111
Course in ANSYS Example0702 Computational Mechanics, AAU, Esbjerg AutoDesk Inventor

Course in ANSYS - Aalborg Universitethomes.civil.aau.dk/shl/ansysc/ansys-example0702.pdf · AutoDesk Inventor Example – Plate with a hole E = 210000N/mm2 n = 0.3 a = 200mm b = 100mm

  • Upload
    vankiet

  • View
    227

  • Download
    0

Embed Size (px)

Citation preview

Course in ANSYS

Example0702

Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Syllabus 2Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – Plate with a hole

E = 210000N/mm2

n = 0.3a = 200mmb = 100mmt = 10mmr = 10mms = 100N/mm2

Objective:Determine the maximum stress in the x-direction for point A and display the deformation figureTasks:Create a submodel to increase the accuracy of the FEA without increasing the computational effort significantly?Topics:Element type, Real constants, modeling, mapped mesh, plot results, output graphics, path operations, submodeling

A

Steps in Submodeling

• The process for using submodeling is as follows: –– Create and analyze the coarse model.Create and analyze the coarse model.– Create the submodel.– Perform cut boundary interpolation (CBI).– Analyze the submodel.– Verify that the distance between the cut

boundaries and the stress concentration is adequate.

Syllabus 3Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example - titleUtility Menu > File > Change Jobname/jobname, Example0702_coarse Command line entry

GUI

Enter: Example0702_coarse

Utility Menu > File > Change Title/title, Plate with a hole

Enter: Plate with a hole

Syllabus 4Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – Areas RectanglePreprocessor > Modeling > Create > Areas > Rectangle > By DimensionsCreate an area given by X=(0,100) and Y=(0,50)

Enter 0 orleave empty

Syllabus 5Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Enter 100

Enter 50Enter 0 orleave emptyPress OK

Note: Keypoints (4 kp’s) and lines(4 lines) are automatically generated(also numbered automatically)

Example – Areas Rectangle

Syllabus 6Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – Areas CirclePreprocessor > Modeling > Create > Areas > Circle > Solid CircleCreate an area given by (X,Y)=(0, 0) and Radius=10

Syllabus 7Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Enter 10

Press OKNote: Keypoints (4 kp’s) and lines(4 lines) are automatically generated(also numbered automatically)

Example - Area

Syllabus 8Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Syllabus 9Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example - OperatePreprocessor > Modeling > Operate > Booleans > Subtract > AreasCreate the final area by subtracting the circular area from the rectangular area

Note: Bottom left corner of ANSYS GUI

Press OK

Select the rectangular area and press OK

Note: Bottom left corner of ANSYS GUI

Select the circular area

Example – Areas

Syllabus 10Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example - Numbering

Syllabus 11Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Switch on Keypoint, Line, and Area Numbers

Example - List Menu

List Keypoint, Lines, and Areas

Syllabus 12Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example - Plot Menu

Plot Keypoint, Lines, and Areas

Syllabus 13Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – Element TypePreprocessor > Element Type > Add/Edit/Delete

Press Add

Syllabus 14Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example - Element TypePreprocessor > Element Type > Add/Edit/Delete

Syllabus 15Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Press Options

Press Help to learn more about theelement.

Select Plane strs w/thk

Example – Real ConstantsPreprocessor > Real Constants > Add

Place the cursoron the relevantelement andpress OK

Syllabus 16Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example - Real ConstantsPreprocessor > Real Constants > Add

Press OK

Press Closeto finish

Enter 10

Syllabus 17Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example - Material PropertiesPreprocessor > Material Props > Material Models

Double Clickto step in thematerial tree

Syllabus 18Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example - Material Properties

Syllabus 19Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Preprocessor > Material Props > Material ModelsEnter 210000Modulus of elasticity

Enter 0.3Poisson’s ratio

Click hereto Close

Press OK

Example - MeshingPreprocessor > Meshing > Size Cntrls > ManualSize > Lines > Picked Lines

Syllabus 20Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Select/PickLines tospecifymesh sizefor

Pick the twolongest lines

Press OK when finish with selection

See next page

Example – Mesh Size

3 Element subdivisions

5 Element subdivisions

6 Element subdivisions

Syllabus 21Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – Concatenate Lines

Syllabus 22Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Select L2 and L3 to create a topologically four sided geometryPress OK

Example - MeshingPreprocessor > Meshing > Mesh > Areas > Mapped > 3 or 4 sided

Syllabus 23Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Select individual areasto be meshed

Select all areas definedto be meshed

NB: It is often necessary to “Clear” the model forexample if Element Type or model geometry is to be changed

Example – Mapped Mesh

Syllabus 24Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – Analysis Type

Solution > Analysis Type > New Analysis

File > Write DB log fileEnter “example0702_coarse.lgw”

Syllabus 25Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – Define LoadsSolution > Define Loads > Apply > Structural > Displacement > On Lines

Select UY to fix the plate in the y-direction

Select the bottom straight line

Press OK

Syllabus 26Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – Define LoadsSolution > Define Loads > Apply > Structural > Displacement > On Lines

Select UX to fix the plate in the x-direction

Select the left straight line

Press OK

Syllabus 27Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – Define LoadsSolution > Define Loads > Apply > Structural > Pressure > On lines

Select the right straight line

Enter -100

Press OK to finish

Syllabus 28Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Note: Pressure acts normal and inward to a surface

Example - Save

Display of Analysis model

Save the model

Syllabus 29Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example - SolveSolution > Solve > Current LS

Syllabus 30Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Press OK

Example - SolvePress Close

Press hereto Close

Syllabus 31Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – Contour PlotGeneral Postproc > Plot Results > Contour Plot > Nodal Sol

Select Stress

Select SX for stresses in x-direction

Syllabus 32Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – Contour Plot

Syllabus 33Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – Select - Entities

See next page for selection

Syllabus 34Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Syllabus 35Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – Select Nodes

Select the indicated nodes

Enter OK when finished

Example – List Results

Syllabus 36Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Select Stress, SCOMP

Press OK

Example – List Results

Syllabus 37Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example - Plot - Nodes

Plot Nodes

Only 11 FE nodes are displayed – the same nodes as selected previously

Syllabus 38Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – Select - Entities

Select Pick All

Syllabus 39Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example - Plot - Nodes

Plot Nodes

Syllabus 40Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example - Plot - Nodes

Syllabus 41Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Syllabus 42Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – Define Path

See next page for selection

Example – Define Path - By Nodes

Syllabus 43Computational Mechanics, AAU, EsbjergAutoDesk InventorEnter OK when finished

Select the indicated nodes

Note: the selection order is important –start from the hole

Example – Define Path - By Nodes

Enter an appropiate name, e.g. SSX

Enter OK

Syllabus 44Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Syllabus 45Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – Map onto Path

Select Stress, SX

Press OK

Syllabus 46Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – Plot Path on Graph

Select SX

Press OK

Example – Plot Path on Graph

Syllabus 47Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Steps in Submodeling

• The process for using submodeling is as follows: – Create and analyze the coarse model.–– Create the Create the submodelsubmodel..– Perform cut boundary interpolation (CBI).– Analyze the submodel.– Verify that the distance between the cut

boundaries and the stress concentration is adequate.

Syllabus 48Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example - titleUtility Menu > File > Change Jobname/jobname, Example0702_fine Command line entry

GUI

Enter: Example0702_fine

Utility Menu > File > Change Title/title, Plate with a hole

Enter: Plate with a hole

Syllabus 49Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – Areas RectanglePreprocessor > Modeling > Create > Areas > Rectangle > By DimensionsCreate an area given by X=(0,25) and Y=(0,25)

Enter 0 orleave empty

Syllabus 50Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Enter 25

Enter 25Enter 0 orleave emptyPress OK

Note: Keypoints (4 kp’s) and lines(4 lines) are automatically generated(also numbered automatically)

Example – Areas Rectangle

Syllabus 51Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – Areas CirclePreprocessor > Modeling > Create > Areas > Circle > Solid CircleCreate an area given by (X,Y)=(0, 0) and Radius=10

Syllabus 52Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Enter 10

Press OKNote: Keypoints (4 kp’s) and lines(4 lines) are automatically generated(also numbered automatically)

Example - Area

Syllabus 53Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Syllabus 54Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example - OperatePreprocessor > Modeling > Operate > Booleans > Subtract > AreasCreate the final area by subtracting the circular area from the rectangular area

Note: Bottom left corner of ANSYS GUI

Press OK

Select the rectangular area and press OK

Note: Bottom left corner of ANSYS GUI

Select the circular area

Example – Areas

Syllabus 55Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example - Numbering

Syllabus 56Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Switch on Keypoint, Line, and Area Numbers

Example - List Menu

List Keypoint, Lines, and Areas

Syllabus 57Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example - Plot Menu

Plot Keypoint, Lines, and Areas

Syllabus 58Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – Element TypePreprocessor > Element Type > Add/Edit/Delete

Press Add

Syllabus 59Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example - Element TypePreprocessor > Element Type > Add/Edit/Delete

Press Options

Syllabus 60Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Press Help to learn more about theelement.

Select Plane strs w/thk

Example – Real ConstantsPreprocessor > Real Constants > Add

Place the cursoron the relevantelement andpress OK

Syllabus 61Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example - Real ConstantsPreprocessor > Real Constants > Add

Press OK

Press Closeto finish

Enter 10

Syllabus 62Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example - Material PropertiesPreprocessor > Material Props > Material Models

Double Clickto step in thematerial tree

Syllabus 63Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example - Material Properties

Syllabus 64Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Preprocessor > Material Props > Material ModelsEnter 210000Modulus of elasticity

Enter 0.3Poisson’s ratio

Click hereto Close

Press OK

Example - MeshingPreprocessor > Meshing > Size Cntrls > ManualSize > Lines > Picked Lines

Syllabus 65Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Select/PickLines tospecifymesh sizefor

Pick the twolongest lines

Press OK when finish with selection

See next page

Example – Mesh Size

6 Element subdivisions

10 Element subdivisions

12 Element subdivisions

Syllabus 66Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – Concatenate Lines

Syllabus 67Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Select L2 and L3 to create a topologically four sided geometryPress OK

Example - MeshingPreprocessor > Meshing > Mesh > Areas > Mapped > 3 or 4 sided

Syllabus 68Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Select individual areasto be meshed

Select all areas definedto be meshed

NB: It is often necessary to “Clear” the model forexample if Element Type or model geometry is to be changed

Example – Mapped Mesh

Syllabus 69Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – Define LoadsSolution > Define Loads > Apply > Structural > Displacement > On Lines

Select UY to fix the plate in the y-direction

Select the bottom straight line

Press OK

Syllabus 70Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – Define LoadsSolution > Define Loads > Apply > Structural > Displacement > On Lines

Select UX to fix the plate in the x-direction

Select the left straight line

Press OK

Syllabus 71Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example - Submodel

Syllabus 72Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example - Steps in Submodeling

• The process for using submodeling is as follows: – Create and analyze the coarse model.– Create the submodel.–– Perform Cut Boundary Interpolation (CBI).Perform Cut Boundary Interpolation (CBI).– Analyze the submodel.– Verify that the distance between the cut

boundaries and the stress concentration is adequate.

Syllabus 73Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – CBI Steps

• The following tasks are involved in performing the cut boundary interpolation:

1.1. Identify and write the cutIdentify and write the cut--boundary nodesboundary nodes2. Restore the full set of nodes, write the database to

Jobname.DB3. To do the cut boundary interpolation restore the coarse

model4. Enter POST15. Point to the coarse results file6. Read in the desired set of data from the results file7. Initiate cut-boundary interpolation8. All interpolation work is now done

Syllabus 74Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – CBI: Step 1

Plot Nodes

Syllabus 75Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – CBI: Step 1

See next page for selection

Syllabus 76Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – CBI: Step 1

Syllabus 77Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – CBI: Step 1

Plot Nodes

Syllabus 78Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – CBI: Step 1

Syllabus 79Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Syllabus 80Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – CBI: Step 1

Enter example0702_cutboundaryPress OK

Example - CBI Steps

• The following tasks are involved in performing the cut boundary interpolation:

1. Identify and write the cut-boundary nodes2.2. Restore the full set of nodes, write the database to Restore the full set of nodes, write the database to

Jobname.DBJobname.DB3. To do the cut boundary interpolation restore the coarse

model4. Enter POST15. Point to the coarse results file6. Read in the desired set of data from the results file7. Initiate cut-boundary interpolation8. All interpolation work is now done

Syllabus 81Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – CBI: Step 2

Select Pick All

Syllabus 82Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example - CBI Steps

• The following tasks are involved in performing the cut boundary interpolation:

1. Identify and write the cut-boundary nodes2. Restore the full set of nodes, write the database to

Jobname.DB3.3. To do the cut boundary interpolation restore the To do the cut boundary interpolation restore the

coarse modelcoarse model4. Enter POST15. Point to the coarse results file6. Read in the desired set of data from the results file7. Initiate cut-boundary interpolation8. All interpolation work is now done

Syllabus 83Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – CBI: Step 3Enter example0702_coarse.db

Press OK

Syllabus 84Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – CBI: Step 3

Syllabus 85Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example - CBI Steps

• The following tasks are involved in performing the cut boundary interpolation:

1. Identify and write the cut-boundary nodes2. Restore the full set of nodes, write the database to

Jobname.DB3. To do the cut boundary interpolation restore the coarse

model4.4. Enter POST1Enter POST15.5. Point to the coarse results filePoint to the coarse results file6.6. Read in the desired set of data from the results fileRead in the desired set of data from the results file7. Initiate cut-boundary interpolation8. All interpolation work is now done

Syllabus 86Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Syllabus 87Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – CBI: Step 4-6

Browse to find the result file see next page

Select All items

Example – CBI: Step 4-6Read the First Set

Enter example0702_coarse.rst

Syllabus 88Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example - CBI Steps

• The following tasks are involved in performing the cut boundary interpolation:

1. Identify and write the cut-boundary nodes2. Restore the full set of nodes, write the database to

Jobname.DB3. To do the cut boundary interpolation restore the coarse

model4. Enter POST15. Point to the coarse results file6. Read in the desired set of data from the results file7.7. Initiate cutInitiate cut--boundary interpolationboundary interpolation8. All interpolation work is now done

Syllabus 89Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – CBI: Step 7

Syllabus 90Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Press OK Browse to find example0702_cutboundary

Example – CBI: Step 7

Press OKEnter example0702_fine.db

Syllabus 91Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – CBI: Step 7

Load the example0702_fine.cbdoPress OK

Syllabus 92Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – CBI: Step 8

Syllabus 93Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example - SolvePress Close

Press hereto Close

Syllabus 94Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – Contour PlotGeneral Postproc > Plot Results > Contour Plot > Nodal Sol

Select Stress

Select SX for stresses in x-direction

Syllabus 95Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – Contour Plot

Syllabus 96Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – Select - Entities

See next page for selection

Syllabus 97Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – Select Nodes

Select the indicated nodes

Syllabus 98Computational Mechanics, AAU, EsbjergAutoDesk InventorEnter OK when finished

Example – List Results

Syllabus 99Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Select Stress, SCOMP

Press OK

Example – List Results

Syllabus 100Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example - Plot - Nodes

Plot Nodes

Only 21 FE nodes are displayed – the same nodes as selected previously

Syllabus 101Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – Select - Entities

Select Pick All

Syllabus 102Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example - Plot - Nodes

Plot Nodes

Syllabus 103Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example - Plot - Nodes

Syllabus 104Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Syllabus 105Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – Define Path

See next page for selection

Example – Define Path - By Nodes

Select the indicated nodes

Note: the selection order is important –start from the hole

Syllabus 106Computational Mechanics, AAU, EsbjergAutoDesk InventorEnter OK when finished

Example – Define Path - By Nodes

Enter an appropiate name, e.g. SSX

Enter OK

Syllabus 107Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Syllabus 108Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – Map onto Path

Select Stress, SX

Press OK

Syllabus 109Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Example – Plot Path on Graph

Select SX

Press OK

Example – Plot Path on Graph

Syllabus 110Computational Mechanics, AAU, EsbjergAutoDesk Inventor

File menu

Syllabus 111Computational Mechanics, AAU, EsbjergAutoDesk Inventor

Clears (zeros out) the database stored in memory. Clearing the database has the same effect as leaving and reentering the ANSYS program, but does not require you to exit.

You can include commands to be executed when the program starts up in the start71.ans file.