:

Predstavitev sodobnih izzivov in seznanitev z najnovejšimi dognanji na različnih področjih fizike.

Presentation of current challenges and acquaintance with recent achievements in various fields of physics.

5

Predvideni študijski rezultati:

Intended learning outcomes:

Znanje in razumevanje Študent pridobi pregled na trenutnimi odprtimi znanstvenimi vprašanji na različnih področjih fizike in razumevanje teoretičnih in eksperimentalnih pristopov k reševanju le-teh.

Uporaba Pridobljeno znanje študent uporabi pri raziskovalnem delu za doktorsko disertacijo.

Refleksija Uporaba pridobljenega znanja za povezovanje z sorodnimi problemi in znanstvenimi metodami na področjih, ki niso neposredno povezana s tematiko doktorske disertacije.

Prenosljive spretnosti - niso vezane le na en predmet Poglobljeno razumevanje trenutnega raziskovalnega stanja na različnih področjih fizike omogoča povezovanje teoretičnih razlag in eksperimentalnih metod.

Knowledge and understanding: Student acquires an overview of open scientific questions in various fields of physics and understanding of theoretical and experimental methods to solve those. Application: Obtained knowledge can be applied in doctoral thesis scientific research. Reflection: Usage of acquired knowledge to interconnection of related problems and scientific methods not directly involved in the field of doctoral thesis. Transferable skills: Deepened insight into contemporary scientific state-of-the-art in various fields provides knowledge that enables interconnection of theoretical and experimental methods.

Metode poučevanja in učenja:

Learning and teaching methods:

Predavanja, konzultacije. Lectures, consultations.

Načini ocenjevanja:

Delež (v %) / Weight (in %)

Assessment:

Aktivna udeležba na predavanjih in v diskusijah

Razgovor, opravil / ni opravil (ob upoštevanju Statuta UL in

75%

25%

Active attendance at lectures and in discussions

Discussion, passed / not passed

6

fakultetnih pravil).

(according to the Statute of UL)

Reference nosilca / Lecturer's references:

M. Starič, B. Golob et al., Evidence for D0 - D0 mixing. Phys. Rev. Lett., 2007, vol. 98, str. 211803-1-211803-6.

A. Zupanc et al., Measurement of yCP in D0 meson decays to the KSK+K- final state. Phys. rev., D Part. fields gravit. cosmol., 2009, vol. 80, str. 052006-1 052006-11.

B. Golob, Topics in charm hadrons at Belle. Mod. Phys. Lett. A, 2009, vol. 24, no. 18, str. 1383-1397.

1

UČNI NAČRT PREDMETA / COURSE SYLLABUS

Predmet: Izbrana poglavja iz raziskav fizikalnega izobraževanja: pregled in metode

Course title: Selected Topics in Physics Education Research: Overview and Methods

Študijski program in stopnja Study programme and level

Študijska smer Study field

Letnik Academic

year

Semester Semester

Univerzitetni študijski program 3.stopnje Matematika in fizika

Fizika 1 prvi

Third cycle academic study program Mathematics and

Physics Physics 1 first

Vrsta predmeta / Course type obvezni predmet/compulsory course

Univerzitetna koda predmeta / University course code: ???

Predavanja Lectures

Seminar Seminar

Vaje Tutorial

Klinične vaje work

Druge oblike študija

Samost. delo Individ.

work ECTS

60 300 12

Nosilec predmeta / Lecturer: Prof. dr. Gorazd PLANINŠIČ / Prof. dr. Gorazd PLANINŠIČ

Jeziki / Languages:

Predavanja / Lectures:

Slovensko in/ali angleško/Slovene and/or English

Vaje / Tutorial: Slovensko in/ali angleško/Slovene and/or English

Pogoji za vključitev v delo oz. za opravljanje študijskih obveznosti:

Prerequisites:

Vpis v letnik študija. Pogoj za opravljanje predmeta je zaključena 2. stopnja študijskega programa fizika ali pedagoška fizika. Pričakuje se, da predmet vpišejo študenti, ki imajo jasno željo po opravljanju doktorata na področju raziskav v izobraževalni fiziki.

Enrollment into the program. Students enrolled in the program need to have a master degree (complete 2nd cycle) in physics/physics education and a strong interest in pursuing a doctoral degree in Physics Education Research.

Vsebina:

Content (Syllabus outline):

2

Pri predmetu bodo obravnavane naslednje vsebine:

1. Raziskovanje v izobraževalni fiziki (odslej PER) in glavni zgodovinski mejniki PER.

2. Raziskovalne metode PER (kvalitativne, kvantitativne in kombinirane; opazovanja, pred/po test, analiza pisnih izdelkov z uporabo kodirnih shem ali ocenjevalnih tabel, intervju, protokol 'razmišljaj naglas' in analiza videoposnetkov, analiza modelov, sledenje pogledu itd.)

3. Teoretična ogrodja (alternativne predstave, elementi razmišljanja, kognitivna lingvistika, teorija aktivnosti itd.)

4. Primeri raziskovalnih paradigem različnih uveljavljenih raziskovalnih skupin in njihovi pogledi na trenutno razumevanje učenja fizike.

5. Izsledki PER o učenju fizike, odnosu do fizike, epistemologiji in o razvoju naravoslovnega razmišljanja. Študije o ekspertih-naravoslovcih: načini razmišljanja, reševanje problemov, epistemologija itd.

6. Možne povezave med izsledki PER in razvojem kurikula. Kako vpliva PER na institucionalne spremembe?

The course will address the following topics:

1. PER and the main milestones in the history of PER.

2. Research methods in PER (qualitative, quantitatvie and mixed-methods research, observations, pre-post-testing, analysis of student written work using coding schemes or rubrics, interviews, think aloud protocol video analysis, model analysis, eye-tracking, etc.)

3. Theoretical frameworks (misconceptions framework, resource framework, cognitive linguistics framework, activity theory etc.)

4. Examples of research paradigms of different research groups in PER and their relationships to existing views of student learning of physics.

5. PER findings about student learning, attitudes, epistemology, development of scientific reasoning. Studies of experts-scientists: reasoning, problem solving, epistemology, etc.?

6. Possible connections between research findings and curriculum development. How does PER affect institutional transformation?

Temeljni literatura in viri / Readings:

o Arons, »Teaching Introductory Physics«, Wiley&Sons, 1997.

McDermott, L.C., 1991. Millikan Lecture 1990: What we teach and what is learned-Closing the gap. American Journal of Physics, 59(4), pp.301–315. Available at: http://link.aip.org/link/?AJP/59/301/2.

Redish, E.F., 1999. Millikan Lecture 1998: Building a Science of Teaching Physics. American Journal of Physics, 67(7).

Van Heuvelen, A., 2001. Millikan Lecture 1999: The Workplace, Student Minds, and Physics Learning Systems. American Journal of Physics, 69(11).

Hammer, D., 1994. Epistemological Beliefs in Introductory Physics. Cognition and Instruction, 12(2), pp.151–183. Available at: http://www.tandfonline.com/doi/pdf/10.1207/s1532690xci1202_4 [Accessed June 3, 2014].

Brookes, D. & Etkina, E., 2009. “Force,” ontology, and language. Physical Review Special Topics - Physics Education Research, 5(1), p.010110. Available at: http://link.aps.org/doi/10.1103/PhysRevSTPER.5.010110 [Accessed January 8, 2015].

Fredlund, T., Airey, J. & Linder, C., 2012. Exploring the role of physics representations: an illustrative example from students sharing knowledge about refraction. European Journal of Physics, 33(3), pp.657–666. Available at: http://stacks.iop.org/0143-0807/33/i=3/a=657?key=crossref.9671093c45d36acb50348b02a4a90ed5 [Accessed June 5, 2014].

3

Otero, V.K. & Harlow, D.B., Getting Started in Qualitative Physics Education Research. , pp.1–66. Available at: http://www.compadre.org/per/items/detail.cfm?ID=9122

Poklinek Čančula, M., Planinšič G., Etkina E., 2015. Analyzing patterns in experts’ approaches to solving experimental problems, American journal of physics. 83 (4), 366-374.

Cilji in kompetence:

Objectives and competences:

Študenti bodo znali izbrati primerno metodo za iskanje odgovorov na hipotetična raziskovalna vprašanja s področja PER. Študenti bodo sposobni v okviru zaključnega projekta sami izpeljati kratko študijo, v kateri bodo uporabili eno izmed obravnavanih metod PER.

Students will be able to choose appropriate methods to answer hypothetical research questions in the field. Students will be able to conduct a small study using one of the PER methods for the final project.

Predvideni študijski rezultati:

Intended learning outcomes:

Znanje in razumevanje Študenti bodo pridobili pregled nad vrstami vprašanj, na katera lahko PER odgovori ter razumevanje teoretičnih in eksperimentalnih metod, ki jih uporabljamo pri reševanju teh vprašanj.

Uporaba Pridobljeno znanje lahko študenti uporabijo pri raziskovalnem delu za doktorsko disertacijo, pri razvoju kurikulov ter pri izobraževanju bodočih učiteljev fizike.

Refleksija Uporaba pridobljenega znanja za načrtovanje sprememb v poučevanju ter pri argumentaciji uporabe določenega teoretičnega ogrodja za doseganje določene izboljšave v poučevanju.

Prenosljive spretnosti - niso vezane le na en predmet Znanje, pridobljeno pri tem predmetu, je uporabno pri poučevanju kateregakoli naravoslovnega predmeta. Raziskovalne metode, ki jih študenti spoznajo pri tem predmetu, so uporabne pri kateremkoli interdisciplinarnem projektu, ki je povezan z

Knowledge and understanding: Students will develop an overview of types of research questions that can be answered in PER and the understanding of the theoretical and experimental methods to answer those. Application: Knowledge developed in the course can be applied in research for a doctoral thesis, curriculum development and in physics teachers’ professional development. Reflection: Use of developed knowledge for instructional interventions and arguments of why a particular theoretical framework is more appropriate than another for a targeted intervention. Transferable skills: Knowledge developed in the course is applicable to teaching any science subject. In addition research methods can be used in any interdisciplinary project that is related to social sciences.

4

družboslovjem.

Metode poučevanja in učenja:

Learning and teaching methods:

Študenti bodo sodelovali v razpravah (v okviru majhnih skupin ali celotnega razreda), prebirali bodo izbrane članke, sami poiskali in predstavili pregled literature na določeno temo, izvedli simulacijo študije in poročali o njej. Študenti bodo v okviru zaključnega projekta izvedli mini raziskavo realnega PER problema, pri čemer bodo uporabili eno od obravnavanih raziskovalnih metod.

Students will participate in whole class and small group discussions, read assigned papers, conduct literature review on a particular subject, conduct mock studies and report on them. The final project will be a mini-study inverstigating a real PER question using one of the research methods discussed in the course.

Načini ocenjevanja:

Delež (v %) / Weight (in %)

Assessment:

Aktivna udeležba na predavanjih. Domače naloge: povzetki domačega

branja vključno s pregledom literature ter refleksijo.

Simulacija študije: (skupinsko delo): skupine predlagajo raziskovalna vprašanja, ki jih oblikujejo na podlagi poročanj iz literature ter predlagajo načrt raziskave s katero bi lahko prišli do odgovorov na vprašanja.

Zaključni projekt: študenti v skupinah po 2 ali 3, rešujejo mini raziskovalni projekt, pri čemer uporabijo eno od obravnavanih raziskovalnih metod. Projekt se mora nanašati na raziskovanje učenja fizike ali na raziskave o tem kako eksperti rešujejo fizikalne probleme.

Opravil / ni opravil (ob upoštevanju Statuta UL in fakultetnih pravil).

30% 30% 20% 20%

Active participation in class work, Homework: reading summaries

including literature review and reflections.

Group mock project. The students working in groups will come up with a research question using reports described in the literature and make a plan of answering the question.

Capstone project. The course ends with students working in groups of 2-3 on a capstone project - a mini research project that uses research methods discussed in the course and relates to student learning of physics or experts doing physics.

Passed / not passed (according to the Statute of UL)

Reference nosilca / Lecturer's references:

1. Poklinek Čančula, M., Planinšič G., Etkina E., 2015. Analyzing patterns in experts’ approaches to solving experimental problems, American journal of physics. 83 (4), 366-374.

5

2. PLANINŠIČ, G., GREGORČIČ, B., ETKINA, E., 2014. Learning and teaching with a computer scanner. Physics Education, 49(5), p586-595.

3. ETKINA, E., PLANINŠIČ, G. 2014. Thinking like a scientist. Physics world, 27(3),p48-51. 4. ETKINA, E., PLANINŠIČ, G., VOLLMER, M., 2013. A simple optics experiment to engage students in scientific

inquiry. American journal of physics, 81 (11), p815-822. 5. PLANINŠIČ, G., GOJKOŠEK, M. 2011, Prism foil from an LCD monitor as a tool for teaching introductory optic.

European journal of physics, 32(2), p601-613.

1

UČNI NAČRT PREDMETA / COURSE SYLLABUS

Predmet: Izbrana poglavja iz meteorologije

Course title: Selected Topics in Atmospheric Sciences

Študijski program in stopnja Study programme and level

Študijska smer Study field

Letnik Academic

year

Semester Semester

Univerzitetni študijski program 3. stopnje Matematika in fizika

Fizika 1 prvi

Third cycle academic study program Mathematics and

Physics Physics 1 first

Vrsta predmeta / Course type obvezni predmet/compulsory course

Univerzitetna koda predmeta / University course code: ???

Predavanja Lectures

Seminar Seminar

Vaje Tutorial

Klinične vaje work

Druge oblike študija

Samost. delo Individ.

work ECTS

60 300 12

Nosilec predmeta / Lecturer: Izr. prof. dr. Nedjeljka Žagar/ Assoc. prof. dr. Nedjeljka Žagar

Jeziki / Languages:

Predavanja / Lectures:

Slovensko in angleščina/Slovene and English

Vaje / Tutorial: Slovensko in angleščina/Slovene and English

Pogoji za vključitev v delo oz. za opravljanje študijskih obveznosti:

Prerequisits:

Vpis v letnik študija.

Enrollment into the program.

Vsebina:

Content (Syllabus outline):

Zakaj se vse skupaj dogaja? Porazdelitev sevanja in energijska bilanca ozračja

Ohranitev globalne gibalne količine in povprečna meridionalna cirkulacija

Vloga vlage v globalni atmosferski dinamiki. Učinki sevanja in konvekcije.

Valovanja na planetarni skali in nizofrekvenčna variabilnost.

Meddelovanja med komponentami

What makes it going? Distribution of radiation and atmospheric energy budget.

Conservation of the global momentum. Average meridional circulation.

Role of moisture in global atmospheric dynamics. Radiation-convection coupling.

Large-scale dynamics and low-frequency variability.

2

klimatskega sistema. Atmosfera-Oceani. Atmosfera-Tla. Troposfera-Stratosfera.

Izbrana poglavja iz klimatskega modeliranja. Moderne metode numerične diskretizacije Navier-Stokesovih enačb. Povezovanje dinamike, fizike in parametrizacij z numeričnimi postopki.

Izbrana poglavja iz tropske dinamike.

Interactions between the components of the climate system. Atmosphere-Ocean. Atmosphere-Land. Troposphere-Stratosphere.

Selected topics from climate modelling. Modern methods of numerical discretization of primitive equations. Coupling between the dynamics, physics and parametrizations and numeric.

Selected topics in tropical dynamics

Temeljni literatura in viri / Readings:

D. Randal: An introduction to the general circulation of the atmosphere. Available online on http://kiwi.atmos.colostate.edu/group/dave/at605.html

D. Randal: General Circulation Model Development: Past, Present, and Future. International Geophysics Series, Vol. 70, 2000.

J.P. Peixoto and A.H. Oort: Physics of Climate. Springer-Verlag 1992 Weinheim, Wiley-VCH, 2006, ISBN 3-527-40503-8.

Izbrani novejši članki iz strokovnih časopisov

Cilji in kompetence:

Objectives and competences:

Povezovanje snovi z različnih področij dinamike in fizike atmosfere. Razumevanje splošne cikulacije in relativnega pomena različnih faktorjev za variabilnost ozračja. Predstavitev in seznanitev z najnovejšimi metodami in rezultati na področju klimatskega modeliranja.

Getting the picture of general circulation and the relative importance of various factors for atmospheric variability. Understanding challenges associated with the global atmospheric modeling. Getting familiar with recent progress in selected research topics in atmospheric sciences.

Predvideni študijski rezultati:

Intended learning outcomes:

Znanje in razumevanje Študent pridobi pregled nad trenutnimi odprtimi znanstvenimi vprašanji na različnih področjih fizike atmosphere in razumevanje teoretičnih in eksperimentalnih pristopov k reševanju le-teh.

Uporaba Pridobljeno znanje študent uporabi pri raziskovalnem delu za doktorsko disertacijo.

Refleksija Uporaba pridobljenega znanja za povezovanje

z sorodnimi problemi in znanstvenimi metodami na področjih, ki niso neposredno

Knowledge and understanding: Student develops ability to understand challenges associated with addressing open scientific questions in various fields of atmospheric sciences and theoretical and experimental methods applied to solve them. Application: Obtained knowledge can be applied in doctoral thesis scientific research. Reflection: Usage of acquired knowledge to interconnection of related problems and scientific methods not directly involved in the

3

povezana s tematiko doktorske disertacije.

Prenosljive spretnosti - niso vezane le na en predmet Poglobljeno razumevanje trenutnega raziskovalnega stanja na različnih področjih omogoča povezovanje teoretičnih razlag in eksperimentalnih metod.

field of doctoral thesis. Transferable skills: Deepened knowledge of contemporary scientific state-of-the-art in various fields enables interconnection of theoretical and experimental methods.

Metode poučevanja in učenja:

Learning and teaching methods:

Predavanja, konzultacije. Lectures, consultations.

Načini ocenjevanja:

Delež (v %) / Weight (in %)

Assessment:

Aktivna udeležba na predavanjih in v diskusijah

Razgovor, opravil / ni opravil (ob upoštevanju Statuta UL in fakultetnih pravil).

75%

25%

Active attendance at lectures and in discussions

Discussion, passed / not passed (according to the Statute of UL)

Reference nosilca / Lecturer's references:

Žagar, N. et al., 2013: Balance properties of the short-range forecast errors in the ECMWF 4D-Var ensemble.

Q. J. R. Meteorol. Soc., 139, 1229-1238. DOI: 10.1002/qj.2033 Žagar, N. et al., 2012: Impact of the vertical discretization of analysis data on the estimates of atmospheric

inertio-gravity energy. Mon. Wea. Rev., 140, 2297-2307. Žagar, N. et al., 2011: Climatology of the ITCZ derived from ERA Interim reanalyses. J. Geophys. Res. -

Atmosphere, 116, D15103, doi:10.1029/2011JD015695.

1

UČNI NAČRT PREDMETA / COURSE SYLLABUS

Predmet: Izbrana poglavja iz reaktorske fizike in tehnike

Course title: Selected Topics in Reactor Physics and Engineering

Študijski program in stopnja Study programme and level

Študijska smer Study field

Letnik Academic

year

Semester Semester

Univerzitetni študijski program 3.stopnje Matematika in fizika

Fizika 1 prvi

Third cycle academic study program Mathematics and

Physics Physics 1 first

Vrsta predmeta / Course type obvezni predmet/compulsory course

Univerzitetna koda predmeta / University course code: ???

Predavanja Lectures

Seminar Seminar

Vaje Tutorial

Klinične vaje work

Druge oblike študija

Samost. delo Individ.

work ECTS

60 300 12

Nosilec predmeta / Lecturer: Prof. dr. Iztok Tiselj / Prof. dr. Iztok Tiselj

Jeziki / Languages:

Predavanja / Lectures:

Slovensko/Slovene

Vaje / Tutorial: Slovensko/Slovene

Pogoji za vključitev v delo oz. za opravljanje študijskih obveznosti:

Prerequisits:

Vpis v letnik študija.

Enrollment into the program.

Vsebina:

Content (Syllabus outline):

2

Izbrana poglavja reaktorske fizike: - Analitične in numerične metode za reševanje transportne in difuzijske enačbe. - Reševanje enačb reaktorske kinetike, zgorevanja goriva, transmutacije z namenskimi programi. - Uporaba Monte-Carlo metod in računalniških programov. - Načrtovanje sredice reaktorja Izbrana poglavja reaktorske tehnike: - Sistemi novih energetskih reaktorjev. - Analize eksperimentalnih reaktorjev. - Jedrski gorivnega cikel. Jedrsko gorivo. - Radioaktivnost in okolje. - Nove tehnologije ravnanja z odpadki in razgradnja jedrskih objektov. Fuzijski reaktorji: magneto-hidrodinamika, fizika in tehnologija, novi koncepti.

Selected topics of reactor physics: - Analytical and numerical methods for transport and diffusion equation for neutrons - Reactor kinetics, burnup and transmutation simulations with special codes. - Application of Monte-Carlo methods and codes. - Nuclear reactor core design. Selected topics of reactor engineering: - Systems of new energy reactors. - Analyses of experimental nuclear reactors. - Nuclear fuel cycle, Nuclear fuel. - Radioactivity and environment. - New technologies of radioactive waste management, decommissioning of nuclear facilities. Fusion reactors: magnetohydrodynamics, physics and technology, new concepts.

Temeljni literatura in viri / Readings:

A. Klimov, Nuclear physics and nuclear reactors, Mir publishers, 1975 Bell-Glasstone, Nuclear reactor theory,,Van Nostrand, 1970 Duderstadt – Hamilton, Nuclear reactor analysis, John Wiley and Sons, 1976 Lewis, Miller, Computational methods of neutron transport,, American Nuclear society, 1993 R. A. Knief, Nuclear engineering, Theory and Technology of Commercial Nuclear Power, Taylor and

Francis, 1984 W.M. Stacey, Fusion Plasma Physics, Second revised and enlarged edition, Wiley VcH, 2012. Journal publications

Cilji in kompetence:

Objectives and competences:

Študent poglobi znanje reaktorske fizike ali tehnike na področju svojega raziskovalnega dela in se seznani z najnovejšimi dognanji na teh področjih.

The student acquires a deeper knowledge of selected topics of reactor physics and engineering in the field of her/his research area.

Predvideni študijski rezultati:

Intended learning outcomes:

3

Znanje in razumevanje Študent pridobi pregled na trenutnimi odprtimi znanstvenimi vprašanji na različnih področjih reaktorske fizike in tehnike in razumevanje teoretičnih in eksperimentalnih pristopov k reševanju le-teh.

Uporaba Pridobljeno znanje študent uporabi pri raziskovalnem delu za doktorsko disertacijo.

Refleksija Uporaba pridobljenega znanja za povezovanje z sorodnimi problemi in znanstvenimi metodami na področjih, ki niso neposredno povezana s tematiko doktorske disertacije.

Prenosljive spretnosti - niso vezane le na en predmet Poglobljeno razumevanje trenutnega raziskovalnega stanja na različnih področjih omogoča povezovanje teoretičnih razlag in eksperimentalnih metod.

Knowledge and understanding: Student acquires an overview of open scientific questions in various fields of reactor physics and engineering and understanding of theoretical and experimental methods to solve them. Application: Obtained knowledge can be applied in doctoral thesis scientific research. Reflection: Usage of acquired knowledge to interconnection of related problems and scientific methods not directly involved in the field of doctoral thesis. Transferable skills: Deepened knowledge of contemporary scientific state-of-the-art in various fields enables interconnection of theoretical and experimental methods.

Metode poučevanja in učenja:

Learning and teaching methods:

Predavanja, konzultacije. Lectures, consultations.

Načini ocenjevanja:

Delež (v %) / Weight (in %)

Assessment:

Aktivna udeležba na predavanjih in v diskusijah

Razgovor, opravil / ni opravil (ob upoštevanju Statuta UL in

75%

25%

Active attendance at lectures and in discussions

Discussion, passed / not passed (according to the Statute of UL)

4

fakultetnih pravil).

Reference nosilca / Lecturer's references:

1) TISELJ, Iztok, CIZELJ, Leon. DNS of turbulent channel flow with conjugate heat transfer at Prandtl number 0.01. Nuclear Engineering and Design, ISSN 0029-5493, Vol. 253, 2012. str. 153-160.

2) MIKUŽ, Blaž, TISELJ, Iztok, BEYER, Matthias, LUCAS, Dirk. Simulations of flashing experiments in TOPFLOW facility with TRACE code. Nuclear Engineering and Design, ISSN 0029-5493. [Print ed.], [in press] 2014, 11 str., doi: 10.1016/j.nucengdes.2014.09.043.

3) LUCAS, Dirk, TISELJ, Iztok, ŠTRUBELJ, Luka, et al. Main results of the European project NURESIM on the CFD-modelling of two-phase Pressurized Thermal Shock (PTS). Kerntechnik, ISSN 0932-3902, 2009, vol. 74, no. 5/6, str. 238-242.

1

UČNI NAČRT PREDMETA / COURSE SYLLABUS

Predmet: Specialistični seminar iz teoretične fizike

Course title: Specialized Seminar on Theoretical Physics

Študijski program in stopnja Study programme and level

Študijska smer Study field

Letnik Academic

year

Semester Semester

Univerzitetni študijski program 3.stopnje Matematika in fizika

Fizika 1 prvi

Third cycle academic study program Mathematics and

Physics Physics 1 first

Vrsta predmeta / Course type izbirni predmet/elective course

Univerzitetna koda predmeta / University course code: ???

Predavanja Lectures

Seminar Seminar

Vaje Tutorial

Klinične vaje work

Druge oblike študija

Samost. delo Individ.

work ECTS

60 300 12

Nosilec predmeta / Lecturer: Izr. prof. dr. Primož Ziherl / Assoc. prof. dr. Primož Ziherl

Jeziki / Languages:

Predavanja / Lectures:

Slovensko/Slovene

Vaje / Tutorial: Slovensko/Slovene

Pogoji za vključitev v delo oz. za opravljanje študijskih obveznosti:

Prerequisits:

Vpis v letnik študija.

Enrollment into the program.

Vsebina:

Content (Syllabus outline):

2

Teme A. Gomboc: kompaktni astrofizikalni objekti, astrofizika kozmičnih delcev, nevtrinov in gravitacijskih valov, osnove astrobiologije.

Teme S. Prelovšek Komelj in J. Fesel Kamenika: Neperturbativne metode in njihova uporaba v fiziki osnovnih delcev: kvantna teorija polja na mreži, integralne enačbe v kvantni teoriji polja, enačbi Bethe-Salpeter in Dyson-Schwinger, splošne zakonitosti v teoriji sipanja. Fizika delcev v zgodnjem vesolju: časovni razvoj in fizikalni procesi v zgodnjem vesolju, bariogenezam, temna snov, tvorba jedrskih elementov v zgodnjem vesolju.

Teme A. Ramšaka in T. Rejca: nova fizika v trdni snovi na nano skali: transport elektronov v kvantih pikah, kvantnih žicah in v dvodimenzionalnih strukturah. Coulombska blokada, enoelektronski tranzistor, Aharonov-Bohmov pojav, kvantni Hallov pojav, Kondov pojav. Kvantna prepletenost v večelektronskih sistemih. Primeri realizacije kvantnih bitov v trdni snovi. Kvantna obdelava informacije ter temeljni pojmi in izreki o kvantnih bitih: kvantna teleportacija, izrek o ne-kloniranju, o destilaciji kvantnih bitov. Teme R. Podgornika, M. Ravnika in P. Ziherla: van der Waalsove interakcije: parska vsota molekularnih sil; Hamakerjeva konstanta; Lifšiceva teorija; retardacija; nastavek Pitajevskega; planarna, cilindrična in sferična geometrija; disperzijski spektri. Površinski pojavi: površinska napetost in termodinamika površin; ravne in ukrivljene površine; močenje; nukleacija. Membrane in vesikli: diferencialna geometrija membran; opis vesiklov v okviru teorije sklopljenih plasti, teorije spontane ukrivljenosti in teorije nelokalne elastičnosti; fluktuacije membrane.

Teme R. Jeraja: Sodobne metode modeliranja

Topics of A. Gomboc: compact astrophysical objects, astrophysics of cosmic rays, neutrinos and gravitational waves; fundamentals of astrobiology.

Topics of S. Prelovšek Komelj in J. Fesel Kamenik: Non-perturbative methods and their application to physics of elementary particles: quantum field theory on the lattice, integral equations in quantum field theory: Bethe-Salpeter and Dyson-Schwinger equations, general principles in the scattering theory. Particle physics in the early universe: time evolution and physical processes in the early Universe, baryogenesis, dark matter, primordial nucleosynthesis.

Topics of A. Ramšak in T. Rejec: new physics in solid state on nano scale: conductance in quantum dots, quantum wires and two dimensional electronic structures. Coulomb blockade, single electron transistor, Aharonov-Bohm effect, quantum Hall effect, Kondo effect. Quantum entanglement. Examples of the realisation of quantum bits. Fundamental theorems about quantum bits: no-cloning, qubit destilation, error correction, quantum teleportation. Topics of R. Podgornik, M. Ravnik and P. Ziherl: van der Waals interactions: pairwise summation of molecular forces; Hamaker constant; Lifshitz theory; retardation; Pitaevskii ansatz; planar, cylindrical and spherical geometry; solvent effects; dispersion spectra. Surface phenomena: surface tension and thermodynamics of interfaces; flat and curved interfaces; wetting; nucleation. Membranes and vesicles: differential geometry of membranes; bilayer-couple, spontaneous-curvature, and area-difference-elasticity theories of vesicle shapes; membrane fluctuations.

3

bioloških in medicinskih sistemov; modeliranje rasti in razvoja tumorjev; modeliranje možganov; modeliranje terapevtskih intervencij; optimizacija terapij; modeliranje odziva bioloških in medicinskih sistemov na zdravljenje.

Topics of R. Jeraj: Advanced modeling methods of biological and medical systems; modeling of tumor growth and development; brain modeling; modeling of therapeutic interventions; therapy optimization; treatment response modeling

Temeljni literatura in viri / Readings:

M. van Putten, A. Levinson, Relativistic Astrophysics of the Transient Universe, Cambridge University Press), 2012.

P. Meszaros, The High-Energy Universe, (Cambridge University Press), 2010.

I. Gilmour, M.A. Sephton, An Introduction to Astrobiology (Cambridge University Press), 2004.

C. Itzykson and J.-B. Zuber: Quantum Field Theory, McGraw Hill, 1980.

C. Gattringer and C.B. Lang, Quantum Chromodynamics on the Lattice, Springer, 2010.

J.R. Taylor: Scattering Theory, J. Wiley & Sons, 2000.

E. W. Kolb and M. S. Turner, The Early Universe, Westview Press, 1990.

S. Weinberg, Cosmology, Oxford University Press, 2008.

Yuli V. Nazarov and Yaroslav M. Blanter, Quantum Transport: Introduction to Nanoscience, Cambridge University Press (2009).

Thomas Heinzel, Mesoscopic Electronics in Solid State Nanostructures, Wiley-VCH (2010).

V. A. Parsegian, van der Waals Forces (Cambridge University Press, Cambridge, 2005).

M. Bordag, G. L. Klimchitskaya, U. Mohideen in V. M. Mostepanenko, Advances in the Casimir Effect (Oxford University Press, Oxford, 2009).

M. Kleman in O. Lavrentovich, Soft Matter - An Introduction (Springer, Berlin, 2003).

J. N. Israelachvili, Intermolecular and Surface Forces (Elsevier, Amsterdam, 2011).

V. Cristini and J. Lowengrub, 2010, Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach, Cambridge University Press, ISBN: 978-0521884426.

Cilji in kompetence:

Objectives and competences:

Predstavitev in seznanitev z nanjovejšimi raziskovalnimi aktivnostmi in odprtimi problemi na različnih področjih teoretične fizike.

Presentation of and acquaintance with recent research activities and open problems in various fields of theoretical physics.

Predvideni študijski rezultati:

Intended learning outcomes:

Znanje in razumevanje Študent pridobi pregled na trenutnimi odprtimi znanstvenimi vprašanji na različnih področjih fizike in razumevanje teoretičnih in eksperimentalnih pristopov k reševanju le-teh.

Knowledge and understanding: Student acquires an overview of open scientific questions in various fields of physics and understanding of theoretical and experimental methods to solve those.

4

Uporaba Pridobljeno znanje študent uporabi pri raziskovalnem delu za doktorsko disertacijo.

Refleksija Uporaba pridobljenega znanja za povezovanje z sorodnimi problemi in znanstvenimi metodami na področjih, ki niso neposredno povezana s tematiko doktorske disertacije.

Prenosljive spretnosti - niso vezane le na en predmet Poglobljeno razumevanje trenutnega raziskovalnega stanja na različnih področjih omogoča povezovanje teoretičnih razlag in eksperimentalnih metod.

Application: Obtained knowledge can be applied in doctoral thesis scientific research. Reflection: Usage of acquired knowledge to interconnection of related problems and scientific methods not directly involved in the field of doctoral thesis. Transferable skills: Deepened knowledge of contemporary scientific state-of-the-art in various fields enables interconnection of theoretical and experimental methods.

Metode poučevanja in učenja:

Learning and teaching methods:

Predavanja, konzultacije. Lectures, consultations.

Načini ocenjevanja:

Delež (v %) / Weight (in %)

Assessment:

Aktivna udeležba na predavanjih in v diskusijah

Razgovor, opravil / ni opravil (ob upoštevanju Statuta UL in fakultetnih pravil).

75%

25%

Active attendance at lectures and in discussions

Discussion, passed / not passed (according to the Statute of UL)

Reference nosilca / Lecturer's references:

G. Georgiou, P. Ziherl, and G. Kahl, Antinematic local order in dendrimer liquids, EPL 106, 44004 (2014).

A. Šiber in P. Ziherl, Many-body contact repulsion of deformable disks, Phys. Rev. Lett. 110, 214301 (2013).

5

N. Osterman, I. Poberaj, J. Dobnikar, D. Frenkel, P. Ziherl, and D. Babić, Field-induced self-assembly of suspended colloidal membranes, Phys. Rev. Lett. 103, 228301 (2009).

M. A. Glaser, G. M. Grason, R. D. Kamien, A. Košmrlj, C. D. Santangelo in P. Ziherl, Soft spheres make more mesophases, EPL 78, 46004 (2007).

N. Osterman, D. Babić, I. Poberaj, J. Dobnikar in P. Ziherl, Observation of condensed phases of quasi-planar core-softened colloids, Phys. Rev. Lett. 99, 248301 (2007).

1

UČNI NAČRT PREDMETA / COURSE SYLLABUS

Predmet: Specialistični seminar iz eksperimentalne fizike

Course title: Specialized Seminar on Experimental Physics

Študijski program in stopnja Study programme and level

Študijska smer Study field

Letnik Academic

year

Semester Semester

Univerzitetni študijski program 3.stopnje Matematika in fizika

Fizika 1 prvi

Third cycle academic study program Mathematics and

Physics Physics 1 first

Vrsta predmeta / Course type izbirni predmet/elective course

Univerzitetna koda predmeta / University course code: ???

Predavanja Lectures

Seminar Seminar

Vaje Tutorial

Klinične vaje work

Druge oblike študija

Samost. delo Individ.

work ECTS

60 300 12

Nosilec predmeta / Lecturer: Prof. dr. Denis Arčon / Prof. dr. Denis Arčon

Jeziki / Languages:

Predavanja / Lectures:

Slovensko/Slovene

Vaje / Tutorial: Slovensko/Slovene

Pogoji za vključitev v delo oz. za opravljanje študijskih obveznosti:

Prerequisits:

Vpis v letnik študija.

Enrollment into the program.

Vsebina:

Content (Syllabus outline):

2

Teme T. Zwittra: Fizikalni doseg in omejitve ter tehnološke rešitve sodobnih pregledov neba: astrometrija, spektroskopija, astroseizmologija, fotometrija; obdelava in analiza velikih setov astrofizikalnih podatkov s praktičnimi primeri; načini njihove avtomatske klasifikacije in notranje konzistentne kalibracije; podatkovne baze v astrofiziki: dostopnost, strukturiranost, uporaba, omejitve s praktičnimi primeri rudarjenja podatkov; izbrana poglavja primerov določanja astrofizikalnih parametrov zvezd, medzvezdnega prostora in temne snovi s praktičnimi zgledi netrivialnih statističnih lastnosti.

Teme P. Križana in B. Goloba: Meritve lastnosti Higgsovega bozona; iskanje novih delcev, supersimetričnih partnerjev osnovnih delcev, iskanje nabitega Higgsovega bozona; precizijske meritve redkih procesov pri razpadih mezonov B in D in leptonov tau; mešanje pri nevtrinih, masna hierarhija, kršitev simetrije CP; direktna iskanja delcev temne snovi. Iskanje izvorov ultravisokoenergijskih kozmičnih delcev. Nove eksperimentalne metode za sledenje in identifikacijo nabitih delcev, detektorji za delce temne snovi.

Teme S. Širce: raziskave elektromagnetne in spinske stukture hadronskih sistemov (nukleonov in jeder), uporaba visoko ločljivih magnetnih spektrometrov in kalorimetrov, uporaba polariziranih elektronskih žarkov, polariziranih tarč in polarimetrov

Teme D. Arčona in J. Dolinška: Moderne eksperimentalne metode za študij magnetnih ter superprevodnih materialov: elastično in neelastično nevtronsko sipanje, resonančno neelastični sipanje rentgenskih žarkov (RIXS), jedrska magnetna resonanca v kvantnih antiferomagnetnih sistemi, (anti)feromagnetna resonanca, mionska spinska relaksacija, eksperimenti na magnetoelektričnih

Topics of T. Zwitter: Reach, limitations and technological solutions for contemporary sky surveys: astrometry, spectroscopy, astroseismology, photometry; reduction and analysis of large astrophysical datasets with practical examples; methods for their automated classification and self-consistent calibration; databases in astrophysics: accessibility, structure, uses and their limitations with practical examples of data mining; selected topics on determination of properties of stars, interstellar medium and dark matter with practical examples of non-trivial statistical behaviours.

Topics of P. Križan in B. Golob: measurements of Higgs boson properties; search for new supersymmetric particles, search for charged Higgs boson; precision measurements of rare B and D mesons and tau lepton decays; neutrino mixing, mass hierarchy and CP violation; direct search for dark matter; search for ultra high energy cosmic ray sources; new experimental techniques for charged particle tracking and identification; dark matter detectors

Topics of S. Širca: Investigations of the electro-magnetic and spin structure of hadronic systems (nucleons and nuclei), use of high-resolution magnetic spectrometers and calorimeters, use of polarized electron beams, polarized targets and polarimeters.

Topics of D. Arčon and J. Dolinšek: Modern experimental methods for studies of magnetic and superconducting materials: elastic and inelastic neutron scattering, resonant inelastic x-ray scattering (RIXS), nuclear magnetic resonance in quantum antiferromagnetic systems, (anti)ferromagnetic resonance, muon spin relaxation spectroscopy, experiments on magnetoelectric multiferroics, experiments in the superconducting state.

3

multiferoikih, eksperimenti v superprevodnem stanju.

Teme I. Muševiča in D. Cvetka: Izvajanje študijskih aktivnosti, ki pokriva eksperimentalne raziskave površin, mejnih plasti in nizko-dimenzionalne fizike, je izrazito individualno in se vsakokrat prilagodi vsebini teme doktorske disertacije kandidata. Doktorand v konzultaciji s svojim mentorjem določi del tematike doktorskega dela, ki zahteva izvedbo eksperimenta s področja fizike površin. Doktorand skupaj z nosilcem predmeta naredi načrt izvedbe meritev na dani problematiki. Doktorand se pod vodstvom nosilca predmeta seznani z merilno tehniko in samostojno izvede eksperiment, vezan na temo njegovega doktorskega dela. Po uspešno izvedenem eksperimentu doktorand napiše znanstveno poročilo in ga predloži nosilcu predmeta. O rezultatih eksperimenta se razpravlja na ustnem zagovoru.

Teme I. Drevenšek Olenik: Sodobne eksperimentalne tehnike na področju optike. Karakterizacija linearnih in nelinearnih optičnih lastnosti mehkih snovi: tekoči kristali, polimeri, kompozitni materiali, biološki materiali, koloidni sistemi, tankoplastne strukture.

Teme M. Zgonika: Integrirana optika, modulacija svetlobe, nelinearna optika v moduliranih strukturah, nelinearna optika organskih materialov, THz spektroskopija, elipsometrija večplastnih anizotropnih struktur, fotorefraktivnost, holografija v realnem času, laserska fizika..

Teme R. Jeraja: Sodobne eksperimentalne metode v medicinski fiziki; sodobne metode formacije in analize biomedicinskih slik; sodobne metode obsevanja (slikovno-vodene terapije, terapije z delci); sodobne statistične metode analize biomedicinskih podatkov.

Topics of I. Muševič and D. Cvetko: Student activities related to specific areas of experimental research covering areas of surface, interface and low dimensional systems physics, are very individual. In collaboration with candidate's supervisor and lecturer, the specific objectives of the course training are determined and the candidate autonomously performs the required experimental research at available laboratory facilities. The theoretical background and technical skills needed for the selected experiments need to be mastered, before the experiments are actually performed. At the end the candidate performs the data analysis and reports on the obtained results related with the theme of his/her PhD dissertation in a form of a written report and oral discussion with the lecturer.

Topics of I. Drevenšek Olenik: Modern experimental techniques for characterization of optical properties. Characterization of linear and nonlinear optical properties of soft condensed materials: liquid crystals, polymers, composite structures, biological materials, colloidal systems, thin film structures.

Topics of M. Zgonik: Integrated optics, modulation of light beams, nonlinear optics in modulated structures, nonlinear optics of organic materials, THz spectroscopy, ellipsometry of anizotropic multilayer structures, photorefractivity, real time holography, laser physics.

Topics of R. Jeraj: Advanced experimental methods in medical physics; advanced methods of image formation and image analysis; advanced methods of radiation treatments (image-guided therapies, particle therapies); advanced statistical methods for biomedical data analysis.

4

Temeljni literatura in viri / Readings: P. Lena, D. Rouan, F. Lebrun: Observational Astrophysics, Springer, 2012.

B.W.Carroll, D.A.Ostlie: An introduction to Modern Astrophysics, Addison-Wesley, 2006.

N. Manset and P. Forshay (eds.): Astronomical Data Analysis Software and Systems, ASP conference series, vol. 485, 2014.

The Physics of the B Factories, Bevan, A., Golob, B., Mannel, Th., Prell, S., Yabsley, B. (Eds.), Springer 2015;

LHC Phenomenology, Einan Gardi, Nigel Glover, Aidan Robson (Eds.), Springer 2015

J. D. Walecka, Electron scattering for nuclear and nucleon structure, Cambridge University Press, Cambridge 2005.

S. Boffi, C. Giusti, F. D. Pacati, M. Radici, Electromagnetic Response of Atomic Nuclei, Oxford University Press, Oxford 1996.

F. Close, S. Donnachie, G. Shaw, Electromagnetic Interactions and Hadronic Structure, Cambridge University Press, Cambridge 2009.

Akio Kotani and Shik Shin, Resonant inelastic x-ray scattering spectra for electrons in solids, Rev. Mod. Phys. 73, 203 (2001).

A. Yaouanc, P. D. de Reotier, Muon Spin Rotation, Relaxation, and Resonance: Application to Condensed Matter. Oxford Science Publications, Oxford, 2011.

Spectroscopy of emerging materials, Eds. E. C. Faulques, D. L. Perry, and A. V. Yeremenko, Kluwer Academic Publishers, Dordrecht, 2004.

C.P. Slichter, Principles of Magnetic Resonance, Springer-Verlag Berlin Heidelberg, 1990.

J. Israelachvili, Intermolecular and Surface Forces, Academic Press, 1992.

R. Wiesendanger, Scanning probe microscopy, Springer, 1998.

J.P.Fillard, Near field optics and nanoscopy, World Scientific, 1996.

A. Zangwill, Physics at Surfaces, Cambridge UP, 1988.

D.P.Woodruff, T.A.Delchar, Modern techniques in surface science, Cambridge 1994.

J.M.Walls, R. Smith, Surface science techniques, Pergamon, 1994

D.Meyers, Surfaces, Interfaces and Colloids, VCH Publishers Inc., 1991

P. A.Kralchevsky, K. Nagayama, Particles at Fluid Interfaces and Membranes, Elsevier 2001.

H. S. Nalva, S. Miyata, Nonlinear Optics of Organic Molecules and Polymers, CRC Press, 1997

Optics and Nonlinear Optics of Liquid Crystals, I. C. Khoo, S.-T. Wu, World Scientific, 1993.

O. Svelto, "Principles of Lasers," 5th ed., Springer, Berlin, 2010.

Anthony E Siegman: "Lasers," University Science Books, Sausalito 1986, (or later editions).

P. Gunter ed., Nonlinear Optical Effects and Materials, Springer Verlag, Berlin (2000).

R. Weissleder, B. Ross, A. Rehemtulla, S Gambhir, Editors, 2009, Molecular Imaging, People's Medical Publication House, ISBN: 978-1607950059

J. Van Dyk, Editor. 2013, The Modern Technology of Radiation Oncology, Medical Physics Publishing, ISBN: 978-1930524576

Cilji in kompetence:

Objectives and competences:

Predstavitev in seznanitev z najnovejšimi raziskovalnimi aktivnostmi in trendi na različnih področjih eksperimentalne fizike.

Presentation of and acquaintance with recent research activities and trends in various fields of experimental physics.

Predvideni študijski rezultati:

Intended learning outcomes:

5

Znanje in razumevanje Študent pridobi pregled na trenutnimi odprtimi znanstvenimi vprašanji na različnih področjih fizike in razumevanje eksperimentalnih pristopov k reševanju le-teh.

Uporaba Pridobljeno znanje študent uporabi pri raziskovalnem delu za doktorsko disertacijo.

Refleksija Uporaba pridobljenega znanja za povezovanje z sorodnimi problemi in znanstvenimi metodami na področjih, ki niso neposredno povezana s tematiko doktorske disertacije.

Prenosljive spretnosti - niso vezane le na en predmet Poglobljeno razumevanje trenutnega raziskovalnega stanja na različnih področjih omogoča povezovanje teoretičnih razlag in eksperimentalnih metod.

Knowledge and understanding: Student acquires an overview of open scientific questions in various fields of physics and understanding of experimental methods to solve those. Application: Obtained knowledge can be applied in doctoral thesis scientific research. Reflection: Usage of acquired knowledge to interconnection of related problems and scientific methods not directly involved in the field of doctoral thesis. Transferable skills: Deepened knowledge of contemporary scientific state-of-the-art in various fields enables interconnection of theoretical and experimental methods.

Metode poučevanja in učenja:

Learning and teaching methods:

Predavanja, konzultacije. Lectures, consultations.

Načini ocenjevanja:

Delež (v %) / Weight (in %)

Assessment:

Aktivna udeležba na predavanjih in v diskusijah.

Razgovor, opravil / ni opravil (ob upoštevanju Statuta UL in fakultetnih pravil).

75%

25%

Active attendance at lectures and in discussions.

Discussion, passed / not passed (according to the Statute of UL).

6

Reference nosilca / Lecturer's references:

ZORKO, Andrej, ADAMOPOULOS, Othon, KOMELJ, Matej, ARČON, Denis, LAPPAS, Alexandros. Frustration-induced nanometre-scale inhomogeneity in a triangular antiferromagnet. Nature communications, 2014, vol. 5, art.no. 3222.

POTOČNIK, Anton, KRAJNC, Andraž, JEGLIČ, Peter, TAKABAYASHI, Yasuhiro, GANIN, Alexey Yu., PRASSIDES, Kosmas, ROSSEINSKY, Matthew, ARČON, Denis, et al. Size and symmetry of the superconducting gap in the f.c.c. Cs[sub]3C[sub](60) polymorph close to the metal-Mott insulator boundary. Scientific reports, 2014, vol. 4, str. 4265-1-4265-5.

PREGELJ, Matej, ZORKO, Andrej, ZAHARKO, Oksana, ARČON, Denis, KOMELJ, Matej, HILLIER, A. D., BERGER, Helmuth. Persistent spin dynamics Intrinsic to amplitude-modulated long-range magnetic order. Physical review letters, 2012, vol. 109, no. 22, str. 227202-1-227202-5.

GANIN, Alexey Yu., JEGLIČ, Peter, ARČON, Denis, POTOČNIK, Anton, et al. Polymorphism control of superconductivity and magnetism in Cs[sub]3C[sub](60) close to the Mott transition. Nature, 2010, vol. 466, no. 7303, str. 221-225.

PREGELJ, Matej, ZAHARKO, Oksana, ZORKO, Andrej, KUTNJAK, Zdravko, JEGLIČ, Peter, BROWN, P. J., JAGODIČ, Marko, JAGLIČIĆ, Zvonko (pisar), BERGER, Helmuth, ARČON, Denis. Spin amplitude modulation driven magnetoelectric coupling in the new multiferroic FeTe[sub]2O[sub]5Br. Physical review letters, 2009, vol. 103, no. 14, str. 147202-1-147202-4.

1

UČNI NAČRT PREDMETA / COURSE SYLLABUS

Predmet: Specialistični seminar iz raziskav fizikalnega izobraževanja: učenje in razvoj kurikula

Course title: Specialized Seminar on Physics Education Research: Learning and Curriculum Development

Študijski program in stopnja Study programme and level

Študijska smer Study field

Letnik Academic

year

Semester Semester

Univerzitetni študijski program 3.stopnje Matematika in fizika

Fizika 1 prvi

Third cycle academic study program Mathematics and

Physics Physics 1 first

Vrsta predmeta / Course type izbirni predmet/optional course

Univerzitetna koda predmeta / University course code: ???

Predavanja Lectures

Seminar Seminar

Vaje Tutorial

Klinične vaje work

Druge oblike študija

Samost. delo Individ.

work ECTS

60 300 12

Nosilec predmeta / Lecturer: prof. dr. Gorazd PLANINŠIČ/ prof. dr. Gorazd PLANINŠIČ

Jeziki / Languages:

Predavanja / Lectures:

Slovensko in/ali angleško/Slovene and/or English

Vaje / Tutorial: Slovensko in/ali angleško/Slovene and/or English

Pogoji za vključitev v delo oz. za opravljanje študijskih obveznosti:

Prerequisites:

Vpis v letnik študija. Pogoj za opravljanje predmeta je zaključena 2. stopnja študijskega programa fizika ali pedagoška fizika. Pričakuje se, da predmet izberejo študenti, ki imajo jasno željo po opravljanju doktorata na področju raziskav v izobraževalni fiziki (odslej PER).

Enrollment in the program. Students enrolled in the program need to have a master degree (complete 2nd cycle) in physics/physics education and a strong interest in pursuing a doctoral degree in Physics Education Research (PER).

Vsebina:

Content (Syllabus outline):

2

Pri predmetu bodo obravnavane naslednje vsebine:

1. Glavna spoznanja o tem, kako se študenti učijo fizikalne vsebine in kateri so glavni instrumenti preverjanja znanja.

2. Glavna spoznanja o tem, kako se študenti učijo procesnih znanj pri fiziki in kateri so glavni instrumenti preverjanja znanja.

3. Različne reprezentacije in njihov pomen pri učenju fizike.

4. Glavna spoznanja PER o epistemološkem pogledu študentov na fiziko in instrumenti preverjanja znanja.

5. Kako pristopiti k razvoju kurikulov za fiziko?

6. Primeri uveljavljenih in preizkušenih fizikalnih kurikulov, ki so bili razviti na podlagi raziskav. Kaj imajo skupnega in v čem se razlikujejo?

The course will address the following topics:

1. The most important findings concerning student learning of physics content and the assessment instruments.

2. The most important findings concerning student learning of physics processes and the assessment instruments.

3. Multiple representations and their role in learning physics.

4. The most important PER findings concerning student epistemology and relevant assessment instruments.

5. How does one approach physics curriculum design?

6. Examples of research -based curricula in physics that have been found effective in helping students learn physics. Common aspects of these and the differences.

Temeljni literatura in viri / Readings:

Hestenes, D., Wells, M. & Swackhamer, G., 1992. Force concept inventory. The physics teacher, 30(March), pp.1–15. Available at: http://ptc.weizmann.ac.il/_Uploads/dbsAttachedFiles/1852FCI.pdf [Accessed March 20, 2015].

Ding, L. et al., 2006. Evaluating an electricity and magnetism assessment tool: Brief electricity and magnetism assessment. Physical Review Special Topics - Physics Education Research, 2(1), p.010105. Available at: http://link.aps.org/doi/10.1103/PhysRevSTPER.2.010105 [Accessed March 19, 2015].

Etkina, E. & Van Heuvelen, A., 2007. Investigative science learning environment–A science process approach to learning physics. Research-based reform of university physics, pp.1–48. Available at: http://paer.rutgers.edu/scientificabilities/downloads/papers/isle-2007.pdf [Accessed January 19, 2015].

Van Heuvelen, A. (1991). Learning to think like a physicist: A review of research-based instructional strategies. American Journal of Physics, 59(10), 891-897.

Etkina, E., Van Heuvelen, A., White-Brahmia, S., Brookes, D.T., Gentile, M., Murthy, S. Rosengrant, D., & Warren, A. (2006) Developing and assessing student scientific abilities. Physical Review. Special Topics, Physics Education Research. 2, 020103.

Etkina, E., Karelina, A., & Ruibal-Villasenor, M. (2008). How long does it take? A study of student acquisition of scientific abilities. Physical Review, Special Topics, Physics Education Research, 4, 020108.

Brookes, D. T. & Etkina, E. (2007). Using conceptual metaphor and functional grammar to explore how language used in physics affects student learning. Physical Review, Special Topics, Physics Education Research, 3, 010105.

Brookes, D. T. & Etkina, E. (2007). Using conceptual metaphor and functional grammar to explore how language used in physics affects student learning. Physical Review, Special Topics, Physics Education Research, 3, 010105.

May, D. & Etkina, E. (2002). College physics students' epistemological self-reflection and its relationship to conceptual learning. American Journal of Physics, 70 (12), 1249-1258.

Zollman, D. a., Rebello, N.S. & Hogg, K., 2002. Quantum mechanics for everyone: Hands-on activities

3

integrated with technology. American Journal of Physics, 70(3), p.252. Available at: http://link.aip.org/link/AJPIAS/v70/i3/p252/s1&Agg=doi [Accessed March 4, 2015].

Redish, E.F., 2003. Teaching Physics with the Physics Suite, Wiley. Available at: http://books.google.si/books?id=2dULAQAAMAAJ.

McDermott, L.C. & Shaffer, P.S., 1998. Tutorials in introductory physics, Prentice Hall. Available at: http://books.google.si/books?id=0kQdlyhvjW8C.

Hestenes, D., 1987. Toward a modeling theory of physics instruction. American Journal of Physics, 55(5).

Hammer, D., 1996. Misconceptions or P-Prims: How May Alternative Perspectives of Cognitive Structure Influence Instructional Perceptions and Intentions. Journal of the Learning Sciences, 5(2), pp.97–127. Available at: http://www.tandfonline.com/doi/abs/10.1207/s15327809jls0502_1.

DiSessa, A., 1993. Toward an Epistemology of Physics. Cognition and instruction, 10(2), pp.105–225. Available at: http://www.tandfonline.com/doi/pdf/10.1080/07370008.1985.9649008 [Accessed May 27, 2014].

Linder, C. & Fraser, D., 2006. Using a Variation Approach To Enhance Physics Learning in a College Classroom. The Physics Teacher, 44(9), p.589. Available at: http://scitation.aip.org/content/aapt/journal/tpt/44/9/10.1119/1.2396777 [Accessed June 17, 2014].

Viennot, L., 2014. “Thinking in Physics: The pleasure of reasoning and understanding”, Springer Books.

Cilji in kompetence:

Objectives and competences:

Študenti so sposobni odgovoriti na vprašanja povezana z vsebinami pričujočega učnega načrta in razpravljati o značilnostih kurikulov, ki so razviti na podlagi raziskav.

The students can answer the questions related to the syllabus and discuss the features of PER-based curricula.

Predvideni študijski rezultati:

Intended learning outcomes:

Znanje in razumevanje Študenti bodo dobili pregled nad praktičnimi vidiki PER in razumevanje o tem, kako poteka razvoj kurikularnih gradiv za poučevanje fizike, ki temeljijo na izsledkih raziskav Uporaba Pridobljeno znanje lahko študenti uporabijo pri raziskovalnem delu za doktorsko disertacijo, pri razvoju kurikulov fizike ter pri izobraževanju bodočih učiteljev fizike. Refleksija Uporaba pridobljenega znanja za načrtovanje sprememb v poučevanju ter razmišljanje o lastnem poučevanju. Prenosljive spretnosti - niso vezane le na en predmet Razvoj in vrednotenje kurikulov drugih naravoslovnih predmetov.

Knowledge and understanding: Students develop an overview of the practical aspects of PER and an understanding of how one can design curriculum materials based on the findings in the field Application: Knowledge developed in the course can be applied in research for a doctoral thesis, physics curriculum development and in physics teachers’ professional development. Reflection: Use of developed knowledge for instructional interventions and for thinking about your own teaching. Transferable skills: Curriculum design and evaluation for other science subjects.

4

Metode poučevanja in učenja:

Learning and teaching methods:

Študenti bodo sodelovali v razpravah (v okviru majhnih skupin ali celotnega razreda), prebirali bodo izbrane članke, sami poiskali in predstavili pregled literature na določeno temo, izvedli skupinski projekt in poročali o njem. Študenti bodo v okviru zaključnega projekta izvedli mini študijo s področja razvoja kurikula in preverjanja znanja.

Students will participate in whole class and small group discussions, read assigned papers, conduct literature review on a particular subject, conduct group project and report on them. The final project will be a mini-study involving curriculum design and assessment.

Načini ocenjevanja:

Delež (v %) / Weight (in %)

Assessment:

Aktivna udeležba na predavanjih. Domače naloge: povzetki domačega

branja vključno s pregledom literature ter refleksijo.

Skupinski projekt: skupina predlaga poučevalski pristop, ki temelji na izsledkih raziskav in se nanaša na področje različnih reprezentacij ter ga preizkusi s kolegi v razredu.

Zaključni projekt: študenti v skupinah po 2 ali 3, rešujejo mini raziskovalni projekt, pri čemer uporabijo izsledke raziskav. Projekt se mora nanašati na področje laboratorijskega dela s poskusi in mora vključevati uporabo tabel za samo-ocenjevanje.

Opravil / ni opravil (ob upoštevanju Statuta UL in fakultetnih pravil).

30% 30%

20%

20%

Active participation in class work,

Homework: : reading summaries including literature review and reflections.

Group project. The students working in groups will come up with a research-based instructional intervention in the area of multiple representations and try it with peers in class.

Capstone project. The course ends with students working in groups of 2-3 on a capstone project that uses the findings of physics education research in the area of laboratory experiments with the use

Passed / not passed (according to the Statute of UL)

Reference nosilca / Lecturer's references:

1. Poklinek Čančula, M., Planinšič G., Etkina E., 2015. Analyzing patterns in experts’ approaches to solving experimental problems, American journal of physics. 83 (4), 366-374.

2. PLANINŠIČ, G., GREGORČIČ, B., ETKINA, E., 2014. Learning and teaching with a computer scanner. Physics Education, 49(5), p586-595.

3. PLANINŠIČ, G., ETKINA, E., 2014. Light-emitting diodes : a hidden treasure. The Physics teacher, 52(2), p94-99.

4. ETKINA, E., PLANINŠIČ, G., VOLLMER, M., 2013. A simple optics experiment to engage students in scientific inquiry. American journal of physics, 81 (11), p815-822.

5

5. PLANINŠIČ, G., GOJKOŠEK, M. 2011, Prism foil from an LCD monitor as a tool for teaching introductory optic. European journal of physics, 32(2), p601-613.

1

UČNI NAČRT PREDMETA / COURSE SYLLABUS

Predmet: Specialistični seminar iz meteorologije

Course title: Specialized Seminar in Atmospheric Sciences

Študijski program in stopnja Study programme and level

Študijska smer Study field

Letnik Academic

year

Semester Semester

Univerzitetni študijski program 3. stopnje Matematika in fizika

Fizika 2 prvi

Third cycle academic study program Mathematics and

Physics Physics 2 first

Vrsta predmeta / Course type izbirni predmet/elective course

Univerzitetna koda predmeta / University course code: ???

Predavanja Lectures

Seminar Seminar

Vaje Tutorial

Klinične vaje work

Druge oblike študija

Samost. delo Individ.

work ECTS

60 300 12

Nosilec predmeta / Lecturer: Doc. dr. Gregor Skok / Assist. prof. dr. Gregor Skok

Jeziki / Languages:

Predavanja / Lectures:

Slovensko in angleščina/Slovene and English

Vaje / Tutorial: Slovensko in angleščina/Slovene and English

Pogoji za vključitev v delo oz. za opravljanje študijskih obveznosti:

Prerequisits:

Vpis v letnik študija. Opravljen predmet obveznega dela programa

Enrollment into the program. Passed basic mandatory course

Vsebina:

Content (Syllabus outline):

Teme G. Skoka:

Interpolacija talnih meritev padavin v pravilno mrežo

Zaznavanje padavin iz satelitov

Analiza in verifikacija modelskih padavin Teme J. Rakovca:

Vpliv ozračja na elektromagnetno sevanje

Globalna energetika Zemlje

Topics of G. Skok:

Interpolation of surface precipitation measurements to a regular grid

Precipitation sensing by satellites

Analysis and verification of modelled precipitation

Topics of J. Rakovec:

2

Metode 3D daljinskega zaznavanja

Uporaba satelitskih meritev v meteorologiji

Radarske in lidarske meritve s tal in z zrakoplovov

Teme N. Žagar:

Atmosferska turbulenca v dveh in treh dimenzijah: opazovanja in modeliranje

Vloga inercijsko-gravitacijskih valov v turbulentni dinamiki na različnih skalah

Uporaba normalnih načinov atmosferskih gibanj za opis splošne cirkulacije ozračja in spektralno predstavitev porazdelitve energije ozračja

Atmosferska napovedljivost: dinamika napak napovedi in njihovo modeliranje v matriki kovarianc napak pri asimilaciji podatkov v 4D variacijski metodi

Primeri poenostavnjenih modelov in metod numeričnega modeliranja dinamike kompleksnih sistemov

Teme L. Kajfež Bogataj:

Globalni in regionalni klimatski modeli in njihova uporaba pri računanju projekcij podnebja

Metode oblikovanja klimatskih scenarijev

EM radiation in Earth’s atmosphere

Global energetics

3D remote sensing

Use of satellite measurements in meteorology

Radar and lidar ground and airborne measurements

Topics of N. Žagar:

Atmospheric turbulence in 2D and 3D: observations and modelling

Role of inertio-gravity waves in atmospheric dynamics

Normal-mode function representation of global circulation and scale-dependent energy distribution

Atmospheric predictability: forecast-error dynamics and the background-error covariance modelling in 4D-Var data assimilation for NWP

Construction and application of simplified models as a basic tool for understanding of atmospheric processes

Topics of L. Kajfež Bogataj:

Global and regional climate models and their application. Climate projections.

Methods for construction of climate change scenarios

Temeljni literatura in viri / Readings:

Michaelides. S.C. (Ed.): Precipitation: Advances in Measurement, Estimation and Prediction. Springer 2008.

Stephens G.L.: Remote Sensing of the Lower Atmosphere: An Introduction, Oxford Univ. Press. 1994

Marzano, F.S. in G. Visconti (Eds.): Remote Sensing of Atmosphere and Ocean from Space: Models, Instruments and Techniques, Springer 2002

Thomas, G. E. in K. Stamnes: Radiative transfer in the atmosphere and ocean, Cambridge University Press 1999.

Randal, D: General Circulation Model Development: Past, Present, and Future. International Geophysics Series, Vol. 70, 2000.

Peixoto, J.P. in A.H. Oort: Physics of Climate. Springer-Verlag 1992 Weinheim, Wiley-VCH, 2006, ISBN 3-527-40503-8.

Kalnay, E.: Atmospheric modelling, data assimilation and predictability. Cambridge University Press 2003

Izbrani novejši članki iz strokovnih časopisov

3

Cilji in kompetence: Objectives and competences:

Poglobljeno spoznavanje snovi z različnih področij dinamike in fizike atmosfere. Razumevanje različnih procesov in relativnega pomena različnih faktorjev za opažene količine, njihovo časovno in prostorsko dinamiko. Seznanitev z najnovejšimi metodami in rezultati na različnih področij meteorologije.

Getting the picture of general circulation and the relative importance of various factors for atmospheric variability. Understanding challenges associated with the global atmospheric modeling. Getting familiar with recent progress in selected research topics in atmospheric sciences.

Predvideni študijski rezultati:

Intended learning outcomes:

Znanje in razumevanje Študent pridobi pregled nad trenutnimi odprtimi znanstvenimi vprašanji na različnih teoretičnih in praktičnih področjih meteorologije in razumevanje teoretičnih in eksperimentalnih pristopov k reševanju le-teh.

Uporaba Pridobljeno znanje študent uporabi pri raziskovalnem delu za doktorsko disertacijo.

Refleksija Uporaba pridobljenega znanja za povezovanje

z sorodnimi problemi in znanstvenimi metodami na področjih, ki niso neposredno povezana s tematiko doktorske disertacije.

Prenosljive spretnosti - niso vezane le na en predmet Poglobljeno razumevanje trenutnega raziskovalnega stanja na različnih področjih omogoča povezovanje teoretičnih razlag in eksperimentalnih metod.

Knowledge and understanding: Student develops ability to understand challenges associated with addressing open scientific and professional questions in various fields of atmospheric sciences and theoretical and experimental methods applied to solve them. Application: Obtained knowledge can be applied in doctoral thesis scientific research. Reflection: Usage of acquired knowledge to interconnection of related problems and scientific methods not directly involved in the field of doctoral thesis. Transferable skills: Deepened knowledge of contemporary scientific state-of-the-art in various fields enables interconnection of theoretical and experimental methods.

Metode poučevanja in učenja:

Learning and teaching methods:

4

Predavanja, konzultacije, seminarji. Lectures, consultations, seminars.

Načini ocenjevanja:

Delež (v %) / Weight (in %)

Assessment:

Aktivna udeležba na predavanjih in v diskusijah, priprava in predstavitev seminarja

Razgovor, opravil / ni opravil (ob upoštevanju Statuta UL in fakultetnih pravil).

75% 25%

Participation in lectures and discussions, seminar presentation

Discussion, passed / not passed (according to the Statute of UL)

Reference nosilca / Lecturer's references:

Skok, G., 2014: Analysis of Fraction Skill Score properties for a displaced rainband in a rectangular domain. Metorol. Applications, 8 pages.

Skok, G. et al., 2010: Object-based analysis and verification of WRF model precipitation in the low- and Midlatitude Pacific Ocean. Mon. Wea. Rev., 138, 4561-4575.

Skok, G. et al., 2013: Analysis of tropical cyclone precipitation using an object-based algorithm. J. Climate, 26, 2563-2579.

1

UČNI NAČRT PREDMETA / COURSE SYLLABUS

Predmet: Specialistični seminar iz reaktorske fizike in tehnike

Course title: Specialized Seminar on Nuclear Physics and Engineering

Študijski program in stopnja Study programme and level

Študijska smer Study field

Letnik Academic

year

Semester Semester

Univerzitetni študijski program 3.stopnje Matematika in fizika

Fizika 1 prvi

Third cycle academic study program Mathematics and

Physics Physics 1 first

Vrsta predmeta / Course type izbirni predmet/elective course

Univerzitetna koda predmeta / University course code:

Predavanja Lectures

Seminar Seminar

Vaje Tutorial

Klinične vaje work

Druge oblike študija

Samost. delo Individ.

work ECTS

60 300 120

Nosilec predmeta / Lecturer: Doc. dr. Luka Snoj / Assist. prof. dr. Luka Snoj

Jeziki / Languages:

Predavanja / Lectures:

Slovensko/Slovene

Vaje / Tutorial: Slovensko/Slovene

Pogoji za vključitev v delo oz. za opravljanje študijskih obveznosti:

Prerequisites:

Vpis v letnik študija.

Enrollment into the program.

Vsebina:

Content (Syllabus outline):

2

Izbrana poglavja jedrske termohidravlike: - Enofazni turbulentni prenos toplote: modeli in simulacije. - Večkomponentni tokovi. - Dvofazni tokovi: modeli in simulacije. - Eksperimentalne metode. Izbrana poglavja mehanike konstrukcij: - Uporaba metode končnih elementov v mehaniki trdnin in uporaba specifičnih računalniških programov. - Izbrane analitične in numerične metode za simulacije na nižjih krajevnih skalah. - Uporaba drugih numeričnih metod v mehaniki trdnin. Izbrane teme iz materialov v jedrski tehniki Izbrana poglavja iz jedrske varnosti: - Varnostni sistemi jedrskih elektrarn in njihov razvoj. - Izvajanje determinističnih varnostnih analiz: analize obratovalnih dogodkov, prehodnih pojavov in projektnih nezgod ter težkih nesreč. - Izvajanje verjetnostnih varnostnih analiz. Odločanje z upoštevanjem parametrov tveganja. - Licenciranje, projektiranje, dokumentiranje in varnostna poročila ter obratovalne omejitve. - Obratovanje, vzdrževanje in periodični varnostni pregledi. - Uporaba sistema zagotovitev kakovosti. Izbrana poglavja iz varstva pred sevanji: - Viri ionizirajočih sevanj - Učinki in posledice ionizirajočega sevanja - Merjenje sevanja - Načela in ukrepi varstva pred ionizirajočimi sevanji - Ocena izpostavljenosti ionizirajočim sevanjem - Radiološki nadzor okolja - Primeri izrednih dogodkov in njihova analiza - Predpisi, priporočila in organizacije varstva pred ionizirajočimi sevanji (EURATOM, slovenski predpisi, organizacije: ICRP, IAEA, UNSCEAR, ISOE/NEA) Izbrane teme iz razgradnje, predelave in recikliranja jedrskega goriva ter odlaganja radioaktivnih odpadkov.

Selected topics of nuclear thermal hydraulics: - Single-phase turbulent heat transfer: models and simulations. - Multi-component flows. - Two-phase flow: models and simulations. - Experimental methods. Selected topics of structural mechanics: - Implementation of the finite element method in mechanics of solids. Work with specific computer codes. - Selected models and numerical methods for description on smaller scales. - Implementation of other numerical methods in mechanics of solids. Selected topics of nuclear materials. Selected topics of nuclear safety: - Safety systems of nuclear power plants and their development. - Deterministic Safety analyses with various dedicated code. Analyses of transients and accidents. - Probabilistic safety assessments. Performance of probabilistic safety analyses. Risk based decisions. - Licensing, project preparation, documentation, safety reports and operational limits. - Operation, maintenance, periodic safety reviews. - Quality assurance system - implementations. Selected topics of radiation protection: - Ionizing radiation sources - Ionizing radiation effects - Measurement of ionizing radiation - Principles and measures of radiation protection - Evaluation of exposure to ionizing radiation - Radiological environmental monitoring - cases of emergency situations -legislation, guidelines and organizations in the field of radiation protection (EURATOM, Slovenian legislation, organizations: ICRP, IAEA, UNSCEAR, ISOE/NEA) Selected topics on decommissioning and recycling of nuclear fuel and radioactive waste disposal.

3

Temeljni literatura in viri / Readings:

Kleiber, Handbook of Computational Solid Mechanics, Springer, 1995.

Zienkiewicz, Taylor, The Finite Element Method, Butterworth – Heinemann, 2000.

Asaro, Lubarda, Mechanics of Solids and Materials, Cambridge University Press (United States), 2006.

Chen, Lee, Eskandarian, Meshless Methods in Solid Mechanics, Springer, 2006.

Todreas, Kazimi, Nuclear systems. Volume I, Thermal hydraulic fundamentals, CRC Press, 2012.

Todreas, Kazimi, Nuclear systems. Volume II, Elements of thermal hydraulic design, CRC Press, 2012.

Ishii, Hibiki, Thermo-fluid dynamics of two-phase flow, Springer, 2006.

G. F. Knoll, Radiation detection and measurement, John Wiley & Sons, Inc., New York, 2000

H. Cember, Introduction to Health Physics, 4th ed., McGraw-Hill,2009

J. E. Martin, Physics of radiation protection, Willey-vch, 2013

Council Directive 2013/59 EURATOM Basic safety Standards for the protection against the dangers arising from exposure to ionising radiation (2013)

International Basic Safety Standards: Radiation Protection and Safety of Radiation Sources, General Safety Requirements Part 3, IAEA 2014

Recommendations of the ICRP,Annals of the ICRP, Publication 103, Elsevier 2008

Zakon o varstvu pred ionizirajočimi sevanji in jedrski varnosti (Uradni list RS št 102/04 s spremembami in dopolnitvami) s pripadajočimi podzakonskimi predpisi

B. Pershagen: Light Water Reactor Safety; Pergamon Press, Oxford, 1989

H. Kumamoto, E. J. Henley, Probabilistic Risk Assessment and Management for Engineers and Scientists, IEEE Press, 1996

Znanstvena literatura/ Relevant publications in scientific journals.

Cilji in kompetence:

Objectives and competences:

Študent poglobi znanje s področja nekaterih poglavij reaktorske fizike in tehnike. Študent se seznani z najnovejšimi dognanji na teh področjih. Poudarek je na izpopolnjevanju na področju študentovega raziskovalnega dela.

The student acquires a deeper knowledge of selected topics of reactor physics and engineering in the field of her/his research area. Selected topics are focused on the student's research area.

Predvideni študijski rezultati:

Intended learning outcomes:

Znanje in razumevanje Študent pridobi pregled nad trenutnimi odprtimi znanstvenimi vprašanji na različnih področjih jedrske termohidravlike, mehanike konstrukcij v jedrski tehniki, sevalne varnosti, varstva pred sevanji oziroma jedrske varnosti. Študent razume in uporablja teoretične in eksperimentalne pristope k reševanju teh vprašanj.

Uporaba Pridobljeno znanje študent uporabi pri

Knowledge and understanding The student acquires an overview of open scientific questions in various fields of nuclear thermal hydraulics, structural mechanics, nuclear safety, radiation protection in the field of her/his research area. The student understands theoretical and experimental methods to solve those questions and is capable to use them in his research work. Application The acquired knowledge can be applied in doctoral thesis scientific research.

4

raziskovalnem delu za doktorsko disertacijo.

Refleksija Uporaba pridobljenega znanja za povezovanje s sorodnimi problemi in znanstvenimi metodami na področjih, ki niso neposredno povezana s tematiko doktorske disertacije.

Prenosljive spretnosti - niso vezane le na en predmet Poglobljeno razumevanje trenutnega raziskovalnega stanja na različnih področjih omogoča povezovanje teoretičnih razlag in eksperimentalnih metod.

Reflection Usage of acquired knowledge for interconnection of related problems and scientific methods not directly involved in the field of the doctoral thesis. Transferable skills Deepened knowledge of contemporary scientific state-of-the-art in various fields enables interconnection of theoretical and experimental methods.

Metode poučevanja in učenja:

Learning and teaching methods:

Predavanja, konzultacije. Lectures, consultations.

Načini ocenjevanja:

Delež (v %) / Weight (in %)

Assessment:

Aktivna udeležba na predavanjih in v diskusijah.

Razgovor, opravil / ni opravil (ob upoštevanju Statuta UL in fakultetnih pravil).

75%

25%

Active attendance at lectures and in discussions.

Discussion, passed / not passed (according to the Statute of UL).

Reference nosilca / Lecturer's references:

1) SNOJ, Luka, ŽEROVNIK, Gašper, TRKOV, Andrej. Computational analysis of irradiation facilities at the JSI TRIGA reactor. Applied Radiation and Isotopes, 2012, vol. 70, str. 483-488

2) ŽEROVNIK, Gašper, KAIBA, Tanja, RADULOVIĆ, Vladimir, JAZBEC, Anže, RUPNIK, Sebastijan, BARBOT, L., FOURMENTEL, D., SNOJ, Luka. Validation of the neutron and gamma fields in the JSI TRIGA reactor using in-core fission and ionization chambers. Applied Radiation and Isotopes, 2015, vol. 96, str. 27-35

3) JET EFDA Contributors, SNOJ, Luka, TRKOV, Andrej, LENGAR, Igor, POPOVICHEV, Sergei, CONROY,

5

S., SYME, B. Calculations to support JET neutron yield calibration : Neutron scattering in source holder. Fusion eng. des.. [Print ed.], 2012, iss. 11, vol. 87, str. 1846-1852.