15
ht © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Coulomb Force The field model and the electric field Chapter 20 Electric Forces and Fields Topics: Sample question: In electrophoresis, what force causes DNA fragments to migrate through the gel? How can an investigator adjust the migration rate? Slide 20-1

Coulomb Force The field model and the electric field

  • Upload
    kalli

  • View
    61

  • Download
    9

Embed Size (px)

DESCRIPTION

Chapter 20 Electric Forces and Fields. Coulomb Force The field model and the electric field. Topics:. Sample question:. In electrophoresis, what force causes DNA fragments to migrate through the gel? How can an investigator adjust the migration rate?. Slide 20-1. Nature of Electric Field. - PowerPoint PPT Presentation

Citation preview

Page 1: Coulomb Force The field model and the electric field

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley.

• Coulomb Force• The field model and the

electric field

Chapter 20Electric Forces and Fields

Topics:

Sample question:In electrophoresis, what force causes DNA fragments to migrate through the gel? How can an investigator adjust the migration rate?

Slide 20-1

Page 2: Coulomb Force The field model and the electric field

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley.

Nature of Electric Field

• Test charge is a small positive charge to sample the E-Field

• Charge of test charge is small compared to source charges (source charges are the charges that generate the field)

• E-field vectors

• E -field is the force per charge

• E-field vectors points away from + charges

• E-field vectors point towards - charges

• E -field for point charges gets weaker as distance from source point charges increases

• For a point charge E = Fe / q = [k Q q / r2] / q = k Q / r2

Page 3: Coulomb Force The field model and the electric field

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley.

1. Determine the magnitude and the direction of the electric field at point A.

Slide 20-66

E-field Superposition Example

Page 4: Coulomb Force The field model and the electric field

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley.

A small sphere is suspended from a string in a uniform electric field. Several different cases of sphere mass and sphere charge are presented in the following table. In which case is the angle at which the sphere hangs the largest?

Sphere mass (g) Sphere charge (nC)A. 2.0 4.0B. 3.0 4.0C. 2.0 6.0D. 3.0 8.0E. 4.0 9.0

Additional Clicker Questions

Slide 20-61

Page 5: Coulomb Force The field model and the electric field

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley.

A small sphere is suspended from a string in a uniform electric field. Several different cases of sphere mass and sphere charge are presented in the following table. In which case is the angle at which the sphere hangs the largest?

Sphere mass (g) Sphere charge (nC)

C. 2.0 6.0

Slide 20-62

Answer

Page 6: Coulomb Force The field model and the electric field

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley.

Electric Field Vectors and Electric Field Lines

E-field Applet 2

http://qbx6.ltu.edu/s_schneider/physlets/main/efield.shtml

What observations can we make about E-field lines?

What symmetries can you see?

Page 7: Coulomb Force The field model and the electric field

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley.

Electric Field Vectors and Electric Field Lines

E-field Applet 3

http://www.falstad.com/vector2de/

What observations can we make about the E-field for parallel Plates?

Define capacitor as any two conductors with equal and opposite charges

Discuss electric permittivity, spacing and charge density

Page 8: Coulomb Force The field model and the electric field

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley.

Dipole and Uniform Electric Fields

Slide 20-45

Page 9: Coulomb Force The field model and the electric field

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley.

Two parallel plates have charges of equal magnitude but opposite sign. What change could be made to increase the field strength between the plates?

A. increase the magnitude of the charge on both platesB. decrease the magnitude of the charge on both platesC. increase the distance between the platesD. decrease the distance between the platesE. increase the area of the plates (while keeping the magnitude of

the charges the same)F. decrease the area of the plates (while keeping the

magnitude of the charges the same)

Slide 20-50

Checking Understanding

Page 10: Coulomb Force The field model and the electric field

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley.

Two parallel plates have charges of equal magnitude but opposite sign. What change could be made to increase the field strength between the plates?

A. increase the magnitude of the charge on both plates

Slide 20-51

Answer

Page 11: Coulomb Force The field model and the electric field

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley.

A dipole is held motionless in a uniform electric field. For the situation below, when the dipole is released, which of the following describes the subsequent motion?

A. The dipole moves to the right.

B. The dipole moves to the left.

C. The dipole rotates clockwise.

D. The dipole rotates counterclockwise.

E. The dipole remains motionless.

Slide 20-57

Checking Understanding

Page 12: Coulomb Force The field model and the electric field

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley.

A dipole is held motionless in a uniform electric field. For the situation below, when the dipole is released, which of the following describes the subsequent motion?

D. The dipole rotates counterclockwise.

Slide 20-58

Answer

Page 13: Coulomb Force The field model and the electric field

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley.

E-fields and Conductors

Inside => E=field is zero

Outside => E-field is perpendicular to the surface

Page 14: Coulomb Force The field model and the electric field

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley.

A dipole is held motionless in a uniform electric field. For the situation below, when the dipole is released, which of the following describes the subsequent motion?

A. The dipole moves to the right.

B. The dipole moves to the left.

C. The dipole rotates clockwise.

D. The dipole rotates counterclockwise.

E. The dipole remains motionless.

Slide 20-55

Checking Understanding

Page 15: Coulomb Force The field model and the electric field

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley.

A dipole is held motionless in a uniform electric field. For the situation below, when the dipole is released, which of the following describes the subsequent motion?

A. The dipole moves to the right.

Slide 20-56

Answer