15
COST 289 15-16 March 2004, Zurich Traffic Hotspots in UMTS Networks : influence on RRM strategies Ferran Adelantado i Freixer ([email protected])

COST 289 15-16 March 2004, Zurich Traffic Hotspots in UMTS Networks : influence on RRM strategies Ferran Adelantado i Freixer ([email protected])

  • View
    219

  • Download
    0

Embed Size (px)

Citation preview

Page 1: COST 289 15-16 March 2004, Zurich Traffic Hotspots in UMTS Networks : influence on RRM strategies Ferran Adelantado i Freixer (ferran-adelantado@tsc.upc.es)

COST 289 15-16 March 2004, Zurich

Traffic Hotspots in UMTS Networks : influence on RRM

strategies Ferran Adelantado i Freixer

([email protected])

Page 2: COST 289 15-16 March 2004, Zurich Traffic Hotspots in UMTS Networks : influence on RRM strategies Ferran Adelantado i Freixer (ferran-adelantado@tsc.upc.es)

COST 289 15-16 March 2004, Zurich

Outline

•Introduction

•Simulation environment

•ResultsPath loss analysis

CAC performance

•Conclusions and future work

Page 3: COST 289 15-16 March 2004, Zurich Traffic Hotspots in UMTS Networks : influence on RRM strategies Ferran Adelantado i Freixer (ferran-adelantado@tsc.upc.es)

COST 289 15-16 March 2004, Zurich

Introduction

•The main goal of the study is to analyse non-uniformly traffic distributed scenarios.

•It is important to be able to maintain the target QoS.

•All alternatives should be taken into account before deploying hotspot WLAN networks.

•Assessment of RRM strategies becomes necessary to deal with high traffic density areas (hotspots).

•Is it possible to dynamically react to environment changes?

Page 4: COST 289 15-16 March 2004, Zurich Traffic Hotspots in UMTS Networks : influence on RRM strategies Ferran Adelantado i Freixer (ferran-adelantado@tsc.upc.es)

COST 289 15-16 March 2004, Zurich

Simulation Environment

• A single isolated cell (radius R).

• A traffic hotspot with radius r and placed D meters from base station.

• Ttotal=THS+TNo HS

THS=αTtotal

TNo HS=(1-α)Ttotal

•Only videophone users considered

•Propagation model:Lp(d)=Lo+ log(d)

DR

where

Page 5: COST 289 15-16 March 2004, Zurich Traffic Hotspots in UMTS Networks : influence on RRM strategies Ferran Adelantado i Freixer (ferran-adelantado@tsc.upc.es)

COST 289 15-16 March 2004, Zurich

Results

Simulation Parameters (1/2)

BS parameters

Cell type Omnidirectional

Thermal Noise -103 dBm

Pilot and common control channel power

32 dBm

Shadowing deviation 3 dB

Shadowing decorrelation length

20 m

UE parameters

Maximum transmitted power

21 dBm

Minimum transmitted power

-44 dBm

Mobile speed 10 km/h

Cell radius 1000 m

Hotspot radius 50 m

Page 6: COST 289 15-16 March 2004, Zurich Traffic Hotspots in UMTS Networks : influence on RRM strategies Ferran Adelantado i Freixer (ferran-adelantado@tsc.upc.es)

COST 289 15-16 March 2004, Zurich

Results

Traffic model

Call duration 120 seg

Offered bit rate 64 kb/seg (CBR)

Activity factor 1

Call rate 15 calls/h/user

QoS parameters

BLER target 1 %

Eb/No target 2.95 dB

Simulation Parameters (2/2)

Propagation model

Lo 128.1

37.6

Page 7: COST 289 15-16 March 2004, Zurich Traffic Hotspots in UMTS Networks : influence on RRM strategies Ferran Adelantado i Freixer (ferran-adelantado@tsc.upc.es)

COST 289 15-16 March 2004, Zurich

Results

Impact of traffic distribution (1/5)

Path loss distribution

variation

BLER variation

Path loss pdf :

)(zf HSZ

)(zf HS NoZ

where

no hotspot users path loss pdf

:

hotspot users path loss pdf

:

)()1()()( zfzfzf HS NoZ

HSZZ

Non-uniformly distributed traffic

scenario

Page 8: COST 289 15-16 March 2004, Zurich Traffic Hotspots in UMTS Networks : influence on RRM strategies Ferran Adelantado i Freixer (ferran-adelantado@tsc.upc.es)

COST 289 15-16 March 2004, Zurich

Results

Impact of traffic distribution (2/5)

No hotspot users path loss :

2z

2z

HS NoZ

-az if az

erfceReA

-az if za

erfceReA

zf

221

221

1

)(2

2

2

2

2

2

22

22

oL

A2

10

)10ln(

2

Page 9: COST 289 15-16 March 2004, Zurich Traffic Hotspots in UMTS Networks : influence on RRM strategies Ferran Adelantado i Freixer (ferran-adelantado@tsc.upc.es)

COST 289 15-16 March 2004, Zurich

Results

Impact of traffic distribution (3/5)

Hotspot users path loss:

2

22

22

2arcsin2

2*

21

)( 2

2

z

zzzHS

Z

eAD

AerDreA

ezf

oL

A2

10

)10ln(

2

Page 10: COST 289 15-16 March 2004, Zurich Traffic Hotspots in UMTS Networks : influence on RRM strategies Ferran Adelantado i Freixer (ferran-adelantado@tsc.upc.es)

COST 289 15-16 March 2004, Zurich

Results

Impact of traffic distribution (4/5)

Path loss pdfCell radius =1000m

D=150m

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

75 95 115 135

Lp(dB)

0.0

0.3

0.7

1.0

Hotspot close to the base station Path loss pdf

Cell radius =1000mD=950m

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

75 85 95 105 115 125 135 145

Lp(dB)

0.0

0.3

0.7

1.0

Hotspot far from the base station

Path loss pdfCell radius =1000m

=0.2

0

0.005

0.01

0.015

0.02

0.025

75 85 95 105 115 125 135 145

Lp(dB)

D = 150mD = 350mD = 550m

D = 750mD = 950m

Variation of hotspot location

Page 11: COST 289 15-16 March 2004, Zurich Traffic Hotspots in UMTS Networks : influence on RRM strategies Ferran Adelantado i Freixer (ferran-adelantado@tsc.upc.es)

COST 289 15-16 March 2004, Zurich

Results

Impact of traffic distribution (5/5)

=0.0 =0.3 =0.5

BLER 1.53 1.86 2.04

HS BLER N/A 2.63 2.60

No HS BLER

1.53 1.53 1.53

D=150m

D=550m

D=950m

BLER 1.46 1.48 2.04

HS BLER 1.00 1.07 2.60

No HS BLER

1.93 1.89 1.53

•No hotspot users BLER is maintained when increasing

•Total BLER grows as is increased.

•As D increases, total BLER increases.

•Hotspot users BLER grows for large D.

•No hotspot users BLER is lower for high D.

Page 12: COST 289 15-16 March 2004, Zurich Traffic Hotspots in UMTS Networks : influence on RRM strategies Ferran Adelantado i Freixer (ferran-adelantado@tsc.upc.es)

COST 289 15-16 March 2004, Zurich

Results

Call Admission Control design (1/3)

T

b

b

NpT

NE

RW

PLP

0

1

11

Transmitted power for mobile terminal

1

1

0

max

00

T

b

b

N

TP

T

bb

NE

RW

PP

LpNE

NE

p

Outage probability in UL

1

11

0

max

*

max

T

b

b

T

Np

N

E

R

WP

PL

Maximum admission

threshold for a certain Lp

Page 13: COST 289 15-16 March 2004, Zurich Traffic Hotspots in UMTS Networks : influence on RRM strategies Ferran Adelantado i Freixer (ferran-adelantado@tsc.upc.es)

COST 289 15-16 March 2004, Zurich

Results

Call Admission Control design (2/3)

Outage probability = 0.5 %

BLER ≈ 1.3 %

Admission threshold may be determined with Path Loss statistics (Cumulative density function) :

max

0.0 0.77

0.5 0.68

BLER (%)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

30 35 40 45 50 55 60 65 70

Number of users

0 0.770.5 0.680.5 0.77

BLER Hotspot(%)

1

1.2

1.4

1.6

1.8

2

2.2

30 35 40 45 50 55 60 65 70

Number of users

0 0.770.5 0.680.5 0.77

BLER can be maintained by adjusting max

Page 14: COST 289 15-16 March 2004, Zurich Traffic Hotspots in UMTS Networks : influence on RRM strategies Ferran Adelantado i Freixer (ferran-adelantado@tsc.upc.es)

COST 289 15-16 March 2004, Zurich

Results

Call Admission Control design (3/3)

Admission probability

60

65

70

75

8085

90

95

100

105

30 40 50 60 70 80

Number of users

0 0.770.5 0.680.5 0.77

Maintaining low BLER with hotspots leads to an admission probability decrease.

Page 15: COST 289 15-16 March 2004, Zurich Traffic Hotspots in UMTS Networks : influence on RRM strategies Ferran Adelantado i Freixer (ferran-adelantado@tsc.upc.es)

COST 289 15-16 March 2004, Zurich

Conclusions and Future Work

•In non-uniformly distributed traffic scenarios, without applying CAC, hotspots with high D and cause a QoS degradation.

•Suitable admission control threshold (max) can be determined if path loss statistics are known.

•Maintaining low BLER implies an admission probability decrease.

•Future work will be focused on dynamic hotspot detection.

•Design and assessment of adapted RRM strategies will determine if it is necessary to include a hotspot WLAN .