32
Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964 bare quark 3 quark “Chiral” condensate Nambu (1960) quark 3 hadron QCD Spectral Functions and Dileptons T. Hatsuda (RIKEN) Condensates ⇔ Elementary excitations

Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)

Embed Size (px)

DESCRIPTION

Make an estimate before every calculation, try a simple physical argument (symmetry! invariance! conservation!) before every derivation, guess the answer to every paradox and puzzle. John Wheeler's First Moral Principle from "Spacetime Physics (Taylor – Wheeler, 2 nd ed.)”

Citation preview

Page 1: Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)

Cosmological constantEinstein (1917)

Universe

baryons

52768

ldquoHiggsrdquo condensate Englert-Brout Higgs (1964)

barequark

3

quark

ldquoChiralrdquo condensateNambu (1960)

quark

3

hadron

QCD Spectral Functions and DileptonsT Hatsuda (RIKEN)

Condensates hArr Elementary excitations

OutlineOutline

IQCD symmetries II Chiral order parameters

III In-medium hadronsIV Summary

ldquo The Phase Diagram of Dense QCDrdquo K Fukushima + TH Rep Prog Phys 74 (2011) 014001

      ldquo Hadron Properties in the Nuclear Mediumrdquo R Hayano + TH Rev Mod Phys 82 (2010) 2949

ldquo QCD Constraints on Vector Mesons at finite T and Densityrdquo TH httpwww-rnclblgovDLSDLS_WWW_FilesDLSWorkshopdileptonhtml (1997)

Make an estimate before every calculation try a simple physical argument (symmetry invariance conservation) before every derivation guess the answer to every paradox and puzzle

John Wheelers First Moral Principle from Spacetime Physics (Taylor ndash Wheeler 2nd ed)rdquo

Symmetry realization in QCD vacuum

Chiral basis

QCD Lagrangian

classical QCD symmetry (m=0)

qqmqAtiqGGL aaa

a g )(41

Quantum QCD vacuum (m=0) Chiral condensate spontaneous mass generation

Axial anomaly quantum violation of U(1)A

Dim3 chiral condensate in QCD

Banks-Casher relation (1980)

0

0

Di Vecchia-Veneziano formula (1980)

Gell-Mann-Oakes-Renner (GOR) formula (1968)

Exam

ples

Axial rotation Axial Charge

Order parameters NOT unique              

II Chiral order parameters

Order parameter = 0 (no SSB)ne 0 (SSB)

θ

σ (600)

Spectral evidence of SSB in QCD

ltPPgt

ltSSgt

ltVVgt

ltAAgt

TH LBNL WS (1997)

ALEPH Collaboration Phys Rep 421 (2005) 191

ltVVgt - ltAAgt fromτ-decays at LEP-1 ρ V

(s)s

ρ A(s

)s

[ρV(s

)-ρA(s

)] s

Energy weighted ldquochiralrdquo sum rules from QCD (mq=0)

Dim6 chiral condensate

Koike Lee + TH NuclPhys B394 (1993) 221Kapusta and Shuryak PRD 49 (1994) 4694Klingl Kaiser and Weise NPA 624 (1997) 527

-ρpQCD(ω))

-ρpQCD(ω))= C4ltGGgt

-ρpQCD(ω))= C6ltChiral invgt +C6rsquoltchiral non-invgt

Dim4 gluon condensate

Dim6 quark and gluon condensates

Dilepton data(after Cocktail subtraction) Space-time average

(by hydro or other models)

Lattice QCD simulations (with gradient flow method)

+

Energy weighted ldquovectorrdquo sum rules from QCD (mq=0)III In-medium hadrons

TH LBNL WS (1997)Slide p31

cf GLS sum rule Adler sum rule Bjorken sum rule

QGP

Quark-Gluon Plasma

Quark superfluid

Hadronphase

Chiral symmetry is always broken at finite density

Baryon superfluid

Hadron-Quark Continuity in dense QCD ( Nc=3 Nf=3 )

cond

ensa

tes

Continuity in the ground state Tachibana Yamamoto + TH PRD78 (rsquo08)

Vector Mesons = Gluons Baryons = Quarks

Possible fate of hadrons at high density ( Nc=3 Nf=3 )

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

Baryons (8)Quarks (9)

Continuity in the excited state Schafer amp Wilczek PRL 82 (rsquo99)

Nonet vector mesons(heavy)

Octetvector mesons(light)

Octet gluons in CFL mg=1362Δ Gusynin amp Shovkovy NPA700 (2002) Malekzadeh amp Rischke PRD73 (2006)

TH Tachibana and Yamamoto PRD78 (2008)

Spectral continuity of vector mesons

At high density

At intermediate density

At low density

Mass formula from Finite Energy Sum Rules

IV SummaryI Chiral order parameters

not unique Dim3 condensate Dim6 condensate etc

II In-medium hadrons chiral restoration can be seen in spectral degeneracy moment analysis is important for model independence interesting possibility of hadron-quark crossover   (Vector mesons = Gluons Baryons = Quarks)

Back up slides

Vector current

Current correlation function

QCD sum rules in the superconducting medium

Operator Product Expansion (OPE) up to O(1Q6)

4-quark condensate

Diquark condensate

Chiral condensate

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Generalized Gell-Mann-Oakes-Renner relation Yamamoto Tachibana Baym + TH PR D76 (rsquo07)

Continuity of vector mesons Tachibana Yamamoto +TH PRD78 (2008)

Explicit realization of spectral continuity

Possible fate of hadrons at high density ( Nc=3 Nf=3 )

Vector Mesons = Gluons Baryons = Quarks

cond

ensa

tes Continuity in the ground state

Yamamoto Tachibana Baym + TH PRL97(rsquo06) PRD76 (rsquo07)

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Hadron-quark continuity in dense QCD

cond

ensa

tes Continuity in the ground state

Hatsuda Tachibana Yamamoto amp Baym PRL 97 (2006)

TH Slide p2(1997)

httpwww-rnclblgovDLSDLS_WWW_FilesDLSWorkshopdileptonhtml

I Why SPF is important

FLAG Collaboration update( July 26 2013) httpitpwikiunibechflag

Running masses mq(Q)

quark masses (from lattice QCD)

[MeV] (MS-bar 2GeV)

mu 216 (9)(7)

md 468 (14)(7)

ms 938 (24)

Running coupling αs(Q)=g24π

PDG (2012) httppdglblgov

I Status of QCD

Hadron masses from Lattice QCD

Improved Wilson + Iwasaki gauge action a = 009 fm L=29 fm mπ=135 MeV PACS-CS Coll Phys Rev D 81 074503 (2010)

3 accuracy

rArr L~96 fm mπ=135 MeV on K-computer underway

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

In-medium hadrons

Complex pole (even for the pion)

One-parameter example (Tne0)

For the pion f(x) and g(x) can be evaluated for small x See eg Jido Kunhihiro + TH Phys Lett B670 (2008) In general experimental inputs are really necessary Sometimes spectral function is better to be studied

Dim3 Chiral condensate in the medium

Lattice QCD (2+1)-flavorBorsanyi et al JHEP 1009 (2010)

Finite Temperature (LQCD)

Nuclear chiral perturbation Kaiser et al PRC 77 (2008)

Finite baryon density (χPT)

Mesic nuclei

2 Individual properties of NG and ldquoHiggsrdquo bosons   π K η (NG) σ (Higgs) ηrsquo (anomaly)

σ2γ η2γ ηrsquo2γ

Dileptons3 Individual properties of vector bosons   ρ ω and φ

Precisionsystematic studies(dispersion relation different targets hellip)

1 Spectral difference between chiral partners   π-σ ρ-a1 ω-f1 etc Determination of D=6 chiral condensates in the vacuumTau-decay in nuclei

Wish list

TH Slide p7(1997)

III Exact sum rules in QCD medium

TH Slide p20(1997)

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
Page 2: Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)

OutlineOutline

IQCD symmetries II Chiral order parameters

III In-medium hadronsIV Summary

ldquo The Phase Diagram of Dense QCDrdquo K Fukushima + TH Rep Prog Phys 74 (2011) 014001

      ldquo Hadron Properties in the Nuclear Mediumrdquo R Hayano + TH Rev Mod Phys 82 (2010) 2949

ldquo QCD Constraints on Vector Mesons at finite T and Densityrdquo TH httpwww-rnclblgovDLSDLS_WWW_FilesDLSWorkshopdileptonhtml (1997)

Make an estimate before every calculation try a simple physical argument (symmetry invariance conservation) before every derivation guess the answer to every paradox and puzzle

John Wheelers First Moral Principle from Spacetime Physics (Taylor ndash Wheeler 2nd ed)rdquo

Symmetry realization in QCD vacuum

Chiral basis

QCD Lagrangian

classical QCD symmetry (m=0)

qqmqAtiqGGL aaa

a g )(41

Quantum QCD vacuum (m=0) Chiral condensate spontaneous mass generation

Axial anomaly quantum violation of U(1)A

Dim3 chiral condensate in QCD

Banks-Casher relation (1980)

0

0

Di Vecchia-Veneziano formula (1980)

Gell-Mann-Oakes-Renner (GOR) formula (1968)

Exam

ples

Axial rotation Axial Charge

Order parameters NOT unique              

II Chiral order parameters

Order parameter = 0 (no SSB)ne 0 (SSB)

θ

σ (600)

Spectral evidence of SSB in QCD

ltPPgt

ltSSgt

ltVVgt

ltAAgt

TH LBNL WS (1997)

ALEPH Collaboration Phys Rep 421 (2005) 191

ltVVgt - ltAAgt fromτ-decays at LEP-1 ρ V

(s)s

ρ A(s

)s

[ρV(s

)-ρA(s

)] s

Energy weighted ldquochiralrdquo sum rules from QCD (mq=0)

Dim6 chiral condensate

Koike Lee + TH NuclPhys B394 (1993) 221Kapusta and Shuryak PRD 49 (1994) 4694Klingl Kaiser and Weise NPA 624 (1997) 527

-ρpQCD(ω))

-ρpQCD(ω))= C4ltGGgt

-ρpQCD(ω))= C6ltChiral invgt +C6rsquoltchiral non-invgt

Dim4 gluon condensate

Dim6 quark and gluon condensates

Dilepton data(after Cocktail subtraction) Space-time average

(by hydro or other models)

Lattice QCD simulations (with gradient flow method)

+

Energy weighted ldquovectorrdquo sum rules from QCD (mq=0)III In-medium hadrons

TH LBNL WS (1997)Slide p31

cf GLS sum rule Adler sum rule Bjorken sum rule

QGP

Quark-Gluon Plasma

Quark superfluid

Hadronphase

Chiral symmetry is always broken at finite density

Baryon superfluid

Hadron-Quark Continuity in dense QCD ( Nc=3 Nf=3 )

cond

ensa

tes

Continuity in the ground state Tachibana Yamamoto + TH PRD78 (rsquo08)

Vector Mesons = Gluons Baryons = Quarks

Possible fate of hadrons at high density ( Nc=3 Nf=3 )

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

Baryons (8)Quarks (9)

Continuity in the excited state Schafer amp Wilczek PRL 82 (rsquo99)

Nonet vector mesons(heavy)

Octetvector mesons(light)

Octet gluons in CFL mg=1362Δ Gusynin amp Shovkovy NPA700 (2002) Malekzadeh amp Rischke PRD73 (2006)

TH Tachibana and Yamamoto PRD78 (2008)

Spectral continuity of vector mesons

At high density

At intermediate density

At low density

Mass formula from Finite Energy Sum Rules

IV SummaryI Chiral order parameters

not unique Dim3 condensate Dim6 condensate etc

II In-medium hadrons chiral restoration can be seen in spectral degeneracy moment analysis is important for model independence interesting possibility of hadron-quark crossover   (Vector mesons = Gluons Baryons = Quarks)

Back up slides

Vector current

Current correlation function

QCD sum rules in the superconducting medium

Operator Product Expansion (OPE) up to O(1Q6)

4-quark condensate

Diquark condensate

Chiral condensate

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Generalized Gell-Mann-Oakes-Renner relation Yamamoto Tachibana Baym + TH PR D76 (rsquo07)

Continuity of vector mesons Tachibana Yamamoto +TH PRD78 (2008)

Explicit realization of spectral continuity

Possible fate of hadrons at high density ( Nc=3 Nf=3 )

Vector Mesons = Gluons Baryons = Quarks

cond

ensa

tes Continuity in the ground state

Yamamoto Tachibana Baym + TH PRL97(rsquo06) PRD76 (rsquo07)

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Hadron-quark continuity in dense QCD

cond

ensa

tes Continuity in the ground state

Hatsuda Tachibana Yamamoto amp Baym PRL 97 (2006)

TH Slide p2(1997)

httpwww-rnclblgovDLSDLS_WWW_FilesDLSWorkshopdileptonhtml

I Why SPF is important

FLAG Collaboration update( July 26 2013) httpitpwikiunibechflag

Running masses mq(Q)

quark masses (from lattice QCD)

[MeV] (MS-bar 2GeV)

mu 216 (9)(7)

md 468 (14)(7)

ms 938 (24)

Running coupling αs(Q)=g24π

PDG (2012) httppdglblgov

I Status of QCD

Hadron masses from Lattice QCD

Improved Wilson + Iwasaki gauge action a = 009 fm L=29 fm mπ=135 MeV PACS-CS Coll Phys Rev D 81 074503 (2010)

3 accuracy

rArr L~96 fm mπ=135 MeV on K-computer underway

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

In-medium hadrons

Complex pole (even for the pion)

One-parameter example (Tne0)

For the pion f(x) and g(x) can be evaluated for small x See eg Jido Kunhihiro + TH Phys Lett B670 (2008) In general experimental inputs are really necessary Sometimes spectral function is better to be studied

Dim3 Chiral condensate in the medium

Lattice QCD (2+1)-flavorBorsanyi et al JHEP 1009 (2010)

Finite Temperature (LQCD)

Nuclear chiral perturbation Kaiser et al PRC 77 (2008)

Finite baryon density (χPT)

Mesic nuclei

2 Individual properties of NG and ldquoHiggsrdquo bosons   π K η (NG) σ (Higgs) ηrsquo (anomaly)

σ2γ η2γ ηrsquo2γ

Dileptons3 Individual properties of vector bosons   ρ ω and φ

Precisionsystematic studies(dispersion relation different targets hellip)

1 Spectral difference between chiral partners   π-σ ρ-a1 ω-f1 etc Determination of D=6 chiral condensates in the vacuumTau-decay in nuclei

Wish list

TH Slide p7(1997)

III Exact sum rules in QCD medium

TH Slide p20(1997)

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
Page 3: Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)

Make an estimate before every calculation try a simple physical argument (symmetry invariance conservation) before every derivation guess the answer to every paradox and puzzle

John Wheelers First Moral Principle from Spacetime Physics (Taylor ndash Wheeler 2nd ed)rdquo

Symmetry realization in QCD vacuum

Chiral basis

QCD Lagrangian

classical QCD symmetry (m=0)

qqmqAtiqGGL aaa

a g )(41

Quantum QCD vacuum (m=0) Chiral condensate spontaneous mass generation

Axial anomaly quantum violation of U(1)A

Dim3 chiral condensate in QCD

Banks-Casher relation (1980)

0

0

Di Vecchia-Veneziano formula (1980)

Gell-Mann-Oakes-Renner (GOR) formula (1968)

Exam

ples

Axial rotation Axial Charge

Order parameters NOT unique              

II Chiral order parameters

Order parameter = 0 (no SSB)ne 0 (SSB)

θ

σ (600)

Spectral evidence of SSB in QCD

ltPPgt

ltSSgt

ltVVgt

ltAAgt

TH LBNL WS (1997)

ALEPH Collaboration Phys Rep 421 (2005) 191

ltVVgt - ltAAgt fromτ-decays at LEP-1 ρ V

(s)s

ρ A(s

)s

[ρV(s

)-ρA(s

)] s

Energy weighted ldquochiralrdquo sum rules from QCD (mq=0)

Dim6 chiral condensate

Koike Lee + TH NuclPhys B394 (1993) 221Kapusta and Shuryak PRD 49 (1994) 4694Klingl Kaiser and Weise NPA 624 (1997) 527

-ρpQCD(ω))

-ρpQCD(ω))= C4ltGGgt

-ρpQCD(ω))= C6ltChiral invgt +C6rsquoltchiral non-invgt

Dim4 gluon condensate

Dim6 quark and gluon condensates

Dilepton data(after Cocktail subtraction) Space-time average

(by hydro or other models)

Lattice QCD simulations (with gradient flow method)

+

Energy weighted ldquovectorrdquo sum rules from QCD (mq=0)III In-medium hadrons

TH LBNL WS (1997)Slide p31

cf GLS sum rule Adler sum rule Bjorken sum rule

QGP

Quark-Gluon Plasma

Quark superfluid

Hadronphase

Chiral symmetry is always broken at finite density

Baryon superfluid

Hadron-Quark Continuity in dense QCD ( Nc=3 Nf=3 )

cond

ensa

tes

Continuity in the ground state Tachibana Yamamoto + TH PRD78 (rsquo08)

Vector Mesons = Gluons Baryons = Quarks

Possible fate of hadrons at high density ( Nc=3 Nf=3 )

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

Baryons (8)Quarks (9)

Continuity in the excited state Schafer amp Wilczek PRL 82 (rsquo99)

Nonet vector mesons(heavy)

Octetvector mesons(light)

Octet gluons in CFL mg=1362Δ Gusynin amp Shovkovy NPA700 (2002) Malekzadeh amp Rischke PRD73 (2006)

TH Tachibana and Yamamoto PRD78 (2008)

Spectral continuity of vector mesons

At high density

At intermediate density

At low density

Mass formula from Finite Energy Sum Rules

IV SummaryI Chiral order parameters

not unique Dim3 condensate Dim6 condensate etc

II In-medium hadrons chiral restoration can be seen in spectral degeneracy moment analysis is important for model independence interesting possibility of hadron-quark crossover   (Vector mesons = Gluons Baryons = Quarks)

Back up slides

Vector current

Current correlation function

QCD sum rules in the superconducting medium

Operator Product Expansion (OPE) up to O(1Q6)

4-quark condensate

Diquark condensate

Chiral condensate

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Generalized Gell-Mann-Oakes-Renner relation Yamamoto Tachibana Baym + TH PR D76 (rsquo07)

Continuity of vector mesons Tachibana Yamamoto +TH PRD78 (2008)

Explicit realization of spectral continuity

Possible fate of hadrons at high density ( Nc=3 Nf=3 )

Vector Mesons = Gluons Baryons = Quarks

cond

ensa

tes Continuity in the ground state

Yamamoto Tachibana Baym + TH PRL97(rsquo06) PRD76 (rsquo07)

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Hadron-quark continuity in dense QCD

cond

ensa

tes Continuity in the ground state

Hatsuda Tachibana Yamamoto amp Baym PRL 97 (2006)

TH Slide p2(1997)

httpwww-rnclblgovDLSDLS_WWW_FilesDLSWorkshopdileptonhtml

I Why SPF is important

FLAG Collaboration update( July 26 2013) httpitpwikiunibechflag

Running masses mq(Q)

quark masses (from lattice QCD)

[MeV] (MS-bar 2GeV)

mu 216 (9)(7)

md 468 (14)(7)

ms 938 (24)

Running coupling αs(Q)=g24π

PDG (2012) httppdglblgov

I Status of QCD

Hadron masses from Lattice QCD

Improved Wilson + Iwasaki gauge action a = 009 fm L=29 fm mπ=135 MeV PACS-CS Coll Phys Rev D 81 074503 (2010)

3 accuracy

rArr L~96 fm mπ=135 MeV on K-computer underway

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

In-medium hadrons

Complex pole (even for the pion)

One-parameter example (Tne0)

For the pion f(x) and g(x) can be evaluated for small x See eg Jido Kunhihiro + TH Phys Lett B670 (2008) In general experimental inputs are really necessary Sometimes spectral function is better to be studied

Dim3 Chiral condensate in the medium

Lattice QCD (2+1)-flavorBorsanyi et al JHEP 1009 (2010)

Finite Temperature (LQCD)

Nuclear chiral perturbation Kaiser et al PRC 77 (2008)

Finite baryon density (χPT)

Mesic nuclei

2 Individual properties of NG and ldquoHiggsrdquo bosons   π K η (NG) σ (Higgs) ηrsquo (anomaly)

σ2γ η2γ ηrsquo2γ

Dileptons3 Individual properties of vector bosons   ρ ω and φ

Precisionsystematic studies(dispersion relation different targets hellip)

1 Spectral difference between chiral partners   π-σ ρ-a1 ω-f1 etc Determination of D=6 chiral condensates in the vacuumTau-decay in nuclei

Wish list

TH Slide p7(1997)

III Exact sum rules in QCD medium

TH Slide p20(1997)

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
Page 4: Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)

Symmetry realization in QCD vacuum

Chiral basis

QCD Lagrangian

classical QCD symmetry (m=0)

qqmqAtiqGGL aaa

a g )(41

Quantum QCD vacuum (m=0) Chiral condensate spontaneous mass generation

Axial anomaly quantum violation of U(1)A

Dim3 chiral condensate in QCD

Banks-Casher relation (1980)

0

0

Di Vecchia-Veneziano formula (1980)

Gell-Mann-Oakes-Renner (GOR) formula (1968)

Exam

ples

Axial rotation Axial Charge

Order parameters NOT unique              

II Chiral order parameters

Order parameter = 0 (no SSB)ne 0 (SSB)

θ

σ (600)

Spectral evidence of SSB in QCD

ltPPgt

ltSSgt

ltVVgt

ltAAgt

TH LBNL WS (1997)

ALEPH Collaboration Phys Rep 421 (2005) 191

ltVVgt - ltAAgt fromτ-decays at LEP-1 ρ V

(s)s

ρ A(s

)s

[ρV(s

)-ρA(s

)] s

Energy weighted ldquochiralrdquo sum rules from QCD (mq=0)

Dim6 chiral condensate

Koike Lee + TH NuclPhys B394 (1993) 221Kapusta and Shuryak PRD 49 (1994) 4694Klingl Kaiser and Weise NPA 624 (1997) 527

-ρpQCD(ω))

-ρpQCD(ω))= C4ltGGgt

-ρpQCD(ω))= C6ltChiral invgt +C6rsquoltchiral non-invgt

Dim4 gluon condensate

Dim6 quark and gluon condensates

Dilepton data(after Cocktail subtraction) Space-time average

(by hydro or other models)

Lattice QCD simulations (with gradient flow method)

+

Energy weighted ldquovectorrdquo sum rules from QCD (mq=0)III In-medium hadrons

TH LBNL WS (1997)Slide p31

cf GLS sum rule Adler sum rule Bjorken sum rule

QGP

Quark-Gluon Plasma

Quark superfluid

Hadronphase

Chiral symmetry is always broken at finite density

Baryon superfluid

Hadron-Quark Continuity in dense QCD ( Nc=3 Nf=3 )

cond

ensa

tes

Continuity in the ground state Tachibana Yamamoto + TH PRD78 (rsquo08)

Vector Mesons = Gluons Baryons = Quarks

Possible fate of hadrons at high density ( Nc=3 Nf=3 )

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

Baryons (8)Quarks (9)

Continuity in the excited state Schafer amp Wilczek PRL 82 (rsquo99)

Nonet vector mesons(heavy)

Octetvector mesons(light)

Octet gluons in CFL mg=1362Δ Gusynin amp Shovkovy NPA700 (2002) Malekzadeh amp Rischke PRD73 (2006)

TH Tachibana and Yamamoto PRD78 (2008)

Spectral continuity of vector mesons

At high density

At intermediate density

At low density

Mass formula from Finite Energy Sum Rules

IV SummaryI Chiral order parameters

not unique Dim3 condensate Dim6 condensate etc

II In-medium hadrons chiral restoration can be seen in spectral degeneracy moment analysis is important for model independence interesting possibility of hadron-quark crossover   (Vector mesons = Gluons Baryons = Quarks)

Back up slides

Vector current

Current correlation function

QCD sum rules in the superconducting medium

Operator Product Expansion (OPE) up to O(1Q6)

4-quark condensate

Diquark condensate

Chiral condensate

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Generalized Gell-Mann-Oakes-Renner relation Yamamoto Tachibana Baym + TH PR D76 (rsquo07)

Continuity of vector mesons Tachibana Yamamoto +TH PRD78 (2008)

Explicit realization of spectral continuity

Possible fate of hadrons at high density ( Nc=3 Nf=3 )

Vector Mesons = Gluons Baryons = Quarks

cond

ensa

tes Continuity in the ground state

Yamamoto Tachibana Baym + TH PRL97(rsquo06) PRD76 (rsquo07)

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Hadron-quark continuity in dense QCD

cond

ensa

tes Continuity in the ground state

Hatsuda Tachibana Yamamoto amp Baym PRL 97 (2006)

TH Slide p2(1997)

httpwww-rnclblgovDLSDLS_WWW_FilesDLSWorkshopdileptonhtml

I Why SPF is important

FLAG Collaboration update( July 26 2013) httpitpwikiunibechflag

Running masses mq(Q)

quark masses (from lattice QCD)

[MeV] (MS-bar 2GeV)

mu 216 (9)(7)

md 468 (14)(7)

ms 938 (24)

Running coupling αs(Q)=g24π

PDG (2012) httppdglblgov

I Status of QCD

Hadron masses from Lattice QCD

Improved Wilson + Iwasaki gauge action a = 009 fm L=29 fm mπ=135 MeV PACS-CS Coll Phys Rev D 81 074503 (2010)

3 accuracy

rArr L~96 fm mπ=135 MeV on K-computer underway

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

In-medium hadrons

Complex pole (even for the pion)

One-parameter example (Tne0)

For the pion f(x) and g(x) can be evaluated for small x See eg Jido Kunhihiro + TH Phys Lett B670 (2008) In general experimental inputs are really necessary Sometimes spectral function is better to be studied

Dim3 Chiral condensate in the medium

Lattice QCD (2+1)-flavorBorsanyi et al JHEP 1009 (2010)

Finite Temperature (LQCD)

Nuclear chiral perturbation Kaiser et al PRC 77 (2008)

Finite baryon density (χPT)

Mesic nuclei

2 Individual properties of NG and ldquoHiggsrdquo bosons   π K η (NG) σ (Higgs) ηrsquo (anomaly)

σ2γ η2γ ηrsquo2γ

Dileptons3 Individual properties of vector bosons   ρ ω and φ

Precisionsystematic studies(dispersion relation different targets hellip)

1 Spectral difference between chiral partners   π-σ ρ-a1 ω-f1 etc Determination of D=6 chiral condensates in the vacuumTau-decay in nuclei

Wish list

TH Slide p7(1997)

III Exact sum rules in QCD medium

TH Slide p20(1997)

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
Page 5: Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)

Dim3 chiral condensate in QCD

Banks-Casher relation (1980)

0

0

Di Vecchia-Veneziano formula (1980)

Gell-Mann-Oakes-Renner (GOR) formula (1968)

Exam

ples

Axial rotation Axial Charge

Order parameters NOT unique              

II Chiral order parameters

Order parameter = 0 (no SSB)ne 0 (SSB)

θ

σ (600)

Spectral evidence of SSB in QCD

ltPPgt

ltSSgt

ltVVgt

ltAAgt

TH LBNL WS (1997)

ALEPH Collaboration Phys Rep 421 (2005) 191

ltVVgt - ltAAgt fromτ-decays at LEP-1 ρ V

(s)s

ρ A(s

)s

[ρV(s

)-ρA(s

)] s

Energy weighted ldquochiralrdquo sum rules from QCD (mq=0)

Dim6 chiral condensate

Koike Lee + TH NuclPhys B394 (1993) 221Kapusta and Shuryak PRD 49 (1994) 4694Klingl Kaiser and Weise NPA 624 (1997) 527

-ρpQCD(ω))

-ρpQCD(ω))= C4ltGGgt

-ρpQCD(ω))= C6ltChiral invgt +C6rsquoltchiral non-invgt

Dim4 gluon condensate

Dim6 quark and gluon condensates

Dilepton data(after Cocktail subtraction) Space-time average

(by hydro or other models)

Lattice QCD simulations (with gradient flow method)

+

Energy weighted ldquovectorrdquo sum rules from QCD (mq=0)III In-medium hadrons

TH LBNL WS (1997)Slide p31

cf GLS sum rule Adler sum rule Bjorken sum rule

QGP

Quark-Gluon Plasma

Quark superfluid

Hadronphase

Chiral symmetry is always broken at finite density

Baryon superfluid

Hadron-Quark Continuity in dense QCD ( Nc=3 Nf=3 )

cond

ensa

tes

Continuity in the ground state Tachibana Yamamoto + TH PRD78 (rsquo08)

Vector Mesons = Gluons Baryons = Quarks

Possible fate of hadrons at high density ( Nc=3 Nf=3 )

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

Baryons (8)Quarks (9)

Continuity in the excited state Schafer amp Wilczek PRL 82 (rsquo99)

Nonet vector mesons(heavy)

Octetvector mesons(light)

Octet gluons in CFL mg=1362Δ Gusynin amp Shovkovy NPA700 (2002) Malekzadeh amp Rischke PRD73 (2006)

TH Tachibana and Yamamoto PRD78 (2008)

Spectral continuity of vector mesons

At high density

At intermediate density

At low density

Mass formula from Finite Energy Sum Rules

IV SummaryI Chiral order parameters

not unique Dim3 condensate Dim6 condensate etc

II In-medium hadrons chiral restoration can be seen in spectral degeneracy moment analysis is important for model independence interesting possibility of hadron-quark crossover   (Vector mesons = Gluons Baryons = Quarks)

Back up slides

Vector current

Current correlation function

QCD sum rules in the superconducting medium

Operator Product Expansion (OPE) up to O(1Q6)

4-quark condensate

Diquark condensate

Chiral condensate

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Generalized Gell-Mann-Oakes-Renner relation Yamamoto Tachibana Baym + TH PR D76 (rsquo07)

Continuity of vector mesons Tachibana Yamamoto +TH PRD78 (2008)

Explicit realization of spectral continuity

Possible fate of hadrons at high density ( Nc=3 Nf=3 )

Vector Mesons = Gluons Baryons = Quarks

cond

ensa

tes Continuity in the ground state

Yamamoto Tachibana Baym + TH PRL97(rsquo06) PRD76 (rsquo07)

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Hadron-quark continuity in dense QCD

cond

ensa

tes Continuity in the ground state

Hatsuda Tachibana Yamamoto amp Baym PRL 97 (2006)

TH Slide p2(1997)

httpwww-rnclblgovDLSDLS_WWW_FilesDLSWorkshopdileptonhtml

I Why SPF is important

FLAG Collaboration update( July 26 2013) httpitpwikiunibechflag

Running masses mq(Q)

quark masses (from lattice QCD)

[MeV] (MS-bar 2GeV)

mu 216 (9)(7)

md 468 (14)(7)

ms 938 (24)

Running coupling αs(Q)=g24π

PDG (2012) httppdglblgov

I Status of QCD

Hadron masses from Lattice QCD

Improved Wilson + Iwasaki gauge action a = 009 fm L=29 fm mπ=135 MeV PACS-CS Coll Phys Rev D 81 074503 (2010)

3 accuracy

rArr L~96 fm mπ=135 MeV on K-computer underway

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

In-medium hadrons

Complex pole (even for the pion)

One-parameter example (Tne0)

For the pion f(x) and g(x) can be evaluated for small x See eg Jido Kunhihiro + TH Phys Lett B670 (2008) In general experimental inputs are really necessary Sometimes spectral function is better to be studied

Dim3 Chiral condensate in the medium

Lattice QCD (2+1)-flavorBorsanyi et al JHEP 1009 (2010)

Finite Temperature (LQCD)

Nuclear chiral perturbation Kaiser et al PRC 77 (2008)

Finite baryon density (χPT)

Mesic nuclei

2 Individual properties of NG and ldquoHiggsrdquo bosons   π K η (NG) σ (Higgs) ηrsquo (anomaly)

σ2γ η2γ ηrsquo2γ

Dileptons3 Individual properties of vector bosons   ρ ω and φ

Precisionsystematic studies(dispersion relation different targets hellip)

1 Spectral difference between chiral partners   π-σ ρ-a1 ω-f1 etc Determination of D=6 chiral condensates in the vacuumTau-decay in nuclei

Wish list

TH Slide p7(1997)

III Exact sum rules in QCD medium

TH Slide p20(1997)

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
Page 6: Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)

Exam

ples

Axial rotation Axial Charge

Order parameters NOT unique              

II Chiral order parameters

Order parameter = 0 (no SSB)ne 0 (SSB)

θ

σ (600)

Spectral evidence of SSB in QCD

ltPPgt

ltSSgt

ltVVgt

ltAAgt

TH LBNL WS (1997)

ALEPH Collaboration Phys Rep 421 (2005) 191

ltVVgt - ltAAgt fromτ-decays at LEP-1 ρ V

(s)s

ρ A(s

)s

[ρV(s

)-ρA(s

)] s

Energy weighted ldquochiralrdquo sum rules from QCD (mq=0)

Dim6 chiral condensate

Koike Lee + TH NuclPhys B394 (1993) 221Kapusta and Shuryak PRD 49 (1994) 4694Klingl Kaiser and Weise NPA 624 (1997) 527

-ρpQCD(ω))

-ρpQCD(ω))= C4ltGGgt

-ρpQCD(ω))= C6ltChiral invgt +C6rsquoltchiral non-invgt

Dim4 gluon condensate

Dim6 quark and gluon condensates

Dilepton data(after Cocktail subtraction) Space-time average

(by hydro or other models)

Lattice QCD simulations (with gradient flow method)

+

Energy weighted ldquovectorrdquo sum rules from QCD (mq=0)III In-medium hadrons

TH LBNL WS (1997)Slide p31

cf GLS sum rule Adler sum rule Bjorken sum rule

QGP

Quark-Gluon Plasma

Quark superfluid

Hadronphase

Chiral symmetry is always broken at finite density

Baryon superfluid

Hadron-Quark Continuity in dense QCD ( Nc=3 Nf=3 )

cond

ensa

tes

Continuity in the ground state Tachibana Yamamoto + TH PRD78 (rsquo08)

Vector Mesons = Gluons Baryons = Quarks

Possible fate of hadrons at high density ( Nc=3 Nf=3 )

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

Baryons (8)Quarks (9)

Continuity in the excited state Schafer amp Wilczek PRL 82 (rsquo99)

Nonet vector mesons(heavy)

Octetvector mesons(light)

Octet gluons in CFL mg=1362Δ Gusynin amp Shovkovy NPA700 (2002) Malekzadeh amp Rischke PRD73 (2006)

TH Tachibana and Yamamoto PRD78 (2008)

Spectral continuity of vector mesons

At high density

At intermediate density

At low density

Mass formula from Finite Energy Sum Rules

IV SummaryI Chiral order parameters

not unique Dim3 condensate Dim6 condensate etc

II In-medium hadrons chiral restoration can be seen in spectral degeneracy moment analysis is important for model independence interesting possibility of hadron-quark crossover   (Vector mesons = Gluons Baryons = Quarks)

Back up slides

Vector current

Current correlation function

QCD sum rules in the superconducting medium

Operator Product Expansion (OPE) up to O(1Q6)

4-quark condensate

Diquark condensate

Chiral condensate

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Generalized Gell-Mann-Oakes-Renner relation Yamamoto Tachibana Baym + TH PR D76 (rsquo07)

Continuity of vector mesons Tachibana Yamamoto +TH PRD78 (2008)

Explicit realization of spectral continuity

Possible fate of hadrons at high density ( Nc=3 Nf=3 )

Vector Mesons = Gluons Baryons = Quarks

cond

ensa

tes Continuity in the ground state

Yamamoto Tachibana Baym + TH PRL97(rsquo06) PRD76 (rsquo07)

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Hadron-quark continuity in dense QCD

cond

ensa

tes Continuity in the ground state

Hatsuda Tachibana Yamamoto amp Baym PRL 97 (2006)

TH Slide p2(1997)

httpwww-rnclblgovDLSDLS_WWW_FilesDLSWorkshopdileptonhtml

I Why SPF is important

FLAG Collaboration update( July 26 2013) httpitpwikiunibechflag

Running masses mq(Q)

quark masses (from lattice QCD)

[MeV] (MS-bar 2GeV)

mu 216 (9)(7)

md 468 (14)(7)

ms 938 (24)

Running coupling αs(Q)=g24π

PDG (2012) httppdglblgov

I Status of QCD

Hadron masses from Lattice QCD

Improved Wilson + Iwasaki gauge action a = 009 fm L=29 fm mπ=135 MeV PACS-CS Coll Phys Rev D 81 074503 (2010)

3 accuracy

rArr L~96 fm mπ=135 MeV on K-computer underway

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

In-medium hadrons

Complex pole (even for the pion)

One-parameter example (Tne0)

For the pion f(x) and g(x) can be evaluated for small x See eg Jido Kunhihiro + TH Phys Lett B670 (2008) In general experimental inputs are really necessary Sometimes spectral function is better to be studied

Dim3 Chiral condensate in the medium

Lattice QCD (2+1)-flavorBorsanyi et al JHEP 1009 (2010)

Finite Temperature (LQCD)

Nuclear chiral perturbation Kaiser et al PRC 77 (2008)

Finite baryon density (χPT)

Mesic nuclei

2 Individual properties of NG and ldquoHiggsrdquo bosons   π K η (NG) σ (Higgs) ηrsquo (anomaly)

σ2γ η2γ ηrsquo2γ

Dileptons3 Individual properties of vector bosons   ρ ω and φ

Precisionsystematic studies(dispersion relation different targets hellip)

1 Spectral difference between chiral partners   π-σ ρ-a1 ω-f1 etc Determination of D=6 chiral condensates in the vacuumTau-decay in nuclei

Wish list

TH Slide p7(1997)

III Exact sum rules in QCD medium

TH Slide p20(1997)

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
Page 7: Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)

σ (600)

Spectral evidence of SSB in QCD

ltPPgt

ltSSgt

ltVVgt

ltAAgt

TH LBNL WS (1997)

ALEPH Collaboration Phys Rep 421 (2005) 191

ltVVgt - ltAAgt fromτ-decays at LEP-1 ρ V

(s)s

ρ A(s

)s

[ρV(s

)-ρA(s

)] s

Energy weighted ldquochiralrdquo sum rules from QCD (mq=0)

Dim6 chiral condensate

Koike Lee + TH NuclPhys B394 (1993) 221Kapusta and Shuryak PRD 49 (1994) 4694Klingl Kaiser and Weise NPA 624 (1997) 527

-ρpQCD(ω))

-ρpQCD(ω))= C4ltGGgt

-ρpQCD(ω))= C6ltChiral invgt +C6rsquoltchiral non-invgt

Dim4 gluon condensate

Dim6 quark and gluon condensates

Dilepton data(after Cocktail subtraction) Space-time average

(by hydro or other models)

Lattice QCD simulations (with gradient flow method)

+

Energy weighted ldquovectorrdquo sum rules from QCD (mq=0)III In-medium hadrons

TH LBNL WS (1997)Slide p31

cf GLS sum rule Adler sum rule Bjorken sum rule

QGP

Quark-Gluon Plasma

Quark superfluid

Hadronphase

Chiral symmetry is always broken at finite density

Baryon superfluid

Hadron-Quark Continuity in dense QCD ( Nc=3 Nf=3 )

cond

ensa

tes

Continuity in the ground state Tachibana Yamamoto + TH PRD78 (rsquo08)

Vector Mesons = Gluons Baryons = Quarks

Possible fate of hadrons at high density ( Nc=3 Nf=3 )

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

Baryons (8)Quarks (9)

Continuity in the excited state Schafer amp Wilczek PRL 82 (rsquo99)

Nonet vector mesons(heavy)

Octetvector mesons(light)

Octet gluons in CFL mg=1362Δ Gusynin amp Shovkovy NPA700 (2002) Malekzadeh amp Rischke PRD73 (2006)

TH Tachibana and Yamamoto PRD78 (2008)

Spectral continuity of vector mesons

At high density

At intermediate density

At low density

Mass formula from Finite Energy Sum Rules

IV SummaryI Chiral order parameters

not unique Dim3 condensate Dim6 condensate etc

II In-medium hadrons chiral restoration can be seen in spectral degeneracy moment analysis is important for model independence interesting possibility of hadron-quark crossover   (Vector mesons = Gluons Baryons = Quarks)

Back up slides

Vector current

Current correlation function

QCD sum rules in the superconducting medium

Operator Product Expansion (OPE) up to O(1Q6)

4-quark condensate

Diquark condensate

Chiral condensate

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Generalized Gell-Mann-Oakes-Renner relation Yamamoto Tachibana Baym + TH PR D76 (rsquo07)

Continuity of vector mesons Tachibana Yamamoto +TH PRD78 (2008)

Explicit realization of spectral continuity

Possible fate of hadrons at high density ( Nc=3 Nf=3 )

Vector Mesons = Gluons Baryons = Quarks

cond

ensa

tes Continuity in the ground state

Yamamoto Tachibana Baym + TH PRL97(rsquo06) PRD76 (rsquo07)

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Hadron-quark continuity in dense QCD

cond

ensa

tes Continuity in the ground state

Hatsuda Tachibana Yamamoto amp Baym PRL 97 (2006)

TH Slide p2(1997)

httpwww-rnclblgovDLSDLS_WWW_FilesDLSWorkshopdileptonhtml

I Why SPF is important

FLAG Collaboration update( July 26 2013) httpitpwikiunibechflag

Running masses mq(Q)

quark masses (from lattice QCD)

[MeV] (MS-bar 2GeV)

mu 216 (9)(7)

md 468 (14)(7)

ms 938 (24)

Running coupling αs(Q)=g24π

PDG (2012) httppdglblgov

I Status of QCD

Hadron masses from Lattice QCD

Improved Wilson + Iwasaki gauge action a = 009 fm L=29 fm mπ=135 MeV PACS-CS Coll Phys Rev D 81 074503 (2010)

3 accuracy

rArr L~96 fm mπ=135 MeV on K-computer underway

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

In-medium hadrons

Complex pole (even for the pion)

One-parameter example (Tne0)

For the pion f(x) and g(x) can be evaluated for small x See eg Jido Kunhihiro + TH Phys Lett B670 (2008) In general experimental inputs are really necessary Sometimes spectral function is better to be studied

Dim3 Chiral condensate in the medium

Lattice QCD (2+1)-flavorBorsanyi et al JHEP 1009 (2010)

Finite Temperature (LQCD)

Nuclear chiral perturbation Kaiser et al PRC 77 (2008)

Finite baryon density (χPT)

Mesic nuclei

2 Individual properties of NG and ldquoHiggsrdquo bosons   π K η (NG) σ (Higgs) ηrsquo (anomaly)

σ2γ η2γ ηrsquo2γ

Dileptons3 Individual properties of vector bosons   ρ ω and φ

Precisionsystematic studies(dispersion relation different targets hellip)

1 Spectral difference between chiral partners   π-σ ρ-a1 ω-f1 etc Determination of D=6 chiral condensates in the vacuumTau-decay in nuclei

Wish list

TH Slide p7(1997)

III Exact sum rules in QCD medium

TH Slide p20(1997)

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
Page 8: Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)

ALEPH Collaboration Phys Rep 421 (2005) 191

ltVVgt - ltAAgt fromτ-decays at LEP-1 ρ V

(s)s

ρ A(s

)s

[ρV(s

)-ρA(s

)] s

Energy weighted ldquochiralrdquo sum rules from QCD (mq=0)

Dim6 chiral condensate

Koike Lee + TH NuclPhys B394 (1993) 221Kapusta and Shuryak PRD 49 (1994) 4694Klingl Kaiser and Weise NPA 624 (1997) 527

-ρpQCD(ω))

-ρpQCD(ω))= C4ltGGgt

-ρpQCD(ω))= C6ltChiral invgt +C6rsquoltchiral non-invgt

Dim4 gluon condensate

Dim6 quark and gluon condensates

Dilepton data(after Cocktail subtraction) Space-time average

(by hydro or other models)

Lattice QCD simulations (with gradient flow method)

+

Energy weighted ldquovectorrdquo sum rules from QCD (mq=0)III In-medium hadrons

TH LBNL WS (1997)Slide p31

cf GLS sum rule Adler sum rule Bjorken sum rule

QGP

Quark-Gluon Plasma

Quark superfluid

Hadronphase

Chiral symmetry is always broken at finite density

Baryon superfluid

Hadron-Quark Continuity in dense QCD ( Nc=3 Nf=3 )

cond

ensa

tes

Continuity in the ground state Tachibana Yamamoto + TH PRD78 (rsquo08)

Vector Mesons = Gluons Baryons = Quarks

Possible fate of hadrons at high density ( Nc=3 Nf=3 )

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

Baryons (8)Quarks (9)

Continuity in the excited state Schafer amp Wilczek PRL 82 (rsquo99)

Nonet vector mesons(heavy)

Octetvector mesons(light)

Octet gluons in CFL mg=1362Δ Gusynin amp Shovkovy NPA700 (2002) Malekzadeh amp Rischke PRD73 (2006)

TH Tachibana and Yamamoto PRD78 (2008)

Spectral continuity of vector mesons

At high density

At intermediate density

At low density

Mass formula from Finite Energy Sum Rules

IV SummaryI Chiral order parameters

not unique Dim3 condensate Dim6 condensate etc

II In-medium hadrons chiral restoration can be seen in spectral degeneracy moment analysis is important for model independence interesting possibility of hadron-quark crossover   (Vector mesons = Gluons Baryons = Quarks)

Back up slides

Vector current

Current correlation function

QCD sum rules in the superconducting medium

Operator Product Expansion (OPE) up to O(1Q6)

4-quark condensate

Diquark condensate

Chiral condensate

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Generalized Gell-Mann-Oakes-Renner relation Yamamoto Tachibana Baym + TH PR D76 (rsquo07)

Continuity of vector mesons Tachibana Yamamoto +TH PRD78 (2008)

Explicit realization of spectral continuity

Possible fate of hadrons at high density ( Nc=3 Nf=3 )

Vector Mesons = Gluons Baryons = Quarks

cond

ensa

tes Continuity in the ground state

Yamamoto Tachibana Baym + TH PRL97(rsquo06) PRD76 (rsquo07)

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Hadron-quark continuity in dense QCD

cond

ensa

tes Continuity in the ground state

Hatsuda Tachibana Yamamoto amp Baym PRL 97 (2006)

TH Slide p2(1997)

httpwww-rnclblgovDLSDLS_WWW_FilesDLSWorkshopdileptonhtml

I Why SPF is important

FLAG Collaboration update( July 26 2013) httpitpwikiunibechflag

Running masses mq(Q)

quark masses (from lattice QCD)

[MeV] (MS-bar 2GeV)

mu 216 (9)(7)

md 468 (14)(7)

ms 938 (24)

Running coupling αs(Q)=g24π

PDG (2012) httppdglblgov

I Status of QCD

Hadron masses from Lattice QCD

Improved Wilson + Iwasaki gauge action a = 009 fm L=29 fm mπ=135 MeV PACS-CS Coll Phys Rev D 81 074503 (2010)

3 accuracy

rArr L~96 fm mπ=135 MeV on K-computer underway

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

In-medium hadrons

Complex pole (even for the pion)

One-parameter example (Tne0)

For the pion f(x) and g(x) can be evaluated for small x See eg Jido Kunhihiro + TH Phys Lett B670 (2008) In general experimental inputs are really necessary Sometimes spectral function is better to be studied

Dim3 Chiral condensate in the medium

Lattice QCD (2+1)-flavorBorsanyi et al JHEP 1009 (2010)

Finite Temperature (LQCD)

Nuclear chiral perturbation Kaiser et al PRC 77 (2008)

Finite baryon density (χPT)

Mesic nuclei

2 Individual properties of NG and ldquoHiggsrdquo bosons   π K η (NG) σ (Higgs) ηrsquo (anomaly)

σ2γ η2γ ηrsquo2γ

Dileptons3 Individual properties of vector bosons   ρ ω and φ

Precisionsystematic studies(dispersion relation different targets hellip)

1 Spectral difference between chiral partners   π-σ ρ-a1 ω-f1 etc Determination of D=6 chiral condensates in the vacuumTau-decay in nuclei

Wish list

TH Slide p7(1997)

III Exact sum rules in QCD medium

TH Slide p20(1997)

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
Page 9: Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)

Energy weighted ldquochiralrdquo sum rules from QCD (mq=0)

Dim6 chiral condensate

Koike Lee + TH NuclPhys B394 (1993) 221Kapusta and Shuryak PRD 49 (1994) 4694Klingl Kaiser and Weise NPA 624 (1997) 527

-ρpQCD(ω))

-ρpQCD(ω))= C4ltGGgt

-ρpQCD(ω))= C6ltChiral invgt +C6rsquoltchiral non-invgt

Dim4 gluon condensate

Dim6 quark and gluon condensates

Dilepton data(after Cocktail subtraction) Space-time average

(by hydro or other models)

Lattice QCD simulations (with gradient flow method)

+

Energy weighted ldquovectorrdquo sum rules from QCD (mq=0)III In-medium hadrons

TH LBNL WS (1997)Slide p31

cf GLS sum rule Adler sum rule Bjorken sum rule

QGP

Quark-Gluon Plasma

Quark superfluid

Hadronphase

Chiral symmetry is always broken at finite density

Baryon superfluid

Hadron-Quark Continuity in dense QCD ( Nc=3 Nf=3 )

cond

ensa

tes

Continuity in the ground state Tachibana Yamamoto + TH PRD78 (rsquo08)

Vector Mesons = Gluons Baryons = Quarks

Possible fate of hadrons at high density ( Nc=3 Nf=3 )

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

Baryons (8)Quarks (9)

Continuity in the excited state Schafer amp Wilczek PRL 82 (rsquo99)

Nonet vector mesons(heavy)

Octetvector mesons(light)

Octet gluons in CFL mg=1362Δ Gusynin amp Shovkovy NPA700 (2002) Malekzadeh amp Rischke PRD73 (2006)

TH Tachibana and Yamamoto PRD78 (2008)

Spectral continuity of vector mesons

At high density

At intermediate density

At low density

Mass formula from Finite Energy Sum Rules

IV SummaryI Chiral order parameters

not unique Dim3 condensate Dim6 condensate etc

II In-medium hadrons chiral restoration can be seen in spectral degeneracy moment analysis is important for model independence interesting possibility of hadron-quark crossover   (Vector mesons = Gluons Baryons = Quarks)

Back up slides

Vector current

Current correlation function

QCD sum rules in the superconducting medium

Operator Product Expansion (OPE) up to O(1Q6)

4-quark condensate

Diquark condensate

Chiral condensate

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Generalized Gell-Mann-Oakes-Renner relation Yamamoto Tachibana Baym + TH PR D76 (rsquo07)

Continuity of vector mesons Tachibana Yamamoto +TH PRD78 (2008)

Explicit realization of spectral continuity

Possible fate of hadrons at high density ( Nc=3 Nf=3 )

Vector Mesons = Gluons Baryons = Quarks

cond

ensa

tes Continuity in the ground state

Yamamoto Tachibana Baym + TH PRL97(rsquo06) PRD76 (rsquo07)

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Hadron-quark continuity in dense QCD

cond

ensa

tes Continuity in the ground state

Hatsuda Tachibana Yamamoto amp Baym PRL 97 (2006)

TH Slide p2(1997)

httpwww-rnclblgovDLSDLS_WWW_FilesDLSWorkshopdileptonhtml

I Why SPF is important

FLAG Collaboration update( July 26 2013) httpitpwikiunibechflag

Running masses mq(Q)

quark masses (from lattice QCD)

[MeV] (MS-bar 2GeV)

mu 216 (9)(7)

md 468 (14)(7)

ms 938 (24)

Running coupling αs(Q)=g24π

PDG (2012) httppdglblgov

I Status of QCD

Hadron masses from Lattice QCD

Improved Wilson + Iwasaki gauge action a = 009 fm L=29 fm mπ=135 MeV PACS-CS Coll Phys Rev D 81 074503 (2010)

3 accuracy

rArr L~96 fm mπ=135 MeV on K-computer underway

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

In-medium hadrons

Complex pole (even for the pion)

One-parameter example (Tne0)

For the pion f(x) and g(x) can be evaluated for small x See eg Jido Kunhihiro + TH Phys Lett B670 (2008) In general experimental inputs are really necessary Sometimes spectral function is better to be studied

Dim3 Chiral condensate in the medium

Lattice QCD (2+1)-flavorBorsanyi et al JHEP 1009 (2010)

Finite Temperature (LQCD)

Nuclear chiral perturbation Kaiser et al PRC 77 (2008)

Finite baryon density (χPT)

Mesic nuclei

2 Individual properties of NG and ldquoHiggsrdquo bosons   π K η (NG) σ (Higgs) ηrsquo (anomaly)

σ2γ η2γ ηrsquo2γ

Dileptons3 Individual properties of vector bosons   ρ ω and φ

Precisionsystematic studies(dispersion relation different targets hellip)

1 Spectral difference between chiral partners   π-σ ρ-a1 ω-f1 etc Determination of D=6 chiral condensates in the vacuumTau-decay in nuclei

Wish list

TH Slide p7(1997)

III Exact sum rules in QCD medium

TH Slide p20(1997)

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
Page 10: Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)

-ρpQCD(ω))

-ρpQCD(ω))= C4ltGGgt

-ρpQCD(ω))= C6ltChiral invgt +C6rsquoltchiral non-invgt

Dim4 gluon condensate

Dim6 quark and gluon condensates

Dilepton data(after Cocktail subtraction) Space-time average

(by hydro or other models)

Lattice QCD simulations (with gradient flow method)

+

Energy weighted ldquovectorrdquo sum rules from QCD (mq=0)III In-medium hadrons

TH LBNL WS (1997)Slide p31

cf GLS sum rule Adler sum rule Bjorken sum rule

QGP

Quark-Gluon Plasma

Quark superfluid

Hadronphase

Chiral symmetry is always broken at finite density

Baryon superfluid

Hadron-Quark Continuity in dense QCD ( Nc=3 Nf=3 )

cond

ensa

tes

Continuity in the ground state Tachibana Yamamoto + TH PRD78 (rsquo08)

Vector Mesons = Gluons Baryons = Quarks

Possible fate of hadrons at high density ( Nc=3 Nf=3 )

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

Baryons (8)Quarks (9)

Continuity in the excited state Schafer amp Wilczek PRL 82 (rsquo99)

Nonet vector mesons(heavy)

Octetvector mesons(light)

Octet gluons in CFL mg=1362Δ Gusynin amp Shovkovy NPA700 (2002) Malekzadeh amp Rischke PRD73 (2006)

TH Tachibana and Yamamoto PRD78 (2008)

Spectral continuity of vector mesons

At high density

At intermediate density

At low density

Mass formula from Finite Energy Sum Rules

IV SummaryI Chiral order parameters

not unique Dim3 condensate Dim6 condensate etc

II In-medium hadrons chiral restoration can be seen in spectral degeneracy moment analysis is important for model independence interesting possibility of hadron-quark crossover   (Vector mesons = Gluons Baryons = Quarks)

Back up slides

Vector current

Current correlation function

QCD sum rules in the superconducting medium

Operator Product Expansion (OPE) up to O(1Q6)

4-quark condensate

Diquark condensate

Chiral condensate

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Generalized Gell-Mann-Oakes-Renner relation Yamamoto Tachibana Baym + TH PR D76 (rsquo07)

Continuity of vector mesons Tachibana Yamamoto +TH PRD78 (2008)

Explicit realization of spectral continuity

Possible fate of hadrons at high density ( Nc=3 Nf=3 )

Vector Mesons = Gluons Baryons = Quarks

cond

ensa

tes Continuity in the ground state

Yamamoto Tachibana Baym + TH PRL97(rsquo06) PRD76 (rsquo07)

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Hadron-quark continuity in dense QCD

cond

ensa

tes Continuity in the ground state

Hatsuda Tachibana Yamamoto amp Baym PRL 97 (2006)

TH Slide p2(1997)

httpwww-rnclblgovDLSDLS_WWW_FilesDLSWorkshopdileptonhtml

I Why SPF is important

FLAG Collaboration update( July 26 2013) httpitpwikiunibechflag

Running masses mq(Q)

quark masses (from lattice QCD)

[MeV] (MS-bar 2GeV)

mu 216 (9)(7)

md 468 (14)(7)

ms 938 (24)

Running coupling αs(Q)=g24π

PDG (2012) httppdglblgov

I Status of QCD

Hadron masses from Lattice QCD

Improved Wilson + Iwasaki gauge action a = 009 fm L=29 fm mπ=135 MeV PACS-CS Coll Phys Rev D 81 074503 (2010)

3 accuracy

rArr L~96 fm mπ=135 MeV on K-computer underway

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

In-medium hadrons

Complex pole (even for the pion)

One-parameter example (Tne0)

For the pion f(x) and g(x) can be evaluated for small x See eg Jido Kunhihiro + TH Phys Lett B670 (2008) In general experimental inputs are really necessary Sometimes spectral function is better to be studied

Dim3 Chiral condensate in the medium

Lattice QCD (2+1)-flavorBorsanyi et al JHEP 1009 (2010)

Finite Temperature (LQCD)

Nuclear chiral perturbation Kaiser et al PRC 77 (2008)

Finite baryon density (χPT)

Mesic nuclei

2 Individual properties of NG and ldquoHiggsrdquo bosons   π K η (NG) σ (Higgs) ηrsquo (anomaly)

σ2γ η2γ ηrsquo2γ

Dileptons3 Individual properties of vector bosons   ρ ω and φ

Precisionsystematic studies(dispersion relation different targets hellip)

1 Spectral difference between chiral partners   π-σ ρ-a1 ω-f1 etc Determination of D=6 chiral condensates in the vacuumTau-decay in nuclei

Wish list

TH Slide p7(1997)

III Exact sum rules in QCD medium

TH Slide p20(1997)

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
Page 11: Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)

TH LBNL WS (1997)Slide p31

cf GLS sum rule Adler sum rule Bjorken sum rule

QGP

Quark-Gluon Plasma

Quark superfluid

Hadronphase

Chiral symmetry is always broken at finite density

Baryon superfluid

Hadron-Quark Continuity in dense QCD ( Nc=3 Nf=3 )

cond

ensa

tes

Continuity in the ground state Tachibana Yamamoto + TH PRD78 (rsquo08)

Vector Mesons = Gluons Baryons = Quarks

Possible fate of hadrons at high density ( Nc=3 Nf=3 )

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

Baryons (8)Quarks (9)

Continuity in the excited state Schafer amp Wilczek PRL 82 (rsquo99)

Nonet vector mesons(heavy)

Octetvector mesons(light)

Octet gluons in CFL mg=1362Δ Gusynin amp Shovkovy NPA700 (2002) Malekzadeh amp Rischke PRD73 (2006)

TH Tachibana and Yamamoto PRD78 (2008)

Spectral continuity of vector mesons

At high density

At intermediate density

At low density

Mass formula from Finite Energy Sum Rules

IV SummaryI Chiral order parameters

not unique Dim3 condensate Dim6 condensate etc

II In-medium hadrons chiral restoration can be seen in spectral degeneracy moment analysis is important for model independence interesting possibility of hadron-quark crossover   (Vector mesons = Gluons Baryons = Quarks)

Back up slides

Vector current

Current correlation function

QCD sum rules in the superconducting medium

Operator Product Expansion (OPE) up to O(1Q6)

4-quark condensate

Diquark condensate

Chiral condensate

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Generalized Gell-Mann-Oakes-Renner relation Yamamoto Tachibana Baym + TH PR D76 (rsquo07)

Continuity of vector mesons Tachibana Yamamoto +TH PRD78 (2008)

Explicit realization of spectral continuity

Possible fate of hadrons at high density ( Nc=3 Nf=3 )

Vector Mesons = Gluons Baryons = Quarks

cond

ensa

tes Continuity in the ground state

Yamamoto Tachibana Baym + TH PRL97(rsquo06) PRD76 (rsquo07)

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Hadron-quark continuity in dense QCD

cond

ensa

tes Continuity in the ground state

Hatsuda Tachibana Yamamoto amp Baym PRL 97 (2006)

TH Slide p2(1997)

httpwww-rnclblgovDLSDLS_WWW_FilesDLSWorkshopdileptonhtml

I Why SPF is important

FLAG Collaboration update( July 26 2013) httpitpwikiunibechflag

Running masses mq(Q)

quark masses (from lattice QCD)

[MeV] (MS-bar 2GeV)

mu 216 (9)(7)

md 468 (14)(7)

ms 938 (24)

Running coupling αs(Q)=g24π

PDG (2012) httppdglblgov

I Status of QCD

Hadron masses from Lattice QCD

Improved Wilson + Iwasaki gauge action a = 009 fm L=29 fm mπ=135 MeV PACS-CS Coll Phys Rev D 81 074503 (2010)

3 accuracy

rArr L~96 fm mπ=135 MeV on K-computer underway

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

In-medium hadrons

Complex pole (even for the pion)

One-parameter example (Tne0)

For the pion f(x) and g(x) can be evaluated for small x See eg Jido Kunhihiro + TH Phys Lett B670 (2008) In general experimental inputs are really necessary Sometimes spectral function is better to be studied

Dim3 Chiral condensate in the medium

Lattice QCD (2+1)-flavorBorsanyi et al JHEP 1009 (2010)

Finite Temperature (LQCD)

Nuclear chiral perturbation Kaiser et al PRC 77 (2008)

Finite baryon density (χPT)

Mesic nuclei

2 Individual properties of NG and ldquoHiggsrdquo bosons   π K η (NG) σ (Higgs) ηrsquo (anomaly)

σ2γ η2γ ηrsquo2γ

Dileptons3 Individual properties of vector bosons   ρ ω and φ

Precisionsystematic studies(dispersion relation different targets hellip)

1 Spectral difference between chiral partners   π-σ ρ-a1 ω-f1 etc Determination of D=6 chiral condensates in the vacuumTau-decay in nuclei

Wish list

TH Slide p7(1997)

III Exact sum rules in QCD medium

TH Slide p20(1997)

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
Page 12: Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)

QGP

Quark-Gluon Plasma

Quark superfluid

Hadronphase

Chiral symmetry is always broken at finite density

Baryon superfluid

Hadron-Quark Continuity in dense QCD ( Nc=3 Nf=3 )

cond

ensa

tes

Continuity in the ground state Tachibana Yamamoto + TH PRD78 (rsquo08)

Vector Mesons = Gluons Baryons = Quarks

Possible fate of hadrons at high density ( Nc=3 Nf=3 )

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

Baryons (8)Quarks (9)

Continuity in the excited state Schafer amp Wilczek PRL 82 (rsquo99)

Nonet vector mesons(heavy)

Octetvector mesons(light)

Octet gluons in CFL mg=1362Δ Gusynin amp Shovkovy NPA700 (2002) Malekzadeh amp Rischke PRD73 (2006)

TH Tachibana and Yamamoto PRD78 (2008)

Spectral continuity of vector mesons

At high density

At intermediate density

At low density

Mass formula from Finite Energy Sum Rules

IV SummaryI Chiral order parameters

not unique Dim3 condensate Dim6 condensate etc

II In-medium hadrons chiral restoration can be seen in spectral degeneracy moment analysis is important for model independence interesting possibility of hadron-quark crossover   (Vector mesons = Gluons Baryons = Quarks)

Back up slides

Vector current

Current correlation function

QCD sum rules in the superconducting medium

Operator Product Expansion (OPE) up to O(1Q6)

4-quark condensate

Diquark condensate

Chiral condensate

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Generalized Gell-Mann-Oakes-Renner relation Yamamoto Tachibana Baym + TH PR D76 (rsquo07)

Continuity of vector mesons Tachibana Yamamoto +TH PRD78 (2008)

Explicit realization of spectral continuity

Possible fate of hadrons at high density ( Nc=3 Nf=3 )

Vector Mesons = Gluons Baryons = Quarks

cond

ensa

tes Continuity in the ground state

Yamamoto Tachibana Baym + TH PRL97(rsquo06) PRD76 (rsquo07)

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Hadron-quark continuity in dense QCD

cond

ensa

tes Continuity in the ground state

Hatsuda Tachibana Yamamoto amp Baym PRL 97 (2006)

TH Slide p2(1997)

httpwww-rnclblgovDLSDLS_WWW_FilesDLSWorkshopdileptonhtml

I Why SPF is important

FLAG Collaboration update( July 26 2013) httpitpwikiunibechflag

Running masses mq(Q)

quark masses (from lattice QCD)

[MeV] (MS-bar 2GeV)

mu 216 (9)(7)

md 468 (14)(7)

ms 938 (24)

Running coupling αs(Q)=g24π

PDG (2012) httppdglblgov

I Status of QCD

Hadron masses from Lattice QCD

Improved Wilson + Iwasaki gauge action a = 009 fm L=29 fm mπ=135 MeV PACS-CS Coll Phys Rev D 81 074503 (2010)

3 accuracy

rArr L~96 fm mπ=135 MeV on K-computer underway

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

In-medium hadrons

Complex pole (even for the pion)

One-parameter example (Tne0)

For the pion f(x) and g(x) can be evaluated for small x See eg Jido Kunhihiro + TH Phys Lett B670 (2008) In general experimental inputs are really necessary Sometimes spectral function is better to be studied

Dim3 Chiral condensate in the medium

Lattice QCD (2+1)-flavorBorsanyi et al JHEP 1009 (2010)

Finite Temperature (LQCD)

Nuclear chiral perturbation Kaiser et al PRC 77 (2008)

Finite baryon density (χPT)

Mesic nuclei

2 Individual properties of NG and ldquoHiggsrdquo bosons   π K η (NG) σ (Higgs) ηrsquo (anomaly)

σ2γ η2γ ηrsquo2γ

Dileptons3 Individual properties of vector bosons   ρ ω and φ

Precisionsystematic studies(dispersion relation different targets hellip)

1 Spectral difference between chiral partners   π-σ ρ-a1 ω-f1 etc Determination of D=6 chiral condensates in the vacuumTau-decay in nuclei

Wish list

TH Slide p7(1997)

III Exact sum rules in QCD medium

TH Slide p20(1997)

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
Page 13: Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)

cond

ensa

tes

Continuity in the ground state Tachibana Yamamoto + TH PRD78 (rsquo08)

Vector Mesons = Gluons Baryons = Quarks

Possible fate of hadrons at high density ( Nc=3 Nf=3 )

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

Baryons (8)Quarks (9)

Continuity in the excited state Schafer amp Wilczek PRL 82 (rsquo99)

Nonet vector mesons(heavy)

Octetvector mesons(light)

Octet gluons in CFL mg=1362Δ Gusynin amp Shovkovy NPA700 (2002) Malekzadeh amp Rischke PRD73 (2006)

TH Tachibana and Yamamoto PRD78 (2008)

Spectral continuity of vector mesons

At high density

At intermediate density

At low density

Mass formula from Finite Energy Sum Rules

IV SummaryI Chiral order parameters

not unique Dim3 condensate Dim6 condensate etc

II In-medium hadrons chiral restoration can be seen in spectral degeneracy moment analysis is important for model independence interesting possibility of hadron-quark crossover   (Vector mesons = Gluons Baryons = Quarks)

Back up slides

Vector current

Current correlation function

QCD sum rules in the superconducting medium

Operator Product Expansion (OPE) up to O(1Q6)

4-quark condensate

Diquark condensate

Chiral condensate

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Generalized Gell-Mann-Oakes-Renner relation Yamamoto Tachibana Baym + TH PR D76 (rsquo07)

Continuity of vector mesons Tachibana Yamamoto +TH PRD78 (2008)

Explicit realization of spectral continuity

Possible fate of hadrons at high density ( Nc=3 Nf=3 )

Vector Mesons = Gluons Baryons = Quarks

cond

ensa

tes Continuity in the ground state

Yamamoto Tachibana Baym + TH PRL97(rsquo06) PRD76 (rsquo07)

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Hadron-quark continuity in dense QCD

cond

ensa

tes Continuity in the ground state

Hatsuda Tachibana Yamamoto amp Baym PRL 97 (2006)

TH Slide p2(1997)

httpwww-rnclblgovDLSDLS_WWW_FilesDLSWorkshopdileptonhtml

I Why SPF is important

FLAG Collaboration update( July 26 2013) httpitpwikiunibechflag

Running masses mq(Q)

quark masses (from lattice QCD)

[MeV] (MS-bar 2GeV)

mu 216 (9)(7)

md 468 (14)(7)

ms 938 (24)

Running coupling αs(Q)=g24π

PDG (2012) httppdglblgov

I Status of QCD

Hadron masses from Lattice QCD

Improved Wilson + Iwasaki gauge action a = 009 fm L=29 fm mπ=135 MeV PACS-CS Coll Phys Rev D 81 074503 (2010)

3 accuracy

rArr L~96 fm mπ=135 MeV on K-computer underway

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

In-medium hadrons

Complex pole (even for the pion)

One-parameter example (Tne0)

For the pion f(x) and g(x) can be evaluated for small x See eg Jido Kunhihiro + TH Phys Lett B670 (2008) In general experimental inputs are really necessary Sometimes spectral function is better to be studied

Dim3 Chiral condensate in the medium

Lattice QCD (2+1)-flavorBorsanyi et al JHEP 1009 (2010)

Finite Temperature (LQCD)

Nuclear chiral perturbation Kaiser et al PRC 77 (2008)

Finite baryon density (χPT)

Mesic nuclei

2 Individual properties of NG and ldquoHiggsrdquo bosons   π K η (NG) σ (Higgs) ηrsquo (anomaly)

σ2γ η2γ ηrsquo2γ

Dileptons3 Individual properties of vector bosons   ρ ω and φ

Precisionsystematic studies(dispersion relation different targets hellip)

1 Spectral difference between chiral partners   π-σ ρ-a1 ω-f1 etc Determination of D=6 chiral condensates in the vacuumTau-decay in nuclei

Wish list

TH Slide p7(1997)

III Exact sum rules in QCD medium

TH Slide p20(1997)

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
Page 14: Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)

Nonet vector mesons(heavy)

Octetvector mesons(light)

Octet gluons in CFL mg=1362Δ Gusynin amp Shovkovy NPA700 (2002) Malekzadeh amp Rischke PRD73 (2006)

TH Tachibana and Yamamoto PRD78 (2008)

Spectral continuity of vector mesons

At high density

At intermediate density

At low density

Mass formula from Finite Energy Sum Rules

IV SummaryI Chiral order parameters

not unique Dim3 condensate Dim6 condensate etc

II In-medium hadrons chiral restoration can be seen in spectral degeneracy moment analysis is important for model independence interesting possibility of hadron-quark crossover   (Vector mesons = Gluons Baryons = Quarks)

Back up slides

Vector current

Current correlation function

QCD sum rules in the superconducting medium

Operator Product Expansion (OPE) up to O(1Q6)

4-quark condensate

Diquark condensate

Chiral condensate

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Generalized Gell-Mann-Oakes-Renner relation Yamamoto Tachibana Baym + TH PR D76 (rsquo07)

Continuity of vector mesons Tachibana Yamamoto +TH PRD78 (2008)

Explicit realization of spectral continuity

Possible fate of hadrons at high density ( Nc=3 Nf=3 )

Vector Mesons = Gluons Baryons = Quarks

cond

ensa

tes Continuity in the ground state

Yamamoto Tachibana Baym + TH PRL97(rsquo06) PRD76 (rsquo07)

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Hadron-quark continuity in dense QCD

cond

ensa

tes Continuity in the ground state

Hatsuda Tachibana Yamamoto amp Baym PRL 97 (2006)

TH Slide p2(1997)

httpwww-rnclblgovDLSDLS_WWW_FilesDLSWorkshopdileptonhtml

I Why SPF is important

FLAG Collaboration update( July 26 2013) httpitpwikiunibechflag

Running masses mq(Q)

quark masses (from lattice QCD)

[MeV] (MS-bar 2GeV)

mu 216 (9)(7)

md 468 (14)(7)

ms 938 (24)

Running coupling αs(Q)=g24π

PDG (2012) httppdglblgov

I Status of QCD

Hadron masses from Lattice QCD

Improved Wilson + Iwasaki gauge action a = 009 fm L=29 fm mπ=135 MeV PACS-CS Coll Phys Rev D 81 074503 (2010)

3 accuracy

rArr L~96 fm mπ=135 MeV on K-computer underway

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

In-medium hadrons

Complex pole (even for the pion)

One-parameter example (Tne0)

For the pion f(x) and g(x) can be evaluated for small x See eg Jido Kunhihiro + TH Phys Lett B670 (2008) In general experimental inputs are really necessary Sometimes spectral function is better to be studied

Dim3 Chiral condensate in the medium

Lattice QCD (2+1)-flavorBorsanyi et al JHEP 1009 (2010)

Finite Temperature (LQCD)

Nuclear chiral perturbation Kaiser et al PRC 77 (2008)

Finite baryon density (χPT)

Mesic nuclei

2 Individual properties of NG and ldquoHiggsrdquo bosons   π K η (NG) σ (Higgs) ηrsquo (anomaly)

σ2γ η2γ ηrsquo2γ

Dileptons3 Individual properties of vector bosons   ρ ω and φ

Precisionsystematic studies(dispersion relation different targets hellip)

1 Spectral difference between chiral partners   π-σ ρ-a1 ω-f1 etc Determination of D=6 chiral condensates in the vacuumTau-decay in nuclei

Wish list

TH Slide p7(1997)

III Exact sum rules in QCD medium

TH Slide p20(1997)

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
Page 15: Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)

At high density

At intermediate density

At low density

Mass formula from Finite Energy Sum Rules

IV SummaryI Chiral order parameters

not unique Dim3 condensate Dim6 condensate etc

II In-medium hadrons chiral restoration can be seen in spectral degeneracy moment analysis is important for model independence interesting possibility of hadron-quark crossover   (Vector mesons = Gluons Baryons = Quarks)

Back up slides

Vector current

Current correlation function

QCD sum rules in the superconducting medium

Operator Product Expansion (OPE) up to O(1Q6)

4-quark condensate

Diquark condensate

Chiral condensate

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Generalized Gell-Mann-Oakes-Renner relation Yamamoto Tachibana Baym + TH PR D76 (rsquo07)

Continuity of vector mesons Tachibana Yamamoto +TH PRD78 (2008)

Explicit realization of spectral continuity

Possible fate of hadrons at high density ( Nc=3 Nf=3 )

Vector Mesons = Gluons Baryons = Quarks

cond

ensa

tes Continuity in the ground state

Yamamoto Tachibana Baym + TH PRL97(rsquo06) PRD76 (rsquo07)

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Hadron-quark continuity in dense QCD

cond

ensa

tes Continuity in the ground state

Hatsuda Tachibana Yamamoto amp Baym PRL 97 (2006)

TH Slide p2(1997)

httpwww-rnclblgovDLSDLS_WWW_FilesDLSWorkshopdileptonhtml

I Why SPF is important

FLAG Collaboration update( July 26 2013) httpitpwikiunibechflag

Running masses mq(Q)

quark masses (from lattice QCD)

[MeV] (MS-bar 2GeV)

mu 216 (9)(7)

md 468 (14)(7)

ms 938 (24)

Running coupling αs(Q)=g24π

PDG (2012) httppdglblgov

I Status of QCD

Hadron masses from Lattice QCD

Improved Wilson + Iwasaki gauge action a = 009 fm L=29 fm mπ=135 MeV PACS-CS Coll Phys Rev D 81 074503 (2010)

3 accuracy

rArr L~96 fm mπ=135 MeV on K-computer underway

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

In-medium hadrons

Complex pole (even for the pion)

One-parameter example (Tne0)

For the pion f(x) and g(x) can be evaluated for small x See eg Jido Kunhihiro + TH Phys Lett B670 (2008) In general experimental inputs are really necessary Sometimes spectral function is better to be studied

Dim3 Chiral condensate in the medium

Lattice QCD (2+1)-flavorBorsanyi et al JHEP 1009 (2010)

Finite Temperature (LQCD)

Nuclear chiral perturbation Kaiser et al PRC 77 (2008)

Finite baryon density (χPT)

Mesic nuclei

2 Individual properties of NG and ldquoHiggsrdquo bosons   π K η (NG) σ (Higgs) ηrsquo (anomaly)

σ2γ η2γ ηrsquo2γ

Dileptons3 Individual properties of vector bosons   ρ ω and φ

Precisionsystematic studies(dispersion relation different targets hellip)

1 Spectral difference between chiral partners   π-σ ρ-a1 ω-f1 etc Determination of D=6 chiral condensates in the vacuumTau-decay in nuclei

Wish list

TH Slide p7(1997)

III Exact sum rules in QCD medium

TH Slide p20(1997)

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
Page 16: Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)

IV SummaryI Chiral order parameters

not unique Dim3 condensate Dim6 condensate etc

II In-medium hadrons chiral restoration can be seen in spectral degeneracy moment analysis is important for model independence interesting possibility of hadron-quark crossover   (Vector mesons = Gluons Baryons = Quarks)

Back up slides

Vector current

Current correlation function

QCD sum rules in the superconducting medium

Operator Product Expansion (OPE) up to O(1Q6)

4-quark condensate

Diquark condensate

Chiral condensate

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Generalized Gell-Mann-Oakes-Renner relation Yamamoto Tachibana Baym + TH PR D76 (rsquo07)

Continuity of vector mesons Tachibana Yamamoto +TH PRD78 (2008)

Explicit realization of spectral continuity

Possible fate of hadrons at high density ( Nc=3 Nf=3 )

Vector Mesons = Gluons Baryons = Quarks

cond

ensa

tes Continuity in the ground state

Yamamoto Tachibana Baym + TH PRL97(rsquo06) PRD76 (rsquo07)

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Hadron-quark continuity in dense QCD

cond

ensa

tes Continuity in the ground state

Hatsuda Tachibana Yamamoto amp Baym PRL 97 (2006)

TH Slide p2(1997)

httpwww-rnclblgovDLSDLS_WWW_FilesDLSWorkshopdileptonhtml

I Why SPF is important

FLAG Collaboration update( July 26 2013) httpitpwikiunibechflag

Running masses mq(Q)

quark masses (from lattice QCD)

[MeV] (MS-bar 2GeV)

mu 216 (9)(7)

md 468 (14)(7)

ms 938 (24)

Running coupling αs(Q)=g24π

PDG (2012) httppdglblgov

I Status of QCD

Hadron masses from Lattice QCD

Improved Wilson + Iwasaki gauge action a = 009 fm L=29 fm mπ=135 MeV PACS-CS Coll Phys Rev D 81 074503 (2010)

3 accuracy

rArr L~96 fm mπ=135 MeV on K-computer underway

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

In-medium hadrons

Complex pole (even for the pion)

One-parameter example (Tne0)

For the pion f(x) and g(x) can be evaluated for small x See eg Jido Kunhihiro + TH Phys Lett B670 (2008) In general experimental inputs are really necessary Sometimes spectral function is better to be studied

Dim3 Chiral condensate in the medium

Lattice QCD (2+1)-flavorBorsanyi et al JHEP 1009 (2010)

Finite Temperature (LQCD)

Nuclear chiral perturbation Kaiser et al PRC 77 (2008)

Finite baryon density (χPT)

Mesic nuclei

2 Individual properties of NG and ldquoHiggsrdquo bosons   π K η (NG) σ (Higgs) ηrsquo (anomaly)

σ2γ η2γ ηrsquo2γ

Dileptons3 Individual properties of vector bosons   ρ ω and φ

Precisionsystematic studies(dispersion relation different targets hellip)

1 Spectral difference between chiral partners   π-σ ρ-a1 ω-f1 etc Determination of D=6 chiral condensates in the vacuumTau-decay in nuclei

Wish list

TH Slide p7(1997)

III Exact sum rules in QCD medium

TH Slide p20(1997)

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
Page 17: Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)

Back up slides

Vector current

Current correlation function

QCD sum rules in the superconducting medium

Operator Product Expansion (OPE) up to O(1Q6)

4-quark condensate

Diquark condensate

Chiral condensate

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Generalized Gell-Mann-Oakes-Renner relation Yamamoto Tachibana Baym + TH PR D76 (rsquo07)

Continuity of vector mesons Tachibana Yamamoto +TH PRD78 (2008)

Explicit realization of spectral continuity

Possible fate of hadrons at high density ( Nc=3 Nf=3 )

Vector Mesons = Gluons Baryons = Quarks

cond

ensa

tes Continuity in the ground state

Yamamoto Tachibana Baym + TH PRL97(rsquo06) PRD76 (rsquo07)

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Hadron-quark continuity in dense QCD

cond

ensa

tes Continuity in the ground state

Hatsuda Tachibana Yamamoto amp Baym PRL 97 (2006)

TH Slide p2(1997)

httpwww-rnclblgovDLSDLS_WWW_FilesDLSWorkshopdileptonhtml

I Why SPF is important

FLAG Collaboration update( July 26 2013) httpitpwikiunibechflag

Running masses mq(Q)

quark masses (from lattice QCD)

[MeV] (MS-bar 2GeV)

mu 216 (9)(7)

md 468 (14)(7)

ms 938 (24)

Running coupling αs(Q)=g24π

PDG (2012) httppdglblgov

I Status of QCD

Hadron masses from Lattice QCD

Improved Wilson + Iwasaki gauge action a = 009 fm L=29 fm mπ=135 MeV PACS-CS Coll Phys Rev D 81 074503 (2010)

3 accuracy

rArr L~96 fm mπ=135 MeV on K-computer underway

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

In-medium hadrons

Complex pole (even for the pion)

One-parameter example (Tne0)

For the pion f(x) and g(x) can be evaluated for small x See eg Jido Kunhihiro + TH Phys Lett B670 (2008) In general experimental inputs are really necessary Sometimes spectral function is better to be studied

Dim3 Chiral condensate in the medium

Lattice QCD (2+1)-flavorBorsanyi et al JHEP 1009 (2010)

Finite Temperature (LQCD)

Nuclear chiral perturbation Kaiser et al PRC 77 (2008)

Finite baryon density (χPT)

Mesic nuclei

2 Individual properties of NG and ldquoHiggsrdquo bosons   π K η (NG) σ (Higgs) ηrsquo (anomaly)

σ2γ η2γ ηrsquo2γ

Dileptons3 Individual properties of vector bosons   ρ ω and φ

Precisionsystematic studies(dispersion relation different targets hellip)

1 Spectral difference between chiral partners   π-σ ρ-a1 ω-f1 etc Determination of D=6 chiral condensates in the vacuumTau-decay in nuclei

Wish list

TH Slide p7(1997)

III Exact sum rules in QCD medium

TH Slide p20(1997)

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
Page 18: Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)

Vector current

Current correlation function

QCD sum rules in the superconducting medium

Operator Product Expansion (OPE) up to O(1Q6)

4-quark condensate

Diquark condensate

Chiral condensate

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Generalized Gell-Mann-Oakes-Renner relation Yamamoto Tachibana Baym + TH PR D76 (rsquo07)

Continuity of vector mesons Tachibana Yamamoto +TH PRD78 (2008)

Explicit realization of spectral continuity

Possible fate of hadrons at high density ( Nc=3 Nf=3 )

Vector Mesons = Gluons Baryons = Quarks

cond

ensa

tes Continuity in the ground state

Yamamoto Tachibana Baym + TH PRL97(rsquo06) PRD76 (rsquo07)

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Hadron-quark continuity in dense QCD

cond

ensa

tes Continuity in the ground state

Hatsuda Tachibana Yamamoto amp Baym PRL 97 (2006)

TH Slide p2(1997)

httpwww-rnclblgovDLSDLS_WWW_FilesDLSWorkshopdileptonhtml

I Why SPF is important

FLAG Collaboration update( July 26 2013) httpitpwikiunibechflag

Running masses mq(Q)

quark masses (from lattice QCD)

[MeV] (MS-bar 2GeV)

mu 216 (9)(7)

md 468 (14)(7)

ms 938 (24)

Running coupling αs(Q)=g24π

PDG (2012) httppdglblgov

I Status of QCD

Hadron masses from Lattice QCD

Improved Wilson + Iwasaki gauge action a = 009 fm L=29 fm mπ=135 MeV PACS-CS Coll Phys Rev D 81 074503 (2010)

3 accuracy

rArr L~96 fm mπ=135 MeV on K-computer underway

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

In-medium hadrons

Complex pole (even for the pion)

One-parameter example (Tne0)

For the pion f(x) and g(x) can be evaluated for small x See eg Jido Kunhihiro + TH Phys Lett B670 (2008) In general experimental inputs are really necessary Sometimes spectral function is better to be studied

Dim3 Chiral condensate in the medium

Lattice QCD (2+1)-flavorBorsanyi et al JHEP 1009 (2010)

Finite Temperature (LQCD)

Nuclear chiral perturbation Kaiser et al PRC 77 (2008)

Finite baryon density (χPT)

Mesic nuclei

2 Individual properties of NG and ldquoHiggsrdquo bosons   π K η (NG) σ (Higgs) ηrsquo (anomaly)

σ2γ η2γ ηrsquo2γ

Dileptons3 Individual properties of vector bosons   ρ ω and φ

Precisionsystematic studies(dispersion relation different targets hellip)

1 Spectral difference between chiral partners   π-σ ρ-a1 ω-f1 etc Determination of D=6 chiral condensates in the vacuumTau-decay in nuclei

Wish list

TH Slide p7(1997)

III Exact sum rules in QCD medium

TH Slide p20(1997)

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
Page 19: Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Generalized Gell-Mann-Oakes-Renner relation Yamamoto Tachibana Baym + TH PR D76 (rsquo07)

Continuity of vector mesons Tachibana Yamamoto +TH PRD78 (2008)

Explicit realization of spectral continuity

Possible fate of hadrons at high density ( Nc=3 Nf=3 )

Vector Mesons = Gluons Baryons = Quarks

cond

ensa

tes Continuity in the ground state

Yamamoto Tachibana Baym + TH PRL97(rsquo06) PRD76 (rsquo07)

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Hadron-quark continuity in dense QCD

cond

ensa

tes Continuity in the ground state

Hatsuda Tachibana Yamamoto amp Baym PRL 97 (2006)

TH Slide p2(1997)

httpwww-rnclblgovDLSDLS_WWW_FilesDLSWorkshopdileptonhtml

I Why SPF is important

FLAG Collaboration update( July 26 2013) httpitpwikiunibechflag

Running masses mq(Q)

quark masses (from lattice QCD)

[MeV] (MS-bar 2GeV)

mu 216 (9)(7)

md 468 (14)(7)

ms 938 (24)

Running coupling αs(Q)=g24π

PDG (2012) httppdglblgov

I Status of QCD

Hadron masses from Lattice QCD

Improved Wilson + Iwasaki gauge action a = 009 fm L=29 fm mπ=135 MeV PACS-CS Coll Phys Rev D 81 074503 (2010)

3 accuracy

rArr L~96 fm mπ=135 MeV on K-computer underway

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

In-medium hadrons

Complex pole (even for the pion)

One-parameter example (Tne0)

For the pion f(x) and g(x) can be evaluated for small x See eg Jido Kunhihiro + TH Phys Lett B670 (2008) In general experimental inputs are really necessary Sometimes spectral function is better to be studied

Dim3 Chiral condensate in the medium

Lattice QCD (2+1)-flavorBorsanyi et al JHEP 1009 (2010)

Finite Temperature (LQCD)

Nuclear chiral perturbation Kaiser et al PRC 77 (2008)

Finite baryon density (χPT)

Mesic nuclei

2 Individual properties of NG and ldquoHiggsrdquo bosons   π K η (NG) σ (Higgs) ηrsquo (anomaly)

σ2γ η2γ ηrsquo2γ

Dileptons3 Individual properties of vector bosons   ρ ω and φ

Precisionsystematic studies(dispersion relation different targets hellip)

1 Spectral difference between chiral partners   π-σ ρ-a1 ω-f1 etc Determination of D=6 chiral condensates in the vacuumTau-decay in nuclei

Wish list

TH Slide p7(1997)

III Exact sum rules in QCD medium

TH Slide p20(1997)

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
Page 20: Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)

Low High

(8) amp H rsquo (8) amp HNGs

Vectors

Fermions

excitation

V (9)gluons (8)

baryons (8)Quarks (9)

Continuity in the excited state

Schafer and Wilczek PRL 82 (1999)

Hadron-quark continuity in dense QCD

cond

ensa

tes Continuity in the ground state

Hatsuda Tachibana Yamamoto amp Baym PRL 97 (2006)

TH Slide p2(1997)

httpwww-rnclblgovDLSDLS_WWW_FilesDLSWorkshopdileptonhtml

I Why SPF is important

FLAG Collaboration update( July 26 2013) httpitpwikiunibechflag

Running masses mq(Q)

quark masses (from lattice QCD)

[MeV] (MS-bar 2GeV)

mu 216 (9)(7)

md 468 (14)(7)

ms 938 (24)

Running coupling αs(Q)=g24π

PDG (2012) httppdglblgov

I Status of QCD

Hadron masses from Lattice QCD

Improved Wilson + Iwasaki gauge action a = 009 fm L=29 fm mπ=135 MeV PACS-CS Coll Phys Rev D 81 074503 (2010)

3 accuracy

rArr L~96 fm mπ=135 MeV on K-computer underway

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

In-medium hadrons

Complex pole (even for the pion)

One-parameter example (Tne0)

For the pion f(x) and g(x) can be evaluated for small x See eg Jido Kunhihiro + TH Phys Lett B670 (2008) In general experimental inputs are really necessary Sometimes spectral function is better to be studied

Dim3 Chiral condensate in the medium

Lattice QCD (2+1)-flavorBorsanyi et al JHEP 1009 (2010)

Finite Temperature (LQCD)

Nuclear chiral perturbation Kaiser et al PRC 77 (2008)

Finite baryon density (χPT)

Mesic nuclei

2 Individual properties of NG and ldquoHiggsrdquo bosons   π K η (NG) σ (Higgs) ηrsquo (anomaly)

σ2γ η2γ ηrsquo2γ

Dileptons3 Individual properties of vector bosons   ρ ω and φ

Precisionsystematic studies(dispersion relation different targets hellip)

1 Spectral difference between chiral partners   π-σ ρ-a1 ω-f1 etc Determination of D=6 chiral condensates in the vacuumTau-decay in nuclei

Wish list

TH Slide p7(1997)

III Exact sum rules in QCD medium

TH Slide p20(1997)

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
Page 21: Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)

TH Slide p2(1997)

httpwww-rnclblgovDLSDLS_WWW_FilesDLSWorkshopdileptonhtml

I Why SPF is important

FLAG Collaboration update( July 26 2013) httpitpwikiunibechflag

Running masses mq(Q)

quark masses (from lattice QCD)

[MeV] (MS-bar 2GeV)

mu 216 (9)(7)

md 468 (14)(7)

ms 938 (24)

Running coupling αs(Q)=g24π

PDG (2012) httppdglblgov

I Status of QCD

Hadron masses from Lattice QCD

Improved Wilson + Iwasaki gauge action a = 009 fm L=29 fm mπ=135 MeV PACS-CS Coll Phys Rev D 81 074503 (2010)

3 accuracy

rArr L~96 fm mπ=135 MeV on K-computer underway

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

In-medium hadrons

Complex pole (even for the pion)

One-parameter example (Tne0)

For the pion f(x) and g(x) can be evaluated for small x See eg Jido Kunhihiro + TH Phys Lett B670 (2008) In general experimental inputs are really necessary Sometimes spectral function is better to be studied

Dim3 Chiral condensate in the medium

Lattice QCD (2+1)-flavorBorsanyi et al JHEP 1009 (2010)

Finite Temperature (LQCD)

Nuclear chiral perturbation Kaiser et al PRC 77 (2008)

Finite baryon density (χPT)

Mesic nuclei

2 Individual properties of NG and ldquoHiggsrdquo bosons   π K η (NG) σ (Higgs) ηrsquo (anomaly)

σ2γ η2γ ηrsquo2γ

Dileptons3 Individual properties of vector bosons   ρ ω and φ

Precisionsystematic studies(dispersion relation different targets hellip)

1 Spectral difference between chiral partners   π-σ ρ-a1 ω-f1 etc Determination of D=6 chiral condensates in the vacuumTau-decay in nuclei

Wish list

TH Slide p7(1997)

III Exact sum rules in QCD medium

TH Slide p20(1997)

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
Page 22: Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)

httpwww-rnclblgovDLSDLS_WWW_FilesDLSWorkshopdileptonhtml

I Why SPF is important

FLAG Collaboration update( July 26 2013) httpitpwikiunibechflag

Running masses mq(Q)

quark masses (from lattice QCD)

[MeV] (MS-bar 2GeV)

mu 216 (9)(7)

md 468 (14)(7)

ms 938 (24)

Running coupling αs(Q)=g24π

PDG (2012) httppdglblgov

I Status of QCD

Hadron masses from Lattice QCD

Improved Wilson + Iwasaki gauge action a = 009 fm L=29 fm mπ=135 MeV PACS-CS Coll Phys Rev D 81 074503 (2010)

3 accuracy

rArr L~96 fm mπ=135 MeV on K-computer underway

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

In-medium hadrons

Complex pole (even for the pion)

One-parameter example (Tne0)

For the pion f(x) and g(x) can be evaluated for small x See eg Jido Kunhihiro + TH Phys Lett B670 (2008) In general experimental inputs are really necessary Sometimes spectral function is better to be studied

Dim3 Chiral condensate in the medium

Lattice QCD (2+1)-flavorBorsanyi et al JHEP 1009 (2010)

Finite Temperature (LQCD)

Nuclear chiral perturbation Kaiser et al PRC 77 (2008)

Finite baryon density (χPT)

Mesic nuclei

2 Individual properties of NG and ldquoHiggsrdquo bosons   π K η (NG) σ (Higgs) ηrsquo (anomaly)

σ2γ η2γ ηrsquo2γ

Dileptons3 Individual properties of vector bosons   ρ ω and φ

Precisionsystematic studies(dispersion relation different targets hellip)

1 Spectral difference between chiral partners   π-σ ρ-a1 ω-f1 etc Determination of D=6 chiral condensates in the vacuumTau-decay in nuclei

Wish list

TH Slide p7(1997)

III Exact sum rules in QCD medium

TH Slide p20(1997)

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
Page 23: Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)

FLAG Collaboration update( July 26 2013) httpitpwikiunibechflag

Running masses mq(Q)

quark masses (from lattice QCD)

[MeV] (MS-bar 2GeV)

mu 216 (9)(7)

md 468 (14)(7)

ms 938 (24)

Running coupling αs(Q)=g24π

PDG (2012) httppdglblgov

I Status of QCD

Hadron masses from Lattice QCD

Improved Wilson + Iwasaki gauge action a = 009 fm L=29 fm mπ=135 MeV PACS-CS Coll Phys Rev D 81 074503 (2010)

3 accuracy

rArr L~96 fm mπ=135 MeV on K-computer underway

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

In-medium hadrons

Complex pole (even for the pion)

One-parameter example (Tne0)

For the pion f(x) and g(x) can be evaluated for small x See eg Jido Kunhihiro + TH Phys Lett B670 (2008) In general experimental inputs are really necessary Sometimes spectral function is better to be studied

Dim3 Chiral condensate in the medium

Lattice QCD (2+1)-flavorBorsanyi et al JHEP 1009 (2010)

Finite Temperature (LQCD)

Nuclear chiral perturbation Kaiser et al PRC 77 (2008)

Finite baryon density (χPT)

Mesic nuclei

2 Individual properties of NG and ldquoHiggsrdquo bosons   π K η (NG) σ (Higgs) ηrsquo (anomaly)

σ2γ η2γ ηrsquo2γ

Dileptons3 Individual properties of vector bosons   ρ ω and φ

Precisionsystematic studies(dispersion relation different targets hellip)

1 Spectral difference between chiral partners   π-σ ρ-a1 ω-f1 etc Determination of D=6 chiral condensates in the vacuumTau-decay in nuclei

Wish list

TH Slide p7(1997)

III Exact sum rules in QCD medium

TH Slide p20(1997)

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
Page 24: Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)

Hadron masses from Lattice QCD

Improved Wilson + Iwasaki gauge action a = 009 fm L=29 fm mπ=135 MeV PACS-CS Coll Phys Rev D 81 074503 (2010)

3 accuracy

rArr L~96 fm mπ=135 MeV on K-computer underway

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

In-medium hadrons

Complex pole (even for the pion)

One-parameter example (Tne0)

For the pion f(x) and g(x) can be evaluated for small x See eg Jido Kunhihiro + TH Phys Lett B670 (2008) In general experimental inputs are really necessary Sometimes spectral function is better to be studied

Dim3 Chiral condensate in the medium

Lattice QCD (2+1)-flavorBorsanyi et al JHEP 1009 (2010)

Finite Temperature (LQCD)

Nuclear chiral perturbation Kaiser et al PRC 77 (2008)

Finite baryon density (χPT)

Mesic nuclei

2 Individual properties of NG and ldquoHiggsrdquo bosons   π K η (NG) σ (Higgs) ηrsquo (anomaly)

σ2γ η2γ ηrsquo2γ

Dileptons3 Individual properties of vector bosons   ρ ω and φ

Precisionsystematic studies(dispersion relation different targets hellip)

1 Spectral difference between chiral partners   π-σ ρ-a1 ω-f1 etc Determination of D=6 chiral condensates in the vacuumTau-decay in nuclei

Wish list

TH Slide p7(1997)

III Exact sum rules in QCD medium

TH Slide p20(1997)

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
Page 25: Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

In-medium hadrons

Complex pole (even for the pion)

One-parameter example (Tne0)

For the pion f(x) and g(x) can be evaluated for small x See eg Jido Kunhihiro + TH Phys Lett B670 (2008) In general experimental inputs are really necessary Sometimes spectral function is better to be studied

Dim3 Chiral condensate in the medium

Lattice QCD (2+1)-flavorBorsanyi et al JHEP 1009 (2010)

Finite Temperature (LQCD)

Nuclear chiral perturbation Kaiser et al PRC 77 (2008)

Finite baryon density (χPT)

Mesic nuclei

2 Individual properties of NG and ldquoHiggsrdquo bosons   π K η (NG) σ (Higgs) ηrsquo (anomaly)

σ2γ η2γ ηrsquo2γ

Dileptons3 Individual properties of vector bosons   ρ ω and φ

Precisionsystematic studies(dispersion relation different targets hellip)

1 Spectral difference between chiral partners   π-σ ρ-a1 ω-f1 etc Determination of D=6 chiral condensates in the vacuumTau-decay in nuclei

Wish list

TH Slide p7(1997)

III Exact sum rules in QCD medium

TH Slide p20(1997)

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
Page 26: Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)

In-medium hadrons

Complex pole (even for the pion)

One-parameter example (Tne0)

For the pion f(x) and g(x) can be evaluated for small x See eg Jido Kunhihiro + TH Phys Lett B670 (2008) In general experimental inputs are really necessary Sometimes spectral function is better to be studied

Dim3 Chiral condensate in the medium

Lattice QCD (2+1)-flavorBorsanyi et al JHEP 1009 (2010)

Finite Temperature (LQCD)

Nuclear chiral perturbation Kaiser et al PRC 77 (2008)

Finite baryon density (χPT)

Mesic nuclei

2 Individual properties of NG and ldquoHiggsrdquo bosons   π K η (NG) σ (Higgs) ηrsquo (anomaly)

σ2γ η2γ ηrsquo2γ

Dileptons3 Individual properties of vector bosons   ρ ω and φ

Precisionsystematic studies(dispersion relation different targets hellip)

1 Spectral difference between chiral partners   π-σ ρ-a1 ω-f1 etc Determination of D=6 chiral condensates in the vacuumTau-decay in nuclei

Wish list

TH Slide p7(1997)

III Exact sum rules in QCD medium

TH Slide p20(1997)

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
Page 27: Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)

Dim3 Chiral condensate in the medium

Lattice QCD (2+1)-flavorBorsanyi et al JHEP 1009 (2010)

Finite Temperature (LQCD)

Nuclear chiral perturbation Kaiser et al PRC 77 (2008)

Finite baryon density (χPT)

Mesic nuclei

2 Individual properties of NG and ldquoHiggsrdquo bosons   π K η (NG) σ (Higgs) ηrsquo (anomaly)

σ2γ η2γ ηrsquo2γ

Dileptons3 Individual properties of vector bosons   ρ ω and φ

Precisionsystematic studies(dispersion relation different targets hellip)

1 Spectral difference between chiral partners   π-σ ρ-a1 ω-f1 etc Determination of D=6 chiral condensates in the vacuumTau-decay in nuclei

Wish list

TH Slide p7(1997)

III Exact sum rules in QCD medium

TH Slide p20(1997)

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
Page 28: Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)

Mesic nuclei

2 Individual properties of NG and ldquoHiggsrdquo bosons   π K η (NG) σ (Higgs) ηrsquo (anomaly)

σ2γ η2γ ηrsquo2γ

Dileptons3 Individual properties of vector bosons   ρ ω and φ

Precisionsystematic studies(dispersion relation different targets hellip)

1 Spectral difference between chiral partners   π-σ ρ-a1 ω-f1 etc Determination of D=6 chiral condensates in the vacuumTau-decay in nuclei

Wish list

TH Slide p7(1997)

III Exact sum rules in QCD medium

TH Slide p20(1997)

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
Page 29: Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)

TH Slide p7(1997)

III Exact sum rules in QCD medium

TH Slide p20(1997)

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
Page 30: Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)

III Exact sum rules in QCD medium

TH Slide p20(1997)

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
Page 31: Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)

Nambu-Goldstone bosons

Other hadrons

Examples

QCDSR from Commutatorby Hayata PRD88 (2013)

Gell-Mann-Oakes-Renner relation (1968)

QCDSR from OPE by SVD (1979)

III In-medium hadrons

In-vacuum

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32