Cooling Tower Kap 65 m3 Per Hr

Embed Size (px)

DESCRIPTION

DESIGN COOLING TOWER

Citation preview

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    1/42

    Cooling Tower Application, according

    1 Data

    2 Tower height

    3 NTU and HTU

    4 Tower area

    5 Compensation water

    6 Operaqting diagram

    7 Cooling tower schematic

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    2/42

    Treibal

    Rev. cjc. 30.01.2014

    Data for cooling tower application

    Main equations and results

    Cooling Tower height, NTU and HTU

    Free-cross sectional surface of tower

    Compensation, elimination, evaporation and entrainment fow rates

    Equilibrium curve and operation lines

    Schema

    Index

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    3/42

    Cooling Tower Application Data

    This application will be realized with following numerical data (Note 1).

    Data for numerial example

    Water flow rate entering the tower L1' = 18.0555556 kg agua/sTemperature of water entering the tower at the top (2) tL2= 45 C

    Dry bulb temperature of air entering the tower tdbG1= 30 C

    Wet bulb temperature of air entering the tower twbG1 24 C

    Local height above sea level H = 0 m

    Mximum cooling temperature will be defined with

    a differential temperature Dt above air wet bulb temp. Dt = 5 K

    Air to water flow rates ratio shall be "r" times its

    minimum possible value r = 1.5

    The compensation water entering the system wil have

    temperature tcomp= 10 C

    and will have a hardness da_c= 500 ppm

    The in system circulating water sould have a maximum

    hardness da_M= 2000 ppm

    Mass transfer coefficient in the air ky_kmol= 6.2E-05 kmol / ( m2*s)

    Air molecular mass Mair = 28.96 kg/kmol

    Tower effective heat or mass transfer surface a = 500 m/m

    Liquid unit mass flow rate Lu= 2.7 kg/(s*m

    Air unit mass flow rate Gu= 2.0 kg/(s*m

    Note 1

    Basic data has been taken from [1], pages 278-281.

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    4/42

    Help Variables Cooling Tow

    State L1

    Water leaving the towertL1= twbG1+ Dt L2' =

    tbhG1 24 tL2=

    Dt = 5 K

    tL1= 29 C

    Compensation water

    State G1 tacomp= 10 C

    Ambient air entering the tower dac= 2000 ppm

    tbsG1= 30 C

    tbhG1 24 C

    H = 0.0 m

    h = Psychro_Enthalpy_tdb_twb_H Q

    h = N/A kJ/kg

    x = Psychro_AbsoluteHumidity_tdb_twb_H

    x = N/A kg/lg

    Mass transfer coefficient

    Mass transfer coefficient in the air

    ky_kmol= 6.2E-05 kmol / ( m2*s)

    Air molecular mass

    Mair = 28.96 kg/kmol

    Mas transfer per kilogram daM=ky= ky_kmol* Mair

    ky_kmol= 6.2E-05 kmol / ( m2*s)

    Mair = 28.96 kg/kmol

    ky= 0.0018 kg / ( m2*s)

    Product Ky*a

    Ky*a = Ky*a

    ky= 0.0018 kg / ( m2*s)

    a = 500 m/m

    Ky*a = 0.90 kg / ( m *s)

    Q = 270 W

    Bl

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    5/42

    Rev. cjc. 30.01.2014

    er Schema

    18.0555556 kg / s

    45 C Air

    Water

    tdbG1= 30 C

    twbG1 24 C

    Water

    Air

    2000 ppm

    Rev. cjc. 30.01.2014

    L1G1

    Torreenfriadora

    G22

    owdown water: B

    G1

    L2

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    6/42

    Cooling Tower height

    Tower packing height [2] Number of Tra

    The packing height (l) of a tower can be calculated as The number of

    is calculated by

    [1], eq. (7.53), page 276 Sheet "2.- NTU"example of the

    with

    Result of NTU

    NTU =

    NTU =

    and [1], eq. (7.54), page 277 Height of Tra

    Z : Tower packing height [m]

    QS=V : flow rate of dry air (is a constat) [kg/s] HTU =

    MB: molar mass of air [kg/kmol] HTU =

    ky: mass transfer coefficient in the ai r [kmol/(ms)]

    a: effective heat or mass transfer surface [m/m] Tower packin

    A : free cross-sectional surface of the tower [m] Z =

    Iy : enthalpy in the air phase = enthalpy of humid air [J/kg] HTU =

    (in the bulk phase) NTU =

    Iy,i: enthalpy in the air phase ( i: at ther boundary, [J/kg] Z =

    that is, in saturated condition)

    HTU : Height of Transfer Unit

    NTU : Number of Transfer Units

    Subscripts

    B : dry air

    y : air phase = humid air

    a : top of the tower

    b : bottom of the tower

    i : corresponds to the boundary (i.e., saturated state)

    NTUHTUZ

    AakM

    QHTU

    yB

    S

    ay,

    by,

    I

    I

    y

    yiy,

    dIII

    1NTU

    HTU

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    7/42

    Rev. cjc. 30.01.2014

    sfer Units

    transfer units (NTU)

    numerical integtation.

    presents a calculation NTU.

    xample (sheet NTU)

    (hL_a - hL_b) / N * Sf(x)

    #VALUE! -

    sfer Unit "HTU"

    GS / (MB * ky * a * A)

    #VALUE! m

    height

    HTU * NTU

    #VALUE! m

    #VALUE! -

    #VALUE! m

    Aak

    Q

    yB

    S

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    8/42

    NTU and HTU calculations

    column 1 column 2

    Equilibrium curve for saturated air.

    Water temperature at inlet of tower This curve is

    tL2 = 45 C hair,sat = f(t)

    Water temperature at tower outlet where the function

    tL1 = 29 C hair,sat = Psychro_Enthalpy_tdb_HumRel_H

    Range: tL2 - tL1 has been used

    The curve strats at point

    Number of sections 3 (29,96.4)

    The range will be divided in a number "N" and ends at point

    of sections 4 (45,218.2)

    N = 6

    Column 1 starts with temperature "tL2"

    and ends with temperature "tL1". column 3

    Between both temperatures, "N-1" Operation line for r = 1

    temperatures are inserted to define where "r" is the ratio between the actual

    the N sections. All section are defined mass flow rate and the minimum flow

    with the same temperature differential. rate.

    The line strts at a point defined by the

    Temperature differential inlet air properties (point 1 in operating

    DtL = tL2 - tL1 C diagram) also called state "G1"

    tL2 = 45 C

    tL1 = 29 C State G1 (Point 1)

    DtL = 16 K tdbG1 = 29 C

    twbG2 = 24 C

    Section temperature increment H = 0 mDtL_Sect = DtL / N xG1= soluteHumidity_tdb_twb_H

    DtL = 16 K xG1= N/A kg/kg

    N = 6 -

    DtL_Sect = 2.67 K hG1= N/A kJ/kg

    Temperature at point "i+1"

    ti+1= ti+ DtL_sect

    1 2 3 3a 4 5

    Equilibrium Operation Operation

    curve for line for line for

    saturated air. r = 1 Dh = r = 1.5 Dh =

    tL hair,sat hoper_r=1 hair,sat-hop_r=1 hoper_r=1.5 hair,sat-hop_r=1.5

    kJ/kg kJ/kg kJ/kg kJ/kg kJ/kg

    25 N/A

    Ta

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    9/42

    25.5 N/A

    Top.(2) 45 N/A N/A #VALUE! #VALUE! #VALUE!

    42.33 N/A #VALUE! #VALUE! #VALUE! #VALUE!

    39.67 N/A #VALUE! #VALUE! #VALUE! #VALUE!

    37.00 N/A #VALUE! #VALUE! #VALUE! #VALUE!

    34.33 N/A #VALUE! #VALUE! #VALUE! #VALUE!

    31.67 N/A #VALUE! #VALUE! #VALUE! #VALUE!

    Bottom (1) 29 N/A N/A #VALUE! N/A #VALUE!

    In Operating diagram (sheet 6)

    t H

    C kJ/kg

    Point 1: 29 N/A

    Point 2: 45 N/A Line 1-2: Operation line for r = 1

    Point 2': 45 #VALUE! Line 1-2': Operation line for r = 1.5

    Point 3: 29 N/A

    Point 4: 45 N/A Line 3-4: Equilibrium (saturation) line

    From column 3a, is possible to see that the differences between the Equilibrium

    curve and the operation line for r = 1 are very small (0.53 kJ/kg) at a certain

    temperature (39.67 C). Thus, this operation line is near enough a minimum

    flow rate line.

    In the operating diagram figure (sheet 6), the operating line for r = 1 appears

    to be tangent with the Equilibrium curve. This fact visualizes that this line is close

    enough to the real minimum flow rate.

    The condition of tangency between these two curves, is due to the fact that if

    the operating line would cross the equilibrium line, it would not be possible to

    have mass transfer in this region.

    Height of tower packing Number of Transfer Units "N

    From Treibal, Equation (7-5

    (7.51a)

    (7.51b)

    The numerial integration of

    performed by means of the t

    where H'2 and H'1are the enthalpies of integration method.

    the air-water mixture for the actual case, According this method, the i

    that is, in this case for r = 1.5. is realized as it is shown in t

    6, 7 and 8.

    The final evaluation is done

    iy

    I

    III

    NTU

    ay

    by

    ,

    1,

    ,

    '2

    '

    1

    ''

    'H

    H i HH

    dHNTU

    GS'

    mHH

    dH

    ak

    GZ

    H

    H iy

    S '

    2

    '

    1

    ''

    ''

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    10/42

    (7.51c) following equation

    (7.51d)

    NTU = (hL_a- hL_b) /(2

    Also where

    hL_in_r=1.5= #VALUE!

    hL_out=r=1.5= N/A

    N = 6

    Sf(x) = #VALUE!

    Numerical results shown are from next NTU = #VALUE!

    calculation sheets.

    Treybal [2] result is

    NTU = 3.25

    The difference comes from t

    the psychrometric properties

    takes its values from graphi

    the example are taken formfunctios. Also, the numerical

    method is not indicated.

    Comparison between the example calculation table and the tabvle from Treibal

    1 2 3 4 5 6

    Curva de Lnea de Lnea de

    equilibrio para operacin operacin

    aire saturado para r = 1 para r = 1.5 Dh = 1/Dht hair,sat hoper_r=1 hoper_r=1.5 hair,sat-hop_r=1.5

    kJ/kg kJ/kg kJ/kg kJ/kg 1/(kJ/kg)

    25 N/A

    25.5 N/A

    29 N/A 72 72 #VALUE! #VALUE!

    31.67 N/A 96 87.7 #VALUE! #VALUE!

    34.33 N/A 119 103.4 #VALUE! #VALUE!

    37.00 N/A 143 119.1 #VALUE! #VALUE!

    39.67 N/A 166 134.9 #VALUE! #VALUE!

    42.33 N/A 190 150.6 #VALUE! #VALUE!

    45.00 N/A 213 166.27 #VALUE! #VALUE!

    1 2 3 4 5 6

    Curva de Lnea de Lnea de

    equilibrio para operacin operacin

    aire saturado para r = 1 para r = 1.5 Dh = 1/Dh

    t hair,sat hoper_r=1 hoper_r=1.5 hair,sat-hop_r=1.5

    kJ/kg kJ/kg kJ/kg kJ/kg 1/(kJ/kg)

    25 N/A

    Calculation table, using psychrometric functions.

    Table from Treybal [1], page 280

    2

    __

    N

    hhNTU

    bLaL

    mNTUHTUZ

    maky

    AakM

    GHTU

    yB

    S

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    11/42

    25.5 N/A

    29 100.0 72 72 28.0 0.0357

    31.67 114.0 96 92.0 22.0 0.0455

    34.33 129.8 119 106.5 23.3 0.0429

    37.00 147.0 143 121.0 26.0 0.0385

    39.67 166.8 166 135.5 31.3 0.0319

    42.33 191.0 190 149.5 41.5 0.0241

    45.00 216.0 213 163.50 52.5 0.0190

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    12/42

    The line ends in a point defined by the Slope of line with r = 1.5 Air flow rate

    properties of the leaving satutared air S = m = L * Cpw / Gs (7.54)

    Point 2' L = 18.0555556 kg/s From heat bal

    Estado G2' Cpw = 4.1868 kJ/(kg*K)

    tbsG2 = 45 C Gs = #VALUE! kg as/s

    f = 100 % S = #VALUE! (kJ/kg)/K

    H = 0 m Exit enthalpy

    hG2= Psychro_Enthalpy_tdb_HumRel_H S = (hG2- hG1) / (tbsG2- tbsG1)

    hG2'= N/A kJ/kg hG2= hG1+ S * (tbsG2- tbsG1)

    The operation linefor r = 1, is the

    straight line 1con: r = G / Gmin hG1= N/A J/kg

    Slope of operation line witrh r = 1 S = #VALUE! (kJ/kg)/K

    Sr=1= (hG2'- hG1) / (tL2- tL1) tbsG2= 45 C

    hG2'= N/A kJ/kg tbsG1= 29 C [1], Eq, (7.54)

    hG1= N/A kJ/kg hG2= #VALUE! J/kg

    tL2= 45 C

    tL1= 29 C column 5 GS: gas flow

    Sr=1= #VALUE! (kJ/kg)/K Driving enthalpy difference at a point "i" hG2: exit air e

    GS= Gr=1= 1/m * L * cpw (7.54) Dhi= hair,sat_i-hop_r=1.5_i hG1: inlet air e

    m = Sr=1 L: liquid flow r

    Sr=1= #VALUE! (kJ/kg)/K column 6 cpw: liquid sp

    m = #VALUE! Reciproc of driving enthalpy difference tL2: inlet wate

    L = 18.0555556 kg agua/s tL1: exir water

    Cpw = 4.1868 kJ/(kg*K) column 7

    Gr=1= #VALUE! kg as/s Coefficients for numerical integration

    Ci= 1 at both ends

    column 4 2 in the other elements

    Operation line for r = 1.5

    The line starts from the same point 1 column 8

    the properties at the inlet defined as the Numerical integration elements

    state G1. f(xi) = Ci* (1/Dhi)

    Gs = r * Gr=1

    r = 1.5

    Gr=1= #VALUE! kg as/s

    Gs = #VALUE! kg as/s

    6 7 8

    Numerical Air conditions in the tower,for r = 1

    integration Conditions at the bottom of the tower (poin

    1/Dh coefficient Point "1"

    Ci f(x) tbs1= 29.0 C

    1/(kJ/kg) hG1= N/A kJ/kg

    Conditions at the top of the tower (point 2'

    le 1. Tower packing height calculation

    m

    cLG

    tt

    hhm

    cLG

    hhG

    bottom

    top

    HH

    pw

    S

    LL

    GG

    pwS

    GGS

    Liair

    DD

    12

    12

    2

    :1

    :2

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    13/42

    Point 2'

    #VALUE! 1 #VALUE! tbs2'= 45 C

    #VALUE! 2 #VALUE! h2'= N/A kJ/kg

    #VALUE! 2 #VALUE!

    #VALUE! 2 #VALUE!

    #VALUE! 2 #VALUE!

    #VALUE! 2 #VALUE!

    #VALUE! 1 #VALUE!

    Sf(x) = #VALUE!

    TU" Height of Transfer Unit "HTU" Height of Tra

    1)

    HTU =

    withGs =

    TU is MB=

    rapezoidal HTU = G'S/( ky * a) ky_kmol=

    G'S: 2.0 kg/(m*s) a =

    ntegration ky*a : 0.9 kg / ( m *s) A =

    he columns HTU = 2.2 m HTU =

    Treybal [2] result is

    according HTU = 2.2 m QS:

    ydI

    ak

    GHTU

    y

    S

    ' HTU

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    14/42

    MB:

    Height of packing tower ky:

    a:

    A :

    Z = HTU * NTU

    * N) * Sf(x) HTU = 2.2 m

    NTU = #VALUE!

    kJ/kg Z = #VALUE! m

    kJ/kg

    Treybal [2] result is

    Z = 7.22 m

    -

    -

    he values of

    . Treybal

    s, and in

    psychrometric l integration

    Trapezoidal numerical integration rule

    7 8

    Numerical

    integration

    coefficientCi f(x)

    NTU=(hL2- hL1)/2*N* (f(x1) + 2*f(x2) + 2*f(x3) + .+ 2*f(xN-1) + f(xN) )

    1 #VALUE! NTU = (hL_a- hL_b) /(2* N) * Sf(x)

    2 #VALUE! where

    2 #VALUE! hL_in_r=1.5= 166.3 kJ/kg

    2 #VALUE! hL_out=r=1.5= 72.0 kJ/kg

    2 #VALUE! N = 6

    2 #VALUE! Sf(x) = #VALUE!

    1 #VALUE!Sf(x) = #VALUE! NTU = #VALUE! -

    7 8

    Numerical

    integration

    coefficient

    Ci f(x) Treybal table differs from the calculation

    table in the values of the psichrometric

    properties.

    )(xf

    )1(...22

    11

    2)(

    1

    Niparag

    Nyiparag

    fgN

    abdxxf

    i

    i

    k

    N

    k

    i

    b

    a

    NTUHTUZ

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    15/42

    Additionaly, Treibal uses a different

    1 0.03575 numerical integration method, where

    1 0.04545 the numerical integration coefficienst are

    1 0.04292 not required (or Ci= 1)

    1 0.03846 The numerical integration used is not

    1 0.03195 indicated and Treybal gives as a

    1 0.02410 final result a NTU value

    1 0.01905

    Sf(x) = 0.23767 NTU = 3.25 -

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    16/42

    Rev. cjc. 30.01.2014

    Page 1 of 4

    ance

    , page 277

    ate [kg as/ s]

    nthalpy (top) [kJ/kg]

    nthalpya (bottom) [kJ/kg]

    ate [kg/ s]. (assumed constant)

    cific heat [kJ/(kg*K)]

    r temperature (top) [C]

    temperature (bottom) [C]

    Rev. cjc. 30.01.2014

    Page 2 of 4

    t "1" in diagram)

    (Column 1)

    (Column 3)

    in diagram)

    hh

    tt

    ttcL

    GG

    LL

    LLpw

    iquid

    1

    12

    12

    121

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    17/42

    (Column 1)

    (Column 3)

    Page 3 of 4

    sfer Unit "HTU"

    GS / (MB * ky * a * A)

    #VALUE! kg as/s

    28.96 kg/kmol

    6.2E-05 kmol / ( m2*s)

    500 m/m

    #VALUE! m

    #VALUE! m

    flow rate of dry air (is a constat) [kg/s]

    AakM

    G

    yB

    S

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    18/42

    molar mass of air [kg/kmol]

    mass transfer coefficient in the air [kmol/(ms)]

    effective heat or mass transfer surface [m/m]

    free cross-sectional surface of the tower [m]

    Page 4 of 4

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    19/42

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    20/42

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    21/42

    HTU Treibal

    Equation (7-51)

    HTU = V / (MB * ky * a * A)

    withV = 56.84 kg as/s

    MB = 28.96 kg/kmol

    ky_kmol = 6.2E-05 kmol / ( m2*s)

    a = 500 m/m

    A = 5.33 m

    HTU = 11.9 m

    Tower height

    l = NTU * HTU

    AakM

    VHTU

    yB

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    22/42

    NTU = 4.25 -

    HTU = 11.9 m

    l = 50.4 m

    V = G * A

    G = 10.66 kg as/(s*m)

    5.33 m

    56.84 kg as/s

    G'S /( ky * a)

    2 kg/(m*s)

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    23/42

    Free-cross sectional surface of tower

    Area of cross sectional surface Seleted area

    From borh results, the smallL = Lu* A should be selected, to ensur

    L: liquid flow rate [kg/s] value of the product "ky*a" h

    Lu: unit flow rate (for unit of cross the indicated value of

    sectional surface): [kg/ ( m*s)]

    A: area of cross section ky*a = 0.90

    So

    A = L / Lu A = #VALUE!

    L = 18.0555556 kg/s

    Lu= 2.7 kg/(m*s)

    A = 6.69 m

    Using the gas flow rate

    A = GS/ GSu

    G: gas rate [kg/s]

    Gu: unit flow rate (for unit of cross

    sectional surface): [kg/ ( m*s)]

    A: area of cross section

    Gs = #VALUE! kg as/s

    GSu= 2 kg/(m*s)

    A = #VALUE! m

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    24/42

    Rev. cjc. 30.01.2014

    est value e that the

    s at least

    kg / ( m *s)

    m

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    25/42

    Compensation water

    Cosidering a compensation and a Entrainment loss rate "W", water that is Application

    continuous elimination, the mass being transported with the exit air,

    balance is leaving from de top of the tower as a Evaporation

    (a) loss of water.1.- Absolute h

    Evaporation rate "E", water that is Assuming tha

    A water hardness balance is evapotated in the air flow producing saturated at P

    de cooling of the water flow fO

    (b) From equation (d) The enthalpy

    calculation Ta

    and therefore hO=

    Assuming initi

    tO=

    (.c) the correspon

    assumed tem

    tO=

    Eliminating M from (a) and (.c) fO

    H =

    h =

    (d) Now, using S

    temperature t

    With calculate

    M : compensation rate [kg/h] the correspon

    B : elimination rate [kg/h] can be be cal

    E : evaporation rate [kg/h] t =

    W : entrainment loss rate [kg/h] fO

    daC : hardness weight fraction of H =

    circulating water [kg/kg] or [ppm] xa2=

    daM : hardness weight fraction of

    compensation water [kg/kg] or [ppm] 2.- Absolute h

    From sheet 2

    Elimination rate "B", required to replace xa1=

    water with a maximum allowable salts

    content with fresh water with the in this 3.- Humidity c

    water existing salt content. This is Dx2-1=

    called the compensation rate. xa2=

    (e) xa1=Dx2-1=

    WEBM

    CM daWBdaM

    M

    C

    da

    daWBM

    M

    C

    da

    daWBWEB

    Wdada

    daEB

    MC

    M

    Wdada

    daEB

    da

    dada

    EWB

    da

    dada

    EWB

    da

    da

    EWB

    Eda

    daW

    da

    daB

    Eda

    daW

    da

    daB

    Eda

    daW

    da

    daW

    da

    daB

    da

    da

    WEda

    da

    Wda

    da

    B

    WEda

    daW

    da

    daBB

    da

    daW

    da

    daBWEB

    MC

    M

    M

    MC

    M

    CM

    M

    C

    M

    C

    M

    C

    M

    C

    M

    C

    M

    C

    M

    C

    M

    C

    M

    C

    M

    C

    M

    C

    M

    C

    M

    C

    M

    C

    M

    C

    1

    11

    11

    1

    1

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    26/42

    E = GS* Dx2-1

    Dry air flow rate (sheet 2)

    ate "E" Gs = #VALUE! kg as/s

    Dx2-1= #VALUE! kg/kg umidity of exit air E = #VALUE! kg/s

    the leaving air is basically

    oint "O" Entrainment loss "W"

    100 % To estimate the entrainment losses,

    t this point, from the one assumes that these losses are

    ble 1, is a percentage &W of the water flow rate

    #VALUE! kJ/kg &L = 0.2 %

    ally a temperature value The water flow rate is

    30 C L = 18.0555556 kg/s

    ding enthalpy for this W = L * &L Compensatio

    erature is with L = 18.0555556 kg/s

    40.0 C &L = 0.002 -

    100 % W = 0.036 kg/s

    0 m.a.s.l.

    N/A kJ/kg Elimination rate "B"

    lver, find a value of the B = E * ( daM/ (daC- daM) ) - W

    to obtain that h = hO E = #VALUE! kg/s

    d exit air temperature W = 0.036 kg/s

    ding absolute humidity da_M= 500 ppm

    ulated da_c= 2000 ppm

    40.0 C B = #VALUE! kg/s

    100 %

    0 m.a.s.l. Compensation rate "M"

    N/A kg/kg M = (B + W) * daC/ daM

    B = #VALUE! kg/s

    umidity of inlet air W 0.036 kg/s

    da_c= 2000 ppm

    N/A kg/kg da_M= 500 ppm

    M = #VALUE! kg/s

    hange

    xa2- xa1 kg/kg

    N/A kg/kg

    N/A kg/kg#VALUE! kg/kg

    M, daM

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    27/42

    ev. c c. . .

    Entrainment water

    Water

    water

    Air

    Elimination water

    L1 G1

    Coolingtower

    G2

    E

    W, daC

    B, daC

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    28/42

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    29/42

    Operation Diagram

    1 2 3 3a 4 5 6

    Curva de Lnea de Lnea de

    equilibrio para operacin operacinaire saturado para r = 1 Dh = para r = 1.5 Dh = 1/Dh

    tL hair,sat hoper_r=1 hair,sat-hop_r=1 hoper_r=1.5 hair,sat-hop_r=1.5

    kJ/kg kJ/kg kJ/kg kJ/kg kJ/kg 1/(kJ/kg)

    25.0 N/A

    25.5 N/A

    29.0 N/A N/A #VALUE! N/A #VALUE! #VALUE!

    31.7 N/A #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!

    34.3 N/A #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!

    37.0 N/A #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!

    39.7 N/A #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!

    42.3 N/A #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!45.0 N/A N/A #VALUE! #VALUE! #VALUE! #VALUE!

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    25.0 30.0 35.0 40.0 45.0 50

    Enthalpy

    air-vapor

    [kJ/kg

    da]

    Liquid temperature [C]

    Operation Diagram of Cooling Tower

    Equilibrium curve, for saturated air

    Operating line with r = 1

    Operating line with r = 1.5

    2

    1

    2'

    3

    4

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    30/42

    7 8

    Numerical H'

    integration (gas-vapor mixture)coefficient kJ/kg as

    Ci f(x)

    H'*2 4

    1 #VALUE! H'2

    2 #VALUE!

    2 #VALUE!

    2 #VALUE!

    2 #VALUE!

    2 #VALUE!1 #VALUE! H'*1 3

    Sf(x) = #VALUE!

    H'1

    1

    Liquid tem

    tL1 tL2

    .0

    Equilibrium curve

    Op. L, r = 1

    Op. L. r = 1.5

    R

    ST

    U

    ',HtL

    *,HtL

    ', ii Ht

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    31/42

    Rev. cjc. 30.01.2014

    2

    perature tLC

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    32/42

    Cooling tower schematic [3]

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    33/42

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    34/42

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    35/42

    [1] Operaciones de transferencia de masa 2/e

    Robert E. Treybal

    McGraw Hill,2003

    Page 274. Enfriamiento de agua con aire

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    36/42

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    37/42

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    38/42

    [1] Operaciones de transferencia de masa 2/e

    Robert E. Treybal

    McGraw Hill, 2003

    [2]

    [3]

    http://library.kfupm.edu.sa/ISI/2006/5-2006.pdf

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    39/42

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    40/42

    Packing height and free-cross sectional surface of a tower [2]

    1.- Packing height

    The packing height of a tower can be calculated

    according [2], equation (65)

    Z = I : Tower packinQS=V : flow rate of dr

    MB: molar mass o

    Naming the first term as "Height of Transfer ky: mass transfer

    Unit (HTU) " a: effective heat

    A : free cross-se

    Iy : enthalpy in th

    (in the bulk ph

    Iy,i: enthalpy in th

    and the second term as the Numbert of Transfer that is, in satu

    Units (NTU)

    HTU : Height of Tra

    NTU : Number of Tr

    Subscripts

    B : dry air

    the packinh height becomes y : air phase = h

    a : top of the tow

    b : bottom of the

    i : corresponds t

    yyiy

    I

    IyB

    S dIIIAakM

    QZ

    ay

    by

    ,

    1,

    ,

    AakM

    VHTU

    yB

    yyiy

    I

    I

    dIII

    NTU

    ay

    by

    ,1

    ,

    ,

    NTUHTUZ

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    41/42

    height [m] air (is a constat) [kg/s]

    air [kg/kmol]

    coefficient in the air [kmol/(ms)]

    or mass transfer surface [m/m]

    tional surface of the tower [m]

    air phase = enthalpy of humid air [J/kg]

    ase)

    air phase (i: at ther boundary,

    rated condition)

    sfer Unit

    nsfer Units

    mid air

    r

    tower

    o the boundary (i.e., saturated state)

  • 5/27/2018 Cooling Tower Kap 65 m3 Per Hr

    42/42