4
Research & Development: A Window to the Future Throughout its 160year history, Corning has been headquartered in New York, and its legacy of innovation—as one of the country’s first R&D laboratories, and continuously one of its top corporate patent holders—has been fundamentally aligned with America’s own history. One of its first products, in 1879, was a glass envelope, or light bulb, for Thomas Edison’s new incandescent lamp, initially made by hand and then massproduced. Another mid 1800s product was a rubycolored glass railroad lantern that could withstand heat and cold; a century later Corning made the heatresistant windows for Mercury, the first manned space flight, and for every American space mission since. The process Corning developed in the 1940’s for mass producing thin picture. , ushering in a new cultural age; in the 1970’s the first lowloss optical fiber capable of use in telecommunications was invented at Corning, arguably the heart of another new cultural age. Company: Corning Industry: Glass & Ceramics Manufacturing Location: Corning, New York In economic upswings or downturns, commitment to R & D is a central company tenet; Corning continues to invest close to 10 percent of its revenues into R&D annually. Its goal is novel and challenging: affordable, energygenerating technology that can harness the power of flowing water with mechanisms of few or no articulated moving parts. More information on Corning can be found at: http://www.corning.com THE CHALLENGE New technologies face several challenges along the path from possibility to reality; they must be imagined, designed and manufactured with all of their desired traits at a large and economical scale. In 2006, when Steve Jobs approached Corning CEO Wendell Weeks with a simply stated request for millions of square feet of ultra thin (1.3 mm), ultrastrong LCD glass that did not exist, Corning kicked their R&D methodology or “Innovation Process” into high gear, and delivered. In six months. Today Weeks has a framed message from Jobs in his office, sent the day the iPhone came out: “We couldn’t have done it without you.”

Corning and CCI - New York State High Performance · PDF file · 2017-04-21LAMMPS,!GROMACS,!and!VASP!openKsource!packagesformoleculardynamicsand!Ab!initio! simulations.!These!capabilitiesare!now!incorporated!into!Corning’sdayKtoKday!engineering!!!

Embed Size (px)

Citation preview

Page 1: Corning and CCI - New York State High Performance · PDF file · 2017-04-21LAMMPS,!GROMACS,!and!VASP!openKsource!packagesformoleculardynamicsand!Ab!initio! simulations.!These!capabilitiesare!now!incorporated!into!Corning’sdayKtoKday!engineering!!!

 

 

 Research  &  Development:  A  Window  to  the  Future    

 Throughout   its   160-­‐‑year   history,   Corning  has  been  headquartered   in  New  York,  and  its   legacy   of   innovation—as   one   of   the  country’s   first   R&D   laboratories,   and  continuously  one  of  its  top  corporate  patent  holders—has   been   fundamentally   aligned  with  America’s  own  history.      One  of  its  first  products,  in  1879,  was  a  glass  envelope,  or  light   bulb,   for   Thomas   Edison’s   new  incandescent   lamp,   initially  made  by  hand  and   then   mass-­‐‑produced.     Another   mid-­‐‑1800s   product   was   a   ruby-­‐‑colored   glass  railroad  lantern  that  could  withstand  heat  and  cold;  a  century  later  Corning  made  the  heat-­‐‑resistant   windows   for   Mercury,   the  first   manned   space   flight,   and   for   every  American  space  mission  since.  The  process  Corning  developed   in   the  1940’s   for  mass-­‐‑producing  thin  picture.   ,  ushering  in  a  new  cultural  age;  in  the  1970’s  the  first  low-­‐‑loss  optical   fiber   capable   of   use   in  telecommunications   was   invented   at  Corning,  arguably  the  heart  of  another  new  cultural  age.        

   

   Company:    Corning  Industry:    Glass  &  Ceramics  Manufacturing  Location:    Corning,  New  York        In   economic   upswings   or   downturns,  commitment  to  R  &  D  is  a  central  company  tenet;   Corning   continues   to   invest   close   to  10   percent   of   its   revenues   into   R&D  annually.  Its  goal  is  novel  and  challenging:  affordable,   energy-­‐‑generating   technology  that  can  harness  the  power  of  flowing  water  with  mechanisms   of   few   or   no   articulated  moving  parts.        More  information  on  Corning  can  be  found  at:  http://www.corning.com  

 

THE  CHALLENGE  New  technologies  face  several  challenges  along  the  path  from  possibility  to  reality;  they  must  be  imagined,  designed  and  manufactured  with  all  of  their  desired  traits  at  a  large  and  economical  scale.  In  2006,  when  Steve  Jobs  approached  Corning  CEO  Wendell  Weeks  with  a  simply  stated  request  for  millions  of  square  feet  of  ultra  thin  (1.3  mm),  ultra-­‐‑strong  LCD  glass  that  did  not  exist,  Corning  kicked  their  R&D  methodology  or  “Innovation  Process”  into  high  gear,  and  delivered.    In  six  months.    Today  Weeks  has  a  framed  message  from  Jobs  in  his  office,  sent  the  day  the  iPhone  came  out:  “We  couldn’t  have  done  it  without  you.”    

Page 2: Corning and CCI - New York State High Performance · PDF file · 2017-04-21LAMMPS,!GROMACS,!and!VASP!openKsource!packagesformoleculardynamicsand!Ab!initio! simulations.!These!capabilitiesare!now!incorporated!into!Corning’sdayKtoKday!engineering!!!

 

 

While  glass  is  fundamentally  made  of  silicon  dioxide  (sand),  its  molecular  and  thermodynamics  are  so  complex  that  it  could  be  considered  a  highly  viscous  liquid  and  an  amorphous  solid-­‐‑-­‐‑both  or  neither-­‐‑-­‐‑depending  on  its  state  of  development.    Within  the  specifics  of  mixing,  high  temperature  heating  and  cooling,  and  the  addition  of  chemicals  and  coating,  it  can  attain  a  range  of  properties  and  attributes.  From  Pyrex  to  light-­‐‑refracting  optical  glass,  from  optical  fibers  and  glass  polarizers  for  telecommunications  and  aerospace,  to  Corning’s  advanced  Gorilla  glass  (alkalinalumino-­‐‑silicate)  for  consumer  electronics  displays,  the  company  has  over  150  material  formulations.        The  most  common  mixing  device  for  viscous  flows  is  the  closely  inter-­‐‑meshing  co-­‐‑rotating  twin-­‐‑screw  extruder,  which  pushes,  blends,  cuts  and  stretches  the  material,  transforming  it  under  high  temperature  and  pressure.    Because  of  the  thermal  effects  and  shear  stress,  the  slightest  variation  in  rotation,  velocity  or  heat      affects  the  composition  of  the  final  product,  as  well  as  its  processability,  energy  and  manufacturing  costs.    The  ability  to  optimize  this  extrusion  process  is  critical  to  minimizing  the  time  and  expense  of  physical  prototyping.  Corning  worked  with  HPCNY  to  evaluate  the  capabilities  of  available  computational  tools  and  resources  for  parallel  simulation  of  highly  viscous  flows  for  use  as  simulation-­‐‑based  engineering  systems  that  could  be  integrated  into  their  ongoing  product  development  workflow.        

NEW  SOLUTIONS  Beyond  computational  resources  and  expertise,  3D  simulation-­‐‑based  engineering  systems  of  this  scale  require  advanced  expertise  in  fluid  dynamics,  material  science,  and  physics.    Numerical  simulations  need  to  explain  the  relationship  between  the  working  conditions  within  the  twin-­‐‑screw  extruder:  temperature,  mass  flow  rate,  screw  geometry  and  rotation  velocity;  and  the  fluid-­‐‑dynamic  parameters:  shear  rate,  residence  time  and  mixing  index.    RPI  Professor  Onkar  Sahni  and  HPCNY  computational  scientists  worked  closely  with  Corning  to  generate  twin-­‐‑screw  extruder  meshes,  discretized  representations  of  the  computational  domain,  using  Simmetrix  software  tools.    This  is  an  intrinsically  difficult  task:  generating  twin-­‐‑screw  extruder  meshes  suitable  for  the  underlying  numerical  methods  that  can  be  efficiently  run  on  HPC  systems.    The  difficulty  is  compounded  by  the  disparity  of  feature  sizes  in  twin-­‐‑screw  extruder  geometric  models,  where  critical  gaps  can  be  1/50th  of  the  diameter  of  the  screw.      Corning’s  project  with  Professor  Sahni  and  HPCNY  was  the  first  attempt  to  execute  twin-­‐‑screw  extruder  runs  and  analyses  at  this  scale.  HPCNY  also  supported  Corning’s  use  of  other  advanced  simulation  technologies.    A  CCI-­‐‑ANSYS  software  hosting  agreement,  a  CCI-­‐‑Corning  partnership,  and  a  Corning-­‐‑ANSYS  software  license  agreement  provided  Corning  engineers  access  to  ANSYS  on  the  large  CCI  HPC  systems.      Additionally,  HPCNY  Computational  Scientists  worked  closely  with  Corning  HPC  specialists  to  install,  tune,  and  benchmark  the  LAMMPS,  GROMACS,  and  VASP  open-­‐‑source  packages  for  molecular  dynamics  and  Ab  initio  simulations.  These  capabilities  are  now  incorporated  into  Corning’s  day-­‐‑to-­‐‑day  engineering  

Page 3: Corning and CCI - New York State High Performance · PDF file · 2017-04-21LAMMPS,!GROMACS,!and!VASP!openKsource!packagesformoleculardynamicsand!Ab!initio! simulations.!These!capabilitiesare!now!incorporated!into!Corning’sdayKtoKday!engineering!!!

 

 

workflows,  providing  ongoing  insights  for  the  optimization  of  both  design  and  manufacturing  processes.    RESULTS  In   Corning’s   red-­‐‑hot   glass   melting   tanks   in   1890,   a  team   of   two   craftsman   could   blow   two   glass   ‘bulb  envelopes’   per   minute;   in   1925   one   of   those  glassblowers,   William  Woods,   invented   the   ‘Ribbon  Machine,’   which   poured   a   ribbon   of   molten   glass  down   a   chain   with   holes   opening   into   molds,  increasing  the  manufacturing  rate  fivefold.    With  early  runs  of  400,000  bulbs  per  day,  this  innovation  would  begin  to  light  the  world.    For  Corning  R&D  has  always  been   the   window   to   its   future:   leading   to   new  materials,   technologies   and   products,   new  applications   for   existing   materials,   and   solutions   to  manufacturing  problems  that  prevent  technologies  from  reaching  the  market  on  a  massive  scale.    Corning  is  still  innovating  with  molten  glass,  but  today  their  ‘Innovation  Process’   involves   a   singular   combination   of   the   country’s   most   advanced   fluid   dynamics  expertise,  parallel   computer   systems,  and  advanced  software  solutions.  With  RPI,  CCI  and  HPCNY,   Corning   is  working   to   define   accelerated   simulation-­‐‑based   engineering   systems   to  improve   the   fidelity   of   future  materials   and  products,   to   reduce   energy   and   raw  material  usage,  and  to  make  them  more  cost-­‐‑effective  and  environmentally  sustainable.      "For   the   past   three   years   our   engineers   and   researchers   have   collaborated   with   the   HPCNY  consortium  to  solve  complex  engineering  problems  that  were    previously  beyond  our  reach.    The  HPCNY  interactions  reinforced  the  technical  and  business  incentives  for  the  application  of  high  performance  computing  within  Corning.        A  direct  result  of  this  is  Corning’s  membership  agreement  with  Rensselaer  Polytechnic  Institute’s  Center   for   Computational   Innovations   (CCI)   for   supercomputer   use   and   the   assistance   of  computational  scientists  for  development  of  advanced  workflows.        The   multi-­‐‑faceted   interactions   are   simultaneously   extending   current   simulation   based  engineering   capabilities  while   developing   advanced   capabilities   suitable   for   next-­‐‑generation  high   performance   computing   hardware.   These   efforts   increase   our   competitiveness   in   the  marketplace  both  now,  and  in  the  future."        —  Charles  R.  Craig    Senior  Vice  President,  Administration  and  Operations  Corning        

Mesh  (left)  and  axial  velocity  (right)  of  a  thread  in  a  twin-­‐‑screw  extruder  (top).  

Page 4: Corning and CCI - New York State High Performance · PDF file · 2017-04-21LAMMPS,!GROMACS,!and!VASP!openKsource!packagesformoleculardynamicsand!Ab!initio! simulations.!These!capabilitiesare!now!incorporated!into!Corning’sdayKtoKday!engineering!!!

 

 

   

ABOUT  HPCNY  Funded   by   ESD   Division   of   Science,   Technology   &  Innovation,   HPCNY   is   a   partnership   between   NYSERNet,   a  private  not-­‐‑for-­‐‑profit  corporation  created  to  foster  science  and   education   in   New   York,   and   three   supercomputing  centers:   the  Rensselaer  Polytechnic   Institute  Center   for  Computational   Innovations,   Stony  Brook   University/Brookhaven   National   Laboratory’s   New   York   Center   for   Computational  Sciences,  and  the  University  at  Buffalo’s  Center  for  Computational  Research.      HPCNY  provides  businesses  and  research  organizations  with  access  to  world-­‐‑class  advanced  computing  expertise  through  accelerating  the  engineering  and  development  path  of  complex,  ground-­‐‑breaking  designs  to  reliable,  accurate,  innovative  product  and  process  performance  that  can  provide  a  distinct  competitive  advantage.    ABOUT  CCI  The   Center   for   Computational   Innovations   (CCI)   is   one   of   the   world’s   most   powerful  university-­‐‑based  supercomputer  centers.  Since  opening  in  2007,  CCI  has  helped  more  than  850  researchers  in  academia  and  industry  tackle  scientific  and  engineering  challenges  across  a  wide  spectrum  of  disciplines.    Key  to  this  success  has  been  the  CCI's  ability  to  work  with  software  from  3rd  party  vendors  like   ANSYS,   and   CD-­‐‑adapco,   as   well   as   leverage   research   software   tools   and   other   "open  source"  software  systems.  These  software  systems  are  utilized  by  academic  users  and  CCI  partners  Boeing,  Corning,  GNS,  IBM,  Kitware,  P&G,  and  Simmetrix.    The  CCI  provides  over  one  petaflop  of  peak  computational  power  from  a  massively  parallel  81,920  core  IBM  Blue  Gene  Q  supercomputer  and  an  Intel  Xeon  cluster.    Coupled  to  these  systems  is  over  one  petabyte  of  high  speed,  low  latency  disk  storage.  

CONTACTS    NYS  High  Performance  Computing  Consortium  (HPCNY)  Rensselaer  Polytechnic  Institute    405  Jordan  Road,  Troy,  NY  12180  hpc2-­‐‑[email protected]  Office:  (518)  276-­‐‑4373    Fax:  (518)  276-­‐‑2392    http://hpc-­‐‑ny.org    

   Corning  Incorporated    Laura  Kaul  Employee  Communications  Manager  Sullivan  Park  Corning,  NY    14831  Phone:      +1(607)  974-­‐‑4559  [email protected]