48
CorePure2 Chapter 1 :: Complex Numbers [email protected] www.drfrostmaths.com @DrFrostMaths Last modified: 6 th August 2018

CorePure2 Chapter 1Β Β· 2020-03-31Β Β· OVERVIEW 2πœƒ+𝑖 𝑖 2πœƒ β†’ 2π‘–πœƒ 1 :: Exponential form of a complex number 2 :: Multiplying and dividing complex numbers If 1 and

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

CorePure2 Chapter 1 :: Complex Numbers [email protected]

www.drfrostmaths.com @DrFrostMaths

Last modified: 6th August 2018

www.drfrostmaths.com Everything is completely free. Why not register?

Teaching videos with topic tests to check understanding.

Register now to interactively practise questions on this topic, including past paper questions and extension questions (including MAT + UKMT). Teachers: you can create student accounts (or students can register themselves), to set work, monitor progress and even create worksheets.

Dashboard with points, trophies, notifications and student progress.

With questions by:

Questions organised by topic, difficulty and past paper.

OVERVIEW

π‘π‘œπ‘  2πœƒ + 𝑖 𝑠𝑖𝑛 2πœƒ β†’ 𝑒2π‘–πœƒ

1 :: Exponential form of a complex number

2 :: Multiplying and dividing complex numbers

If 𝑧1 and 𝑧2 are two complex numbers, what happens to their moduli when we find 𝑧1𝑧2. What happens to their

arguments when we find 𝑧1

𝑧2?

3 :: De Moivre’s Theorem

If 𝑧 = π‘Ÿ(cos πœƒ + 𝑖 sin πœƒ), 𝑧𝑛 = π‘Ÿπ‘›(cos π‘›πœƒ + 𝑖 sin π‘›πœƒ)

4 :: De Moivre’s for Trigonometric Identities

β€œExpress cos 3πœƒ in terms of powers of cos πœƒβ€

6 :: Roots

β€œSolve 𝑧4 = 3 + 2𝑖”

5 :: Sums of series

β€œGiven that 𝑧 = cosπœ‹

𝑛+ 𝑖 sin

πœ‹

𝑛,

where 𝑛 is a positive integer, show that 1 + 𝑧 + 𝑧2 +β‹―+ π‘§π‘›βˆ’1

= 1 + 𝑖 cotπœ‹

2𝑛

”

Note for teachers: Most of this content is the old FP2, but sums of series is new.

Im[z]

Re[z]

πœƒ

RECAP :: Modulus-Argument Form

If 𝒛 = 𝒙 + π’Šπ’š (and suppose in this case 𝑧 is in the first quadrant), what was:

π‘Ÿ = 𝑧 = π’™πŸ + π’šπŸ

πœƒ = arg 𝑧 = π­πšπ§βˆ’πŸπ’š

𝒙

(π‘₯, 𝑦)

Then in terms of π‘Ÿ and πœƒ: 𝒙 = 𝒓 𝐜𝐨𝐬𝜽 π’š = 𝒓 𝐬𝐒𝐧𝜽 𝒛 = 𝒙 + π’Šπ’š = 𝒓 𝒄𝒐𝒔 𝜽 + π’Š π’“π’”π’Šπ’ 𝜽 = 𝒓 𝐜𝐨𝐬𝜽 + π’Š 𝐬𝐒𝐧𝜽

?

?

? ?

?

This is known as the modulus-argument form of 𝑧. ?

modulus

argument

?

? When βˆ’πœ‹ < πœƒ < πœ‹ it is known as the principal argument. ?

RECAP :: Modulus-Argument Form

𝒙 + π’Šπ’š 𝒓 𝜽 Mod-arg form

βˆ’1 1 πœ‹ 𝑧 = cos πœ‹ + 𝑖 sin πœ‹

𝑖 1 πœ‹

2 𝑧 = cos

πœ‹

2+ 𝑖 sin

πœ‹

2

1 + 𝑖 2 πœ‹

4 𝑧 = 2 cos

πœ‹

4+ 𝑖 sin

πœ‹

4

βˆ’ 3 + 𝑖 2 5πœ‹

6 𝑧 = 2 cos

5πœ‹

6+ 𝑖 sin

5πœ‹

6

?

?

?

?

?

?

?

?

?

?

?

?

Exponential Form

We’ve seen the Cartesian form a complex number 𝑧 = π‘₯ + 𝑦𝑖 and the modulus-argument form 𝑧 = π‘Ÿ(cos πœƒ + 𝑖 sin πœƒ). But wait, there’s a third form! In the later chapter on Taylor expansions, you’ll see that you that you can write functions as an infinitely long polynomial:

cos π‘₯ = 1 βˆ’π‘₯2

2! +

π‘₯4

4! βˆ’

π‘₯6

6! + β‹―

sin π‘₯ = π‘₯ βˆ’π‘₯3

3! +

π‘₯5

5! βˆ’ β‹―

𝑒π‘₯ = 1 + π‘₯ +π‘₯2

2!+π‘₯3

3!+π‘₯4

4!+π‘₯5

5!+π‘₯6

6!+

It looks like the cos π‘₯ and sin π‘₯ somehow add to give 𝑒π‘₯. The one problem is that the signs don’t quite match up. But 𝑖 changes sign as we raise it to higher powers.

𝑒iπœƒ = 1 + π‘–πœƒ +π‘–πœƒ 2

2!+π‘–πœƒ 3

3!+π‘–πœƒ 4

4!+ β‹―

= 1 + π‘–πœƒ βˆ’πœƒ2

2!βˆ’π‘–πœƒ3

3!+πœƒ4

4!+ β‹―

= 1 βˆ’πœƒ2

2!+πœƒ4

4!βˆ’πœƒ6

6!+ β‹― + 𝑖 πœƒ βˆ’

πœƒ3

3!+πœƒ5

5!βˆ’ β‹―

= cos πœƒ + 𝑖 sin πœƒ Holy smokes Batman!

?

?

? ?

?

Sub iπœƒ into 𝑒π‘₯

Exponential Form

! Exponential form

𝑧 = π‘Ÿπ‘’π‘–πœƒ

You need to be able to convert to and from exponential form.

𝒙 + π’Šπ’š Mod-arg form Exp Form

βˆ’1 𝑧 = cos πœ‹ + 𝑖 sin πœ‹ 𝑧 = π‘’π‘–πœ‹

2 βˆ’ 3𝑖 𝑧 = 13π‘’βˆ’0.983𝑖

2 cosπœ‹

10+ 𝑖 sin

πœ‹

10 𝑧 = 2𝑒

πœ‹π‘–10

βˆ’1 + 𝑖 2 cos

3πœ‹

4+ 𝑖 sin

3πœ‹

4 𝑧 = 2𝑒

3πœ‹π‘–4

2 cos3πœ‹

5+ 𝑖 sin

3πœ‹

5 𝑧 = 2𝑒

23πœ‹π‘–5

π’†π’Šπ… + 𝟏 = 𝟎 This is Euler’s identity. It relates the five most fundamental constants in maths!

Notice this is not a principal argument.

? ? ?

?

? ? To get Cartesian form, put in modulus-argument form first.

?

A Final Example

Use π‘’π‘–πœƒ = cos πœƒ + 𝑖 sin πœƒ to show that cos πœƒ =1

2(π‘’π‘–πœƒ + π‘’βˆ’π‘–πœƒ)

π‘’π‘–πœƒ = cos πœƒ + 𝑖 sin πœƒ π‘’βˆ’π‘–πœƒ = cos βˆ’πœƒ + 𝑖 sin βˆ’πœƒ = cos πœƒ βˆ’ 𝑖 sin πœƒ ∴ π‘’π‘–πœƒ + π‘’βˆ’π‘–πœƒ = 2 cos πœƒ

∴ cos πœƒ =1

2(π‘’π‘–πœƒ + π‘’βˆ’π‘–πœƒ)

?

Exercise 1A

Pearson Core Pure Year 2 Page 5

?

Multiplying and Dividing Complex Numbers

If 𝑧1 = π‘Ÿ1 cos πœƒ1 + 𝑖 sin πœƒ1 and 𝑧2 = π‘Ÿ2 cos πœƒ2 + 𝑖 sin πœƒ2 Then:

𝑧1𝑧2 = π’“πŸπ’“πŸ(𝐜𝐨𝐬 𝜽𝟏 + 𝜽𝟐 + π’Š 𝐬𝐒𝐧(𝜽𝟏 + 𝜽𝟐))

If you multiply two complex numbers, you multiply the moduli and add the arguments, and if you divide them, you divide the moduli and subtract the arguments.

Similarly if 𝑧1 = π‘Ÿ1π‘’π‘–πœƒ1 and 𝑧2 = π‘Ÿ2𝑒

π‘–πœƒ2 Then:

𝑧1𝑧2 = π’“πŸπ’“πŸπ’†π’Š 𝜽𝟏+𝜽𝟐

𝑧1𝑧2=π’“πŸπ’“πŸπ’†π’Š πœ½πŸβˆ’πœ½πŸ

?

?

?

?

Examples

3 cos5πœ‹

12+ 𝑖 sin

5πœ‹

12Γ— 4 cos

πœ‹

12+ 𝑖 sin

πœ‹

12

= 𝟏𝟐 πœπ¨π¬π…

𝟐+ π’Š π’”π’Šπ’

𝝅

𝟐

= 𝟏𝟐 𝟎 + π’Š 𝟏 = πŸπŸπ’Š

2 cosπœ‹

15+ 𝑖 sin

πœ‹

15Γ— 3 cos

2πœ‹

5βˆ’ 𝑖 sin

2πœ‹

5

= 2 cosπœ‹

15+ 𝑖 sin

πœ‹

15Γ— 3 cos βˆ’

2πœ‹

5+ 𝑖 sin βˆ’

2πœ‹

5

= πŸ” 𝐜𝐨𝐬 βˆ’π…

πŸ‘+ π’Š π’”π’Šπ’ βˆ’

𝝅

πŸ‘

= πŸ‘ βˆ’ πŸ‘ πŸ‘ π’Š

2 cosπœ‹12 + 𝑖 sin

πœ‹12

2 cos5πœ‹6 + 𝑖 sin

5πœ‹6

= 𝟐 𝐜𝐨𝐬 βˆ’πŸ‘π…

πŸ’+ π’Š 𝐬𝐒𝐧 βˆ’

πŸ‘π…

πŸ’

= 𝟐 π’†βˆ’πŸ‘π…π’ŠπŸ’

?

?

?

Write in the form π‘Ÿπ‘’π‘–πœƒ:

1

2 cosπœƒ βˆ’ 𝑖 sin πœƒ can be written as cos βˆ’πœƒ + 𝑖 sin(βˆ’πœƒ)

3

Test Your Understanding

𝑧 = 5 3 βˆ’ 5𝑖 Find (a) |𝑧| (1) (b) arg (𝑧) in terms of πœ‹ (2)

𝑀 = 2 cosπœ‹

4+ 𝑖 sin

πœ‹

4

Find

(c) 𝑀

𝑧 (1)

(d) arg𝑀

𝑧 (2)

Edexcel FP2(Old) June 2013 Q2

?

?

?

?

Exercise 1B

Pearson Core Pure Year 2 Pages 7-8

De Moivre’s Theorem

We saw that: 𝑧1𝑧2 = π’“πŸπ’“πŸ(𝐜𝐨𝐬 𝜽𝟏 + 𝜽𝟐 + π’Š 𝐬𝐒𝐧(𝜽𝟏 + 𝜽𝟐))

Can you think therefore what 𝑧𝑛 is going to be?

Prove by induction that 𝑧𝑛 = π‘Ÿπ‘› cos π‘›πœƒ + 𝑖 sin π‘›πœƒ They so went there...

Edexcel FP2(Old) June 2013 Q4

? Secret Alternative Way ?

! If 𝑧 = π‘Ÿ π‘π‘œπ‘  πœƒ + 𝑖 𝑠𝑖𝑛 πœƒ 𝒛𝒏 = 𝒓𝒏 πœπ¨π¬π’πœ½ + π’Š π¬π’π§π’πœ½ This is known as De Moivre’s Theorem. ?

De Moivre’s Theorem for Exponential Form

If 𝑧 = π‘Ÿπ‘’π‘–πœƒ then 𝒛𝒏 = π’“π’†π’Šπœ½π’= π’“π’π’†π’Šπ’πœ½ ?

Examples

Simplify cos

9πœ‹

17+𝑖 sin

9πœ‹

17

5

cos2πœ‹

17 βˆ’ 𝑖 sin

2πœ‹

17

3

=𝒄𝒐𝒔

πŸ—π…πŸπŸ•+ π’Š π’”π’Šπ’

πŸ—π…πŸπŸ•

πŸ“

𝒄𝒐𝒔 βˆ’πŸπ…πŸπŸ•

+ π’Š π’”π’Šπ’ βˆ’πŸπ…πŸπŸ•

πŸ‘

=𝐜𝐨𝐬

πŸ’πŸ“π…πŸπŸ•

+ π’Š π¬π’π§πŸ’πŸ“π…πŸπŸ•

𝒄𝒐𝒔 βˆ’πŸ”π…πŸπŸ•

+ π’Š π’”π’Šπ’ βˆ’πŸ”π…πŸπŸ•

= πœπ¨π¬πŸ‘π… + π’Š π¬π’π§πŸ‘π…

= πœπ¨π¬π… + π’Š 𝐬𝐒𝐧𝝅 = βˆ’πŸ

Apply De Moivres

- sinx = sin (-x)

?

𝑧1𝑧2=π’“πŸπ’“πŸ (𝐜𝐨𝐬 𝜽𝟏 βˆ’ 𝜽𝟐 + π’Š 𝐬𝐒𝐧(𝜽𝟏 βˆ’ 𝜽𝟐)) ?

?

?

Examples

Express 1 + 3 𝑖7

in the form π‘₯ + 𝑖𝑦 where π‘₯, 𝑦 ∈ ℝ.

𝟏 + πŸ‘ π’Š = 𝟐(πœπ¨π¬π…

πŸ‘+ π’Š 𝐬𝐒𝐧

𝝅

πŸ‘)

Therefore 𝟏 + πŸ‘ π’ŠπŸ•= πŸπŸ• 𝐜𝐨𝐬

πŸ•π…

πŸ‘+ π’Š 𝐬𝐒𝐧

πŸ•π…

πŸ‘

= πŸπŸπŸ– πœπ¨π¬π…

πŸ‘+ π’Š 𝐬𝐒𝐧

𝝅

πŸ‘

= πŸ”πŸ’ + πŸ”πŸ’ πŸ‘ π’Š

𝟏

πŸ‘ ?

?

?

?

Edexcel FP2(Old) June 2010 Q4

Test Your Understanding

?

?

Exercise 1C

Pearson Core Pure Year 2 Pages 10-11

Applications of de Moivre #1: Trig identities

Express cos 3πœƒ in terms of powers of cos πœƒ

Is there someway we could use de Moivre’s theorem to get a cos 3πœƒ term?

𝐜𝐨𝐬𝜽 + π’Š 𝐬𝐒𝐧𝜽 πŸ‘ = πœπ¨π¬πŸ‘πœ½ + π’Š π¬π’π§πŸ‘πœ½ Could we use the LHS to get another expression? Use a Binomial expansion!

cos πœƒ + 𝑖 sin πœƒ 3 = πŸπœπ¨π¬πŸ‘ 𝜽 + πŸ‘πœπ¨π¬πŸ 𝜽 π’Š 𝐬𝐒𝐧𝜽 + πŸ‘ 𝐜𝐨𝐬𝜽 π’Š 𝐬𝐒𝐧𝜽 𝟐 + π’Š 𝐬𝐒𝐧𝜽 πŸ‘ = πœπ¨π¬πŸ‘ 𝜽 + πŸ‘π’Š 𝐜𝐨𝐬𝟐 𝜽 𝐬𝐒𝐧𝜽 βˆ’ πŸ‘ 𝐜𝐨𝐬𝜽 𝐬𝐒𝐧𝟐 𝜽 βˆ’ π’Š π¬π’π§πŸ‘ 𝜽

How could we then compare the two expressions? Equating real parts:

πœπ¨π¬πŸ‘πœ½ = πœπ¨π¬πŸ‘ 𝜽 βˆ’ πŸ‘πœπ¨π¬πœ½ 𝐬𝐒𝐧𝟐 𝜽 = β‹― = πŸ’πœπ¨π¬πŸ‘ 𝜽 βˆ’ πŸ‘πœπ¨π¬πœ½

?

?

?

Applications of de Moivre #1: Trig identities

Express cos 6πœƒ in terms of cos πœƒ.

cos πœƒ + 𝑖 sin πœƒ 6 = cos 6πœƒ + 𝑖 sin 6πœƒ = cos6 πœƒ + 6 cos5 πœƒ 𝑖 sin πœƒ + β‹― = cos6 πœƒ + 6𝑖 cos5 πœƒ sin πœƒ βˆ’ 15 cos4 πœƒ sin2 πœƒ βˆ’ 20𝑖 cos3 πœƒ sin3 πœƒ + 15 cos2 πœƒ sin4 πœƒ

+ 6𝑖 cos πœƒ sin5 πœƒ βˆ’ sin6 πœƒ Equating real parts:

cos 6πœƒ = cos6 πœƒ βˆ’ 15 cos4 πœƒ sin2 πœƒ + 15 cos2 πœƒ sin4 πœƒ βˆ’ sin6 πœƒ = 32 cos6 πœƒ βˆ’ 48 cos4 πœƒ + 18 cos2 πœƒ βˆ’ 1

Equating imaginary parts: (and simplifying)

sin 6πœƒ = 32 cos5 πœƒ βˆ’ 32 cos3 πœƒ + 6 cos πœƒ

Test Your Understanding

(a) Use de Moivre’s theorem to show that (5) sin 5πœƒ = 16 sin5 πœƒ βˆ’ 20 sin3 πœƒ + 5 sin πœƒ

Hence, given also that sin 3πœƒ = 3 sin πœƒ βˆ’ 4 sin3 πœƒ

(b) Find all the solutions of sin 5πœƒ = 5 sin 3πœƒ

in the interval 0 ≀ πœƒ < 2πœ‹. Give your answers to 3 decimal places. (6)

Edexcel FP2(Old) June 2011 Q7

?

?

Applications of de Moivre #1: Trig identities

Finding identities for sin𝑛 πœƒ and cos𝑛 πœƒ

The technique we’ve seen allows us to write say cos 3πœƒ in terms of powers of cos πœƒ (e.g. cos3 πœƒ). Is it possible to do the opposite, to say express cos3 πœƒ in terms of a linear combination of cos 3πœƒ and cos πœƒ (with no powers)?

If 𝑧 = cos πœƒ + 𝑖 sin πœƒ,

𝒛𝒏 = πœπ¨π¬π’πœ½ + π’Š π¬π’π§π’πœ½ π’›βˆ’π’ = πœπ¨π¬π’πœ½ βˆ’ π’Š π¬π’π§π’πœ½

∴ 𝒛𝒏 + π’›βˆ’π’ = πŸπœπ¨π¬π’πœ½ π’›π’βˆ’ π’›βˆ’π’ = πŸπ’Šπ’”π’Šπ’π’πœ½

! Results you need to use (but you don’t need to memorise)

𝑧 +1

𝑧= 2 cos πœƒ 𝑧𝑛 +

1

𝑧𝑛= 2 cos π‘›πœƒ

𝑧 βˆ’1

𝑧= 2𝑖 sin πœƒ 𝑧𝑛 βˆ’

1

𝑧𝑛= 2𝑖 sin π‘›πœƒ

?

Adding or subtracting gives:

In exponential form: π‘π‘œπ‘ π‘›πœƒ =1

2π‘’π‘–π‘›πœƒ + π‘’βˆ’π‘–π‘›πœƒ

sinπ‘›πœƒ =1

2π‘–π‘’π‘–π‘›πœƒ βˆ’ π‘’βˆ’π‘–π‘›πœƒ

Finding identities for sin𝑛 πœƒ and cos𝑛 πœƒ

It follows that, for example

(𝑧 +1

𝑧)𝑛 = 2 cos πœƒ 𝑛

Hence:

cosn πœƒ =1

2n( 𝑧 +

1

𝑧)𝑛

! Results you need to use (but you don’t need to memorise)

𝑧 +1

𝑧= 2 cos πœƒ 𝑧𝑛 +

1

𝑧𝑛= 2 cos π‘›πœƒ

𝑧 βˆ’1

𝑧= 2𝑖 sin πœƒ 𝑧𝑛 βˆ’

1

𝑧𝑛= 2𝑖 sin π‘›πœƒ

We now use binomial to expand the RHS

Finding identities for sin𝑛 πœƒ and cos𝑛 πœƒ

Express cos5 πœƒ in the form π‘Ž cos 5πœƒ + 𝑏 cos 3πœƒ + 𝑐 cos πœƒ

𝑧 +1

𝑧= 2 cos πœƒ 𝑧𝑛 +

1

𝑧𝑛= 2 cos π‘›πœƒ

𝑧 βˆ’1

𝑧= 2𝑖 sin πœƒ 𝑧𝑛 βˆ’

1

𝑧𝑛= 2𝑖 sin π‘›πœƒ

2 cos πœƒ 5 = 𝑧 +1

𝑧

5

32 cos5 πœƒ = 𝑧5 + 5𝑧3 + 10𝑧 +10

𝑧+5

𝑧3+1

𝑧5

32 cos5 πœƒ = 𝑧5 +1

𝑧5+ 5 𝑧3 +

1

𝑧3+ 10 𝑧 +

1

𝑧

= 2 cos 5πœƒ + 5(2 cos 3πœƒ) + 10(2 cos πœƒ)

Therefore cos5 πœƒ =1

16cos 5πœƒ +

5

16cos 3πœƒ +

5

8cos πœƒ

Notice how the powers descend by 2 each time.

Starting point?

Using identities below.

?

?

? ?

Finding identities for sin𝑛 πœƒ and cos𝑛 πœƒ

Prove that sin3 πœƒ = βˆ’1

4sin 3πœƒ +

3

4sin πœƒ

𝑧 +1

𝑧= 2 cos πœƒ 𝑧𝑛 +

1

𝑧𝑛= 2 cos π‘›πœƒ

𝑧 βˆ’1

𝑧= 2𝑖 sin πœƒ 𝑧𝑛 βˆ’

1

𝑧𝑛= 2𝑖 sin π‘›πœƒ

2𝑖 sin πœƒ 3 = 𝑧 βˆ’1

𝑧

3

βˆ’8𝑖 sin3 πœƒ = 𝑧3 βˆ’ 3𝑧 +3

π‘§βˆ’1

𝑧3

= 𝑧3 βˆ’1

𝑧3βˆ’ 3 𝑧 βˆ’

1

𝑧

= 2𝑖 sin 3πœƒ βˆ’ 3(2𝑖 sin πœƒ) Therefore dividing by βˆ’8𝑖:

sin3 πœƒ = βˆ’1

4sin 3πœƒ +

3

4sin πœƒ

Speed Tip: Remember that terms in such an expansion oscillate between positive and negative.

Again using identities.

Starting point?

?

?

?

?

Test Your Understanding

(a) Express sin4 πœƒ in the form π‘Ž cos 4πœƒ + 𝑏 cos 2πœƒ + 𝑐

(b) Hence find the exact value of sin4 πœƒ π‘‘πœƒπœ‹

20

2𝑖 sin πœƒ 4 = 𝑧 βˆ’1

𝑧

4

16 sin4 πœƒ = 𝑧4 βˆ’ 4𝑧2 + 6 βˆ’4

𝑧2+1

𝑧4

= 𝑧4 +1

𝑧4βˆ’ 4 𝑧2 +

1

𝑧2+ 6

= 2 cos 4πœƒ βˆ’ 4 2 cos 2πœƒ + 6

∴ sin4 πœƒ =1

8cos 4πœƒ βˆ’

1

2cos 2πœƒ +

3

8

sin4 πœƒ π‘‘πœƒ

πœ‹2

0

=1

32sin 4πœƒ βˆ’

1

4sin 2πœƒ +

3

8πœƒ0

πœ‹2

=3πœ‹

16

𝑧 +1

𝑧= 2 cos πœƒ 𝑧𝑛 +

1

𝑧𝑛= 2 cos π‘›πœƒ

𝑧 βˆ’1

𝑧= 2𝑖 sin πœƒ 𝑧𝑛 βˆ’

1

𝑧𝑛= 2𝑖 sin π‘›πœƒ

Starting point?

?

?

? ?

?

Exercise 1D

Pearson Core Pure Year 2 Pages 14-15

Sums of Series

The formula for the sum of a geometric series also applies to complex numbers:

For 𝑀, 𝑧 ∈ β„‚,

Ξ£π‘Ÿ=0π‘›βˆ’1π‘€π‘§π‘Ÿ = 𝑀 + 𝑀𝑧 + 𝑀𝑧2 +β‹―+π‘€π‘§π‘›βˆ’1 =

𝑀 𝑧𝑛 βˆ’ 1

𝑧 βˆ’ 1

Ξ£π‘Ÿ=0∞ π‘€π‘§π‘Ÿ = 𝑀 + 𝑀𝑧 + 𝑀𝑧2 +β‹―+π‘€π‘§π‘›βˆ’1 +β‹― =

𝑀

π‘§βˆ’1 provided 𝑧 < 1

No need to write these down. These are just 𝑆𝑛 and π‘†βˆž for geometric series.

Side Note: When we covered series before, | … | was understood to give the β€˜unsigned value’ of a quantity. But this can just be thought of as the 1D version of finding the magnitude of a vector/complex number. e.g. βˆ’4 = 4 because -4 has a distance of 4 from 0 on a number line just as 34

= 5 because (3,4) has a distance of 5 from the origin.

Example

[Textbook] Given that 𝑧 = cosπœ‹

𝑛+ 𝑖 sin

πœ‹

𝑛, where 𝑛 is a positive integer, show that

1 + 𝑧 + 𝑧2 +β‹―+ π‘§π‘›βˆ’1 = 1 + 𝑖 cotπœ‹

2𝑛

IMPORTANT: One of our earlier identities:

𝑧𝑛 βˆ’ π‘§βˆ’π‘› = 2𝑖 sin π‘›πœƒ Thus if we had an expression

of the form π‘’π‘–πœƒ βˆ’ 1, we could

cleverly factorise out π‘’π‘–πœƒ

2 (i.e. half the power) to get

π‘’π‘–πœƒ

2 π‘’π‘–πœƒ

2 βˆ’ π‘’βˆ’π‘–πœƒ

2

β†’ π‘’π‘–πœƒ2 2𝑖 sin

πœƒ

2

Thus where π‘’π‘–πœƒ βˆ’ 1 occurs in a fraction, multiply numerator

and denominator by π‘’βˆ’π‘–πœƒ

2 so

that we have just π‘’π‘–πœƒ

2 βˆ’ π‘’βˆ’π‘–πœƒ

2

1 + 𝑧 + 𝑧2 +β‹―+ π‘§π‘›βˆ’1 =𝑧𝑛 βˆ’ 1

𝑧 βˆ’ 1

=π‘’πœ‹π‘–π‘›

𝑛

βˆ’ 1

π‘’πœ‹π‘–π‘› βˆ’ 1

=π‘’πœ‹π‘– βˆ’ 1

π‘’πœ‹π‘–π‘› βˆ’ 1

=βˆ’2

π‘’πœ‹π‘–π‘› βˆ’ 1

=βˆ’2

π‘’πœ‹π‘–2𝑛 𝑒

πœ‹π‘–2𝑛 βˆ’ π‘’βˆ’

πœ‹π‘–2𝑛

=βˆ’2π‘’βˆ’

πœ‹π‘–2𝑛

π‘’πœ‹π‘–2𝑛 βˆ’ π‘’βˆ’

πœ‹π‘–2𝑛

=βˆ’2π‘’βˆ’

πœ‹π‘–2𝑛

2𝑖 sinπœ‹2𝑛

=βˆ’2π‘–π‘’βˆ’

πœ‹π‘–2𝑛

2𝑖2 sinπœ‹2𝑛

=π‘–π‘’βˆ’

πœ‹π‘–2𝑛

sinπœ‹2𝑛

=𝑖 cos βˆ’

πœ‹2𝑛

+ 𝑖 sin βˆ’πœ‹2𝑛

sinπœ‹2𝑛

=𝑖 cos

πœ‹2𝑛 βˆ’ 𝑖 sin

πœ‹2𝑛

sinπœ‹2𝑛

=sin

πœ‹2𝑛 + 𝑖 cos

πœ‹2𝑛

sinπœ‹2𝑛

= 1 + 𝑖 cotπœ‹

2𝑛

?

?

?

?

?

π‘’πœ‹π‘–

𝑛 since 𝑧 = π‘Ÿπ‘’π‘–ΞΈ

Let’s practise that hard bit…

If 𝒛 = 𝒄𝒐𝒔 𝜽 + π’Š π’”π’Šπ’ 𝜽 = π’†π’Šπœ½

𝑧𝑛 βˆ’ π‘§βˆ’π‘› = 2𝑖 sin π‘›πœƒ Thus if we had an expression

of the form π‘’π‘–πœƒ βˆ’ 1, we could

cleverly factorise out π‘’π‘–πœƒ

2 (i.e. half the power) to get

π‘’π‘–πœƒ

2 π‘’π‘–πœƒ

2 βˆ’ π‘’βˆ’π‘–πœƒ

2

β†’ π‘’π‘–πœƒ2 2𝑖 sin

πœƒ

2

Thus where π‘’π‘–πœƒ βˆ’ 1 occurs in a fraction, multiply numerator

and denominator by π‘’βˆ’π‘–πœƒ

2 so

that we have just π‘’π‘–πœƒ

2 βˆ’ π‘’βˆ’π‘–πœƒ

2

3

𝑒2π‘–πœƒ βˆ’ 1=

πŸ‘

π’†π’Šπœ½(π’†π’Šπœ½ βˆ’ π’†βˆ’π’Šπœ½)=

πŸ‘π’†βˆ’π’Šπœ½

π’†π’Šπœ½ βˆ’ π’†βˆ’π’Šπœ½=πŸ‘π’†βˆ’π’Šπœ½

πŸπ’Š 𝐬𝐒𝐧𝜽

4π‘’π‘–πœƒ

𝑒4π‘–πœƒ βˆ’ 1=

πŸ’π’†βˆ’π’Šπœ½

π’†πŸπ’Šπœ½ βˆ’ π’†βˆ’πŸπ’Šπœ½=

πŸ’π’†βˆ’π’Šπœ½

πŸπ’Š 𝐬𝐒𝐧𝟐𝜽

1

π‘’π‘–πœƒ3 βˆ’ 1

=π’†βˆ’π’Šπœ½πŸ”

π’†π’Šπœ½πŸ” βˆ’ π’†βˆ’

π’Šπœ½πŸ”

=π’†βˆ’π’Šπœ½πŸ”

πŸπ’Š π¬π’π§πœ½πŸ”

The 𝑛 is 2 because if

𝑧 = π‘’π‘–πœƒ then 𝑧2 = 𝑒2π‘–πœƒ

?

?

?

Using mod-arg form to split summation

π‘’π‘–πœƒ + 𝑒2π‘–πœƒ + 𝑒3π‘–πœƒ +β‹―+ π‘’π‘›π‘–πœƒ is a geometric series,

∴ π‘’π‘–πœƒ + 𝑒2π‘–πœƒ + 𝑒3π‘–πœƒ +β‹―+ π‘’π‘›π‘–πœƒ =π‘’π‘–πœƒ π‘’π‘›π‘–πœƒ βˆ’ 1

π‘’π‘–πœƒ βˆ’ 1

Converting each exponential term to modulus-argument form would allow us to consider the real and imaginary parts of the series separately:

π‘’π‘–πœƒ + 𝑒2π‘–πœƒ + 𝑒3π‘–πœƒ +β‹―+ π‘’π‘›π‘–πœƒ = cosπœƒ + 𝑖 sin πœƒ + cos 2πœƒ + 𝑖 sin 2πœƒ + β‹― = cosπœƒ + cos 2πœƒ + β‹― + 𝑖 sin πœƒ + sin 2πœƒ + β‹―

Thus cos πœƒ + cos 2πœƒ + β‹― is the real part of π‘’π‘–πœƒ π‘’π‘›π‘–πœƒβˆ’1

π‘’π‘–πœƒβˆ’1 and

sin πœƒ + sin 2πœƒ +β‹― the imaginary part.

Example

[Textbook] 𝑆 = π‘’π‘–πœƒ + 𝑒2π‘–πœƒ + 𝑒3π‘–πœƒ +β‹―+ 𝑒8π‘–πœƒ, for πœƒ β‰  2π‘›πœ‹, where 𝑛 is an integer.

(a) Show that 𝑆 =𝑒9π‘–πœƒ2 sin 4πœƒ

sinπœƒ

2

Let 𝑃 = cos πœƒ + cos 2πœƒ + cos 3πœƒ +β‹―+ cos8πœƒ and 𝑄 = sin πœƒ + sin 2πœƒ + β‹―+ sin 8πœƒ

(b) Use your answer to part a to show that 𝑃 = cos9πœƒ

2sin 4πœƒ π‘π‘œπ‘ π‘’π‘

πœƒ

2 and find similar

expressions for 𝑄 and 𝑄

𝑃

π‘’π‘–πœƒ + 𝑒2π‘–πœƒ + 𝑒3π‘–πœƒ +β‹―+ 𝑒8π‘–πœƒ =π‘’π‘–πœƒ π‘’π‘–πœƒ

8βˆ’ 1

π‘’π‘–πœƒ βˆ’ 1

=π‘’π‘–πœƒ π‘’π‘–πœƒ

8βˆ’ 1

π‘’π‘–πœƒ βˆ’ 1=π‘’π‘–πœƒ 𝑒8π‘–πœƒ βˆ’ 1

π‘’π‘–πœƒ βˆ’ 1

=π‘’π‘–πœƒ2 𝑒8π‘–πœƒ βˆ’ 1

π‘’π‘–πœƒ2 βˆ’ π‘’βˆ’

π‘–πœƒ2

=π‘’π‘–πœƒ2 𝑒8π‘–πœƒ βˆ’ 1

2𝑖 sinπœƒ2

=π‘–π‘’π‘–πœƒ2 𝑒8π‘–πœƒ βˆ’ 1

2𝑖2 sinπœƒ2

=𝑒9π‘–πœƒ2 sin 4πœƒ

sinπœƒ2

We can again use the trick of multiplying

π‘’π‘–πœƒ βˆ’ 1 by π‘’βˆ’π‘–πœƒ

2

𝑧𝑛 βˆ’ π‘§βˆ’π‘› = 2𝑖 sin π‘›πœƒ

a

?

Example

[Textbook] 𝑆 = π‘’π‘–πœƒ + 𝑒2π‘–πœƒ + 𝑒3π‘–πœƒ +β‹―+ 𝑒8π‘–πœƒ, for πœƒ β‰  2π‘›πœ‹, where 𝑛 is an integer.

(a) Show that 𝑆 =𝑒9π‘–πœƒ2 sin 4πœƒ

sinπœƒ

2

Let 𝑃 = cos πœƒ + cos 2πœƒ + cos 3πœƒ +β‹―+ cos8πœƒ and 𝑄 = sin πœƒ + sin 2πœƒ + β‹―+ sin 8πœƒ

(b) Use your answer to part a to show that 𝑃 = cos9πœƒ

2sin 4πœƒ π‘π‘œπ‘ π‘’π‘

πœƒ

2 and find similar

expressions for 𝑄 and 𝑄

𝑃

First note that 𝑆 =𝑒9π‘–πœƒ2 sin 4πœƒ

sinπœƒ

2

= 𝑒9π‘–πœƒ

2 sin 4πœƒ π‘π‘œπ‘ π‘’π‘πœƒ

2

But also, by expressing each term within 𝑆 = π‘’π‘–πœƒ + 𝑒2πœƒ … in modulus-argument form, we have 𝑆 = 𝑃 + 𝑖𝑄

∴ 𝑃 = 𝑅𝑒 𝑆 = 𝑅𝑒 𝑒9π‘–πœƒ2 sin 4πœƒ π‘π‘œπ‘ π‘’π‘

πœƒ

2

= cos9πœƒ

2sin 4πœƒ π‘π‘œπ‘ π‘’π‘

πœƒ

2

Similarly:

𝑄 = πΌπ‘š 𝑆 = sin9πœƒ

2sin 4πœƒ π‘π‘œπ‘ π‘’π‘

πœƒ

2

𝑄

𝑃=sin9πœƒ2sin 4πœƒ π‘π‘œπ‘ π‘’π‘

πœƒ2

cos9πœƒ2sin 4πœƒ π‘π‘œπ‘ π‘’π‘

πœƒ2

= tan9πœƒ

2

b

?

Example

Part b in notes

?

Exercise 1E

Pearson Core Pure Year 2 Pages 18-19

Applications of de Moivre #2: Roots

𝑧𝑛 = π‘Ÿπ‘› cos π‘›πœƒ + 𝑖 sin π‘›πœƒ

We have used de Moivre’s theorem when 𝑛 is an integer but it also hold true when 𝑛 is a rational number. We can use it solve equations of the form 𝑧𝑛 = πœ”, by considering the fact that the argument of a number is not unique. This is equivalent to finding the nth roots of πœ”. The fundamental theorem of algebra holds true for complex numbers: Hence 𝑧𝑛 = πœ” has n distinct roots If πœ” = 1 we call these the roots of unity. Since the argument of a complex number is not unique we can say: If then

𝑧𝑛 = π‘Ÿπ‘› cos π‘›πœƒ + 𝑖 sin π‘›πœƒ 𝑧 = π‘Ÿ cos( πœƒ + 2π‘˜ΠΏ) + 𝑖 sin(πœƒ +2π‘˜ΠΏ

Applications of de Moivre #2: Roots

Solve 𝑧3 = 1

Begin by writing 1 in mod- arg form. 𝑧3 = 1 cos 0 + 𝑖 sin 0 = 1(cos 0 + 2π‘˜πœ‹ + 𝑖 sin 0 + 2π‘˜πœ‹

𝑧 = cos 2π‘˜πœ‹ + 𝑖 sin 2π‘˜πœ‹13

= cos2π‘˜πœ‹

3+ 𝑖 sin

2π‘˜πœ‹

3

π‘˜ = 0, 𝑧1 = cos 0 + 𝑖 sin 0 = 1

π‘˜ = 1, 𝑧2 = cos2πœ‹

3+ 𝑖 sin

2πœ‹

3= βˆ’

1

2+ 𝑖

3

2

π‘˜ = 2, 𝑧3 = cos4πœ‹

3+ 𝑖 sin

4πœ‹

3= βˆ’

1

2βˆ’ 𝑖

3

2

These are known as the β€˜cube roots of unity’ (more on this in a bit).

2πœ‹

3

2πœ‹

3

2πœ‹

3

𝑧2

𝑧1

𝑧3

Plot these roots on an Argand diagram.

1 is always a root – the rest are spread out equally distributed. We’ll see why we get this pattern on the next slide.

?

Fundamental Theorem of Algebra

?

Roots of Unity

?

More on Roots of Unity

The solutions to 𝑧𝑛 = 1 are known as the β€œroots of unity” (1 is a β€œunit”). Why are they nicely spread out? 1 is clearly a root as 1𝑛 = 1.

In the method on the previous slide, we

ended up adding 2π‘˜πœ‹

𝑛 to the argument, but

left the modulus untouched. If 𝑛 = 3 then

this rotates the line 2πœ‹

3= 120Β° each time.

When π‘˜ = 𝑛 then we would have rotated 2π‘›πœ‹

𝑛= 2πœ‹ so end up where we started.

Suppose this root is πœ” (Greek letter β€œomega”)…

πœ” = cos2πœ‹

3+ 𝑖 sin

2πœ‹

3

Then by De Moivre’s, then πœ”2 would be:

πœ”2 = cos2πœ‹

3+ 𝑖 sin

2πœ‹

3

2

= cos4πœ‹

3+ 𝑖 sin

4πœ‹

3

i.e. the next root! Therefore, the roots can be represented as 1,πœ”,πœ”2 . Since the resultant β€˜vector’ is 0, then 1 + πœ” + πœ”2 = 0. Formal Proof: Geometric series where π‘Ž = 1 and π‘Ÿ = πœ” and 𝑛 = 𝑛.

𝑆𝑛 =π‘Ž π‘Ÿπ‘› βˆ’ 1

π‘Ÿ βˆ’ 1=πœ”π‘› βˆ’ 1

πœ” βˆ’ 1=1 βˆ’ 1

πœ” βˆ’ 1= 0

2πœ‹

3

2πœ‹

3

2πœ‹

3

𝑧2

𝑧1

𝑧3

π’›πŸ‘ = 𝟏

! If 𝑧𝑛 = 1 and πœ” = 𝑒2πœ‹π‘–

𝑛 then 1,πœ”, πœ”2, … , πœ”π‘›βˆ’1 are the roots and 1 + πœ” + πœ”2 +β‹―+πœ”π‘›βˆ’1 = 0

Applications of de Moivre #2: Roots

𝑧𝑛 = 𝑀

We can use a similar method when w is not equal to 1. Again, our first step is to write w in mod-arg form and consider multiples of the argument.

Example

[Textbook] Solve 𝑧4 = 2 + 2 3 𝑖

𝑧4 = 4 cosπœ‹

3+ 𝑖 sin

πœ‹

3

= 4 cosπœ‹

3+ 2π‘˜πœ‹ + 𝑖 sin(

πœ‹

3+ 2π‘˜πœ‹)

𝑧 = 2 cosπœ‹

12+2π‘˜πœ‹

4+ 𝑖 sin

πœ‹

12+2π‘˜πœ‹

4

π‘˜ = 0, 𝑧 = 2 cosπœ‹

12+ 𝑖 sin

πœ‹

12

π‘˜ = 1, 𝑧 = 2 cos7πœ‹

12+ 𝑖 sin

7πœ‹

12

π‘˜ = 2, 𝑧 = 2 cos13πœ‹

12+ 𝑖 sin

13πœ‹

12

= 2 cos βˆ’11πœ‹

12+ 𝑖 sin βˆ’

11πœ‹

12

π‘˜ = 3, 𝑧 = β‹― We need principal roots. Alternative is to use π‘˜ = 0, 1, βˆ’1,βˆ’2 instead of 0, 1, 2, 3, which will give your principal roots directly.

Note: W is not equal to 1 in this case.

1. Write in mod-arg form considering multiple arguments

2. Apply de Moivre’s

3. Consider consecutive values of k to generate solutions

?

?

?

Test Your Understanding

a) Express the complex number βˆ’2 + 2 3 𝑖 in the form π‘Ÿ cos πœƒ + 𝑖 sin πœƒ ,

βˆ’ πœ‹ < πœƒ ≀ πœ‹. (3) b) Solve the equation

𝑧4 = βˆ’2 + 2 3 i

giving the roots in the form π‘Ÿ cos πœƒ + 𝑖 sin πœƒ , βˆ’πœ‹ < πœƒ ≀ πœ‹. (5)

Edexcel FP2(Old) June 2012 Q3

You can avoid the previous large amount of working by just dividing your angle by the power (4), and adding/subtracting increments of 2πœ‹ again divided by the power.

?

?

Exercise 1F

Pearson Core Pure Year 2 Pages 24-25

Solving Geometric Problems

𝑧6 = 7 + 24𝑖

We have already seen in the previous exercise that the roots of an equation such as that on the left give evenly spaced points in the Argand diagram, because the

modulus remained the same but we kept adding 2πœ‹

𝑛 to

the argument. These points formed a regular hexagon, and in general for 𝑧𝑛 = 𝑠, form a regular 𝑛-agon. Recall that πœ” is the first root of unity of 𝑧𝑛 = 1:

πœ” = cos2πœ‹

𝑛+ 𝑖 sin

2πœ‹

𝑛.

This has modulus 1 and argument 2πœ‹

𝑛.

Suppose π’›πŸ was the first root of 𝑧6 = 7 + 24𝑖. Then consider the product 𝑧1πœ”. What happens? Multiplying these multiplies the moduli. But 𝝎 = 𝟏 therefore the modulus of π’›πŸ is unaffected.

We also add the arguments. 𝐚𝐫𝐠 𝝎 =πŸπ…

𝒏 so

multiplying by 𝝎 rotates π’›πŸ by this. We can see therefore that it gives us the next root, i.e. π’›πŸ = π’›πŸπŽ.

! If 𝑧1 is one root of the equation 𝑧6 = 𝑠, and 1, πœ”, πœ”2, … , πœ”π‘›βˆ’1 are the 𝑛th roots of unity, then the roots of 𝑧𝑛 = 𝑠 are given by 𝑧1, 𝑧1πœ”, 𝑧1πœ”

2, … , 𝑧1πœ”π‘›βˆ’1.

?

Example

[Textbook] The point 𝑃 3, 1 lies at one vertex of an equilateral triangle. The

centre of the triangle is at the origin. (a) Find the coordinates of the other vertices of the triangle. (b) Find the area of the triangle.

Convert 3 + 𝑖 to either exponential of modulus-argument form. We can then rotate the point 120Β° around origin (and again) by multiplying by πœ”.

3 + 𝑖 = 2π‘’πœ‹

6𝑖 and πœ” = 𝑒

2πœ‹

3𝑖

Next vertex:

2π‘’πœ‹

6𝑖 Γ— 𝑒

2πœ‹

3𝑖 = 2𝑒

5πœ‹

6𝑖 = βˆ’ 3 + 𝑖

Next vertex:

2𝑒5πœ‹

6𝑖 Γ— 𝑒

2πœ‹

3𝑖 = 2𝑒

3πœ‹

2𝑖 = 2π‘’βˆ’

πœ‹

2𝑖 = βˆ’2𝑖

Area =1

2Γ— π‘π‘Žπ‘ π‘’ Γ— β„Žπ‘’π‘–π‘”β„Žπ‘‘

=1

2Γ— 2 3 Γ— 3

= 3 3

(βˆ’ 3, 1) ( 3, 1)

(0,βˆ’2)

π‘₯

𝑦

a

b

?

?

? Argand Diagram

Test your understanding

An equilateral triangle has its centroid located at the origin and a vertex at (1,0). What are the coordinates of the other two vertices?

z = cos2π‘˜πœ‹

3+ 𝑖𝑠𝑖𝑛

2π‘˜πœ‹

3

π‘˜ = 1,2,3

?

Exercise 1G

Pearson Core Pure Year 2 Pages 26-27