51
Cosmic Rays from Space Piergiorgio Picozza INFN and University of Rome Tor Vergata A Decade of AGILE Accademia dei Lincei and ASI December 11 - 13, 2017

Cosmic Rays from Space ·  · 2018-01-30Shuang-Nan Zhang, 3rd HERD Workshop, XiAn, Jan 2016 . Thanks! http:// pamela.roma2.infn.it. Title: Understanding Cosmic Rays with Balloon

Embed Size (px)

Citation preview

Cosmic Rays from Space

Piergiorgio Picozza INFN and University of Rome Tor Vergata

A Decade of AGILE

Accademia dei Lincei and ASI December 11 - 13, 2017

Isotopic

composition

[ACE] Solar Modulation

Antimatter

Dark Matter [BESS, PAMELA, AMS]

DAMPE)

Elemental

Composition (CALET ICE-CREAM

UHECR JEM-EUSO, K-EUSO, POEMMA

Space Missions PAMELA

15-06-2006 Fermi

11-6-2008 DAMPE 17/12/2015

AMS

16-05-2011

CALET

19-08-2015

ISS NUCLEON 28-12-2014

ISS-CREAM 14-08-2017

Magnetic Spectrometers

PAMELA AMS

Summary of PAMELA results

Physics Reports 544/4 (2014), 323

Calorimetric Instruments

CALET DAMPE

Calorimetric Instruments

NUCLEON ISS-CREAM

SCD

Absolute fluxes of primary GCRs

Protons, helium, light nuclei

Proton and Helium fluxes

Proton to Helium ratio

AMS-02 protons. Result confirmed

solar modulation

PAMELA data Jul 2006 ÷ Mar 2008 AMS02 data May 2011 ÷ Nov 2013

O. Adriani et al., Phys. Rep. 544 (2014) 323 M. Aguilar et al., PRL 114 (2015) 171103

AMS-02 Helium. Results confirmed

solar modulation

PAMELA data Jul 2006 ÷ Mar 2008 AMS02 data May 2011 ÷ Nov 2013

O. Adriani et al., Science 332 (2011) 6025 M. Aguilar et al., PRL 115 (2015) 211101

DAMPE

ICRC2017

DAMPE

ICRC2017

Nucleon

ICRC 2017

CALET ICRC 2017

Secondary cosmic rays from homogeneously

distributed interstellar matter (light nuclei)

Boron and Carbon fluxes

PAMELA Coll., ApJ 791 (2014), 93

B/C

Δ=−0.333±0.014(fit)±0.005(syst).

AMS Kounine ICRC 2017

Hydrogen and Helium Isotopes

1H

2H

4H

3H

ratio ratio

2H/4H

Pamela coll. APJ 818,1,68 (2016)

Electrons and Anti-Particles

p, He, C N, O

ISM gas

CR secondary production ( pp → X )

p, He, C, N, O, Li, Be, B, ...

p+, p- decay

e- e+

p0

p

gs

Bremsstrahlung, Synchrotron, Inverse Compton

decay gs

credit: ESA

Solar Modulation, lower interstellar cosmic ray spectra

e-

gs

Total electron spectrum

Total electron spectrum

Robert L. Golden

PAMELA antiprotons and antip/p

O. Adriani et al.,

PRL 102 (2009) 051101

PRL 105 (2010) 121101

AMS antiproton to proton fraction

Cosmic-Ray Antiproton standard production?

G. Giesen et al., JCAP 1509 (2015) 023, arXiv: 1504:04276

AMS Antiprotons

O. Adriani et al., ApJL 737 (2011), L29

Anti-proton radiation belt

PAMELA

PAMELA Positron to all electron ratio Nature 458, 697, 2009

Secondary production Moskalenko & Strong 98

The Most Recent Results

Phys. Rev. Lett. 110, 141102, 2013

ICRC 2017

Implications

A rising positron fraction requires: 1. An additional component of positrons with spectrum flatter than CR

primary electrons

2. A diffusion coefficient with a weird energy dependence (BUT this should reflect in the CR spectrum as well) 3. Subtleties of Propagation

Courtesy by P. Blasi

DM annihilations

DM particles are stable. They can annihilate in pairs.

Primary annihilation channels Decay Final states

σa= <σv>

Dark Matter Explanation

J. Kopp, Phys. Rev. D 88 (2013) 076013; arXiv:1304.1184

I. Cholis et al., Phys. Rev. D 80 (2009) 123518; arXiv:0811.3641v1

Pulsar Explanation

P. Blasi & E. Amato, arXiv:1007.4745 Contribution from pulsars varying the injection index and location of the sources.

D. Hooper, P. Blasi, and P. Serpico, JCAP 0901:025,2009; arXiv:0810.1527 Contribution from diffuse mature &nearby young pulsars.

H. Yuksel et al., PRL 103 (2009) 051101; arXiv:0810.2784v2 Contributions of e- & e+ from Geminga assuming different distance, age and energetic of the pulsar

Positron contribution from Geminga

Nature Vol. 358,pag.911, 2017

Hawk

AMS

SNR Explanation

P.Blasi, PRL 103 (2009) 051104 (see also Y. Fujita et al., PRD 80 (2009) 063003, M. Ahlers et al. PRD 80 (2009) 123017) Positrons (and electrons) produced as secondaries in the sources (e.g. SNR) where CRs are accelerated.

But also other secondaries are produced: significant increase expected in the p/p and secondary nuclei ratios.

P. Blasi & P. Serpico - PRL 103 (2006) 081103

Ptuskin et al. - ApJ 642 (2006) 902

Donato et al. PRL 102 (2009) 071301

• PAMELA

P. Mertsch & S. Sarkar, PRL 103 (2009) 081104

UHECR

Extreme Energy CR [JEM- EUSO, TUS/KLYPVE,]

46

JEM-EUSO Science

• Astrophysics and Cosmology:

o Main Science Objectives: identification of UHE sources measurement of the energy spectra of individual sources measurement of the trans-GZK spectrum

o Discovery Objectives: discovery of UHE neutrinos discovery of UHE Gamma-rays study of the galactic and local extragalactic magnetic field “Top-Down” scenario Stran ge Quark Matter

• Atmospheric Science Nightglow the transient luminous events (TLE) meteors and meteoroids

1. EUSO-TA: Ground

detector installed in 2013 at

Telescope Array site:

currently operational

2. EUSO-BALLOON:

Balloon flight from Timmins,

CA (French Space Agency)

Aug 2014;

3. EUSO-SPB: NASA Ultra

long duration flight: April

2017

4. UV-ATMOSPHERE

MINI-EUSO (2018): Precursor from International

Space Station (ISS: 30kg

2017).

5. K-EUSO (2022): ISS

Approved by Russian Space

Agency

The EUSO program Ultra-High Energy

cosmic rays from space

MINI-EUSO

(2017)

400 km

EUSO-TA (2013-)

EUSO-TA (2013)

EUSO-BALLOON (2014)

EUSO-SPB (2017)

40 km

(2022) JEM-EUSO

POEMMA?

ISS-CREAM Instrument

SCD

BCD

BSD

4 layer Silicon Charge Detector - Precise charge measurements - 380-µm thick 2.12 cm2 pixels - 79 cm x 79 cm active detector area

Carbon Targets (0.5 int ) induces hadronic interactions

TCD

C-targets

CAL

Calorimeter (20 layers W + Scn Fibers) - Determine Energy - Provide tracking - Provide Trigger

Top & Bottom Counting Detectors - Each with 20 x

20 photodiodes and a plastic scitillator for e/p separation

- Independent Trigger

Boronated Scintillator Detector - Additional e/p

separation - Neutron

signals

Launched 2017

GAMMA-400

AC – anticoincidence detectors C – Conveter-Tracker S1, S2 – ToF detectors S3, S4 calorimeter scintillator detectors CC1 – imaging calorimeter (2 X0) 2 layers: CsI(Ti) 1 X0 + Si(x,y) (pitch 0.1 mm) CC2 - electromagnetic calorimeter CsI(TI) 20 X0 3.6x3.6x3.6 cm3 – 22x22x10 = 4840

HERD

About a factor 10 increase in statistics respect to existing experiments with a weight 2.3 T ~1/3 AMS

3D CALO e/G/CR energy e/p discrimination STK(W+SSD)

STK(W+SSD) Charge gamma-ray direction CR back scatter

Shuang-Nan Zhang, 3rd HERD Workshop, XiAn, Jan 2016

Thanks!

http:// pamela.roma2.infn.it