Convolution Part B

Embed Size (px)

Citation preview

  • 8/9/2019 Convolution Part B

    1/39

    Convolution Lecture BDr. Khurram Kamal

  • 8/9/2019 Convolution Part B

    2/39

    Linear systems, Convolution: Impulse response, input signals ascontinuum of impulses. Convolution, discrete time andcontinuous time. LTI systems and convolution

    Objectives1. Show how a DT input signal can be sifted into a sum of scaled,

    time shifted impulses2. Understand a DT LTI systems impulse response

    3. Use superposition to show how DT convolution can be used tocalculate a systems response.

    . Worked e amples !or DT LTI Systems

    Discrete Time "onvolution

    ∑∞−∞=

    −=k

    k nhk xn y #$#$#$

  • 8/9/2019 Convolution Part B

    3/39

    Convolution is the process of calculating thesystem’s response signal y[n], given the system’simpulse response signal h[n]- or “ ho to solve the!i"erence e#uation ithout $no ing hat the!i"erence e#uation is%.&t is an important concept for i!entifying, !esigningor analysing the system an! D' convolution is alsouse! as a (asis for !eriving C' convolution. 'hemain aim is to un!erstan! ho D' convolution can(e applie! to input an! impulse response signals.

    Discrete Time "onvolution

  • 8/9/2019 Convolution Part B

    4/39

    )evie of D' Linear system’s

    Convolution is use! to calculate the system’sresponse y[n] to any input *[n], using thesystem’s impulse response signal, h[n]

    'he D' system is normally represente! (y!i"erence e#uation+n! impulse response h[n] is a powersignal

  • 8/9/2019 Convolution Part B

    5/39

    ifting roperty for D' signalsBasic idea use set of time shifte! D' impulse / (asis signals0

    to represent any D' signals.Consi!er a D' signal *[n] hich can (e ritten as the sum of

    scale!, time shifte! impulse signals

    'herefore the signal can (e e*presse! as

    o any D' signal can (e e*presse! as

    'he sifting property

    actual value Impulse, timeshifted signal≠==−

    ≠==

    −≠−=−=+−

    1%1#1$#1$#1$

    %%%#%$#$#%$

    1%1#1$#1$#1$

    nn xn x

    nn xn x

    nn xn x

    δ

    δ

    δ #1$#1$ +− n x δ

    +−+++−++−+= #1$#1$#$#%$#1$#1$#2$#2$#$ n xn xn xn xn x δ δ δ δ

    ∑∞

    −∞= −= k k nk xn x #$#$#$ δ

  • 8/9/2019 Convolution Part B

    6/39

    'he D' signal, *[n] is additively!ecompose! into the follo ing

    scaled,time shifted, impulse

    components

    1nly the (asis signals correspon!ing to $2-3, -4an! -5 are sho n

    6*ample D' iftingroperty

  • 8/9/2019 Convolution Part B

    7/39

    D' ystem &mpulse response

    + very important ay to analyse a D' L'& systemis to stu!y the impulse response signal, h[n]/input is an impulse signal0

    Loosely spea$ing this correspon!s to giving thesystem a unit $ic$ at n27, an! then seeing hathappens.

    8or a D' L'&, the impulse response, h[n] has all theinformation that e*ists in the !i"erence e#uation

  • 8/9/2019 Convolution Part B

    8/39

    6*ample &mpulse response

    'he D' impulse response, h[n]!etermine system’s properties

    causalitysta(ility

  • 8/9/2019 Convolution Part B

    9/39

    'he D' Convolution um

    8or any L'& !iscrete time system, the response toan input signal *[n] is given as follo s.

    5. 9sing the sifting property

    4. h[n] is the systems impulse response to δ [n]3. Because the system is time invariant

    :. 9sing the superposition property /linear0

    'his is the convolution sum hich sho s that L'&system response can (e e*presse! as a sum ofscale!, time shifte!, impulse responses.

  • 8/9/2019 Convolution Part B

    10/39

    &nterpreting the convolution sum 'he convolution sum can (e interprete! in

    t o ays5. +s a sum/over $0 of scale! /(y *[$]0

    shifte! impulse response signal h[n-$],here n is a free signal in!e*.

    4. 8or each n/time in!e*0, sum over $ theinput signal *[$] multiplie! (y time shifte!an! reverse! impulse response h[n-$]

  • 8/9/2019 Convolution Part B

    11/39

    6*ample 5a D' L'& Convolution

    Consi!er a D' L'& system an impulse responseh[n]2 [7 7 5 5 5 7 7] n2[-4 -5 7 5 4 3 :]

    8or input se#uence*[n]2 [7 7 7.; 4 7 7 7]

    'he result is / sum of scale!, shifte! impulse responses0

    y[n]2 ...

  • 8/9/2019 Convolution Part B

    12/39

    Lets !erive the previous result in amore mathematical /e*amina(le0manner

    h[n]2 u[n] u[4-n] or /u[n] > u[n-3]0 'herefore?[n-$]2 u[n-$] u[4-n

  • 8/9/2019 Convolution Part B

    13/39

    Consi!er a D' L'& system that has an impulseresponse

    h[n]2 7.@An u[n]hat is the response hen the step input signal*[n]2 u[n] is applie!

    n 7 n 7

    6*ample 4 D' L'& Convolution

    ∑∞

    −∞=−=

    k

    k nhk xn y #$#$#$

    ∑∞

    −∞=

    −=k

    k n

    k nuk u #$&.%#$

    == ∑=

    −n

    k

    k n

    %

    &.%&.%

    #$'&.%1(1%

    &.%1&.%1

    &.%

    %

    1

    1

    '1(

    nun

    nn

    +

    +−

    −=

    −=

    =

  • 8/9/2019 Convolution Part B

    14/39

    6*ample 3 D' L'& Convolution

    8in! the D' L'& system response hen

    By using D' L'& convolution

    #$).%2.%#$

    #1$*.%#$+

    1

    nunh

    nun xn

    n

    =

    −= −

  • 8/9/2019 Convolution Part B

    15/39

    ummary to D'

    Convolution+ny D' signal can (e sifte! into time shifte! impulse basissignals

    'he system is impulse response , h[n] contains the sameinformation as the e#uivalent di erence equation L'& systemrepresentation.

    'he impulse response h[n] can (e use! to predict the D' L'&system’s response to an ar(itrary input signal using the

    convolution operator

    Because of the sifting an! superposition properties.

    Convolution is a (asis for Fourier & aplace transforms andtransfer functions!

    ∑∞

    −∞=−=

    k

    k nk xn x #$#$#$ δ

    ∑∞

    −∞=−=

    k

    k nhk xn y #$#$#$

  • 8/9/2019 Convolution Part B

    16/39

    Continuous 'ime Convolution

    inear "ystems, #onvolution$ %mpulse response,input signals as continuum of impulses!#onvolution , Discrete time an! continuous time . L'&

    systems an! convolution

    1(Eectives5. ho ho a C' input signal */t0 can (e sifte! into a

    continuum of time shifte!, impulse (asis signals4. 9n!erstan! a C' system’s impulse response properties3. uperposition an! the C' convolution integral:. or$e! e*amples of C' convolution.

    ∫ ∞

    ∞−−= τ τ τ d t h xt y '('('(

    τ τ δ d t '( −

  • 8/9/2019 Convolution Part B

    17/39

    )evie D' Convolution

    + D' signal can (e sifte! into time shifte!, impulse(asis signals

    'he system’s impulse response, h[n], is the system’soutput hen an impulse input, *[n]2 is applie!.

    h[n] can (e use! to pre!ict the D' L'& systemsresponse, y[n], to an input signal, *[n], using theconvolution sum.

    ∑∞

    −∞=−=

    k

    k nk xn x #$#$#$ δ

    #$nδ

    ∑∞

    −∞= −= k k nhk xn y #$#$#$

  • 8/9/2019 Convolution Part B

    18/39

    ifting e*pression for C' signals

    8or a C' input signal, */t0, there are aninFnite num(er of time shifte!, impulse

    (asis signals

    here is the constant an! t is varia(le.

    5. &t is only non Gero hen4. 9ni#ue (asis signal for each value

    'he C' sifting e*pression is

    δ #$ τ −

    t τ

    τ =t

    τ

  • 8/9/2019 Convolution Part B

    19/39

    +t particular time t2 only oneimpulse (asis signals,

    , is non Gero an! the outputis e#ual to */t=0 (ecause the C'impulse has a unit integral

    ifting e*pression for C' signals

    δ #$ τ −t τ

  • 8/9/2019 Convolution Part B

    20/39

    C' ystem &mpulse )esponse

    'he C' unit impulse signal /t0, provi!es a unitarea (urst of energy at t27, in an inFnitely smalltime perio!.

    +ll of the information containe! in an L'&, 1D6 iscontaine! in the C' impulse response signal h/t0

    h/t0 represents the impulse /unforce!0 solution to

    1D6.

    δ

  • 8/9/2019 Convolution Part B

    21/39

    6*amples of C' &mpulse )esponse

    &mpulse responses, -Hh/t0, for simple C' L'&systems

    50 5 st or!er causal, sta(le

    40 5 st or!er causal, unsta(le 304 n! or!er causal, unsta(le

    '( t δ

  • 8/9/2019 Convolution Part B

    22/39

    uperposition an! C' Convolution

    8rom the C' sifting property e have

    Because the system is time invariant, e $no that

    +lso (ecause the system is linear/ therefore superpositionapplies0, the overall response is

    Convolution is a linear com(ination /integral0 of the timeshifte!, impulse response signals, scale! (y the magnitu!eof the input signal at that point. ometimes e*presse! as

  • 8/9/2019 Convolution Part B

    23/39

    6*ample 5 C' L'& Convolution

    Let */t0 (e the input to a L'& systemith unit impulse response h/t0

    */t02 u/t0

    '('( t uet h t −= τ τ τ d t h xt y '('('( ∫ ∞

    ∞−

    −=

    τ

    τ τ τ

    τ

    τ

    d ee

    d t ueu

    t t

    t

    ∫ =

    −=

    ∞−

    −−∫

    %

    ( '(''(

    %#%$

    %#$ %≤=

    >= −

    t

    t ee t t τ

    '('1( t ue t −

    −=

  • 8/9/2019 Convolution Part B

    24/39

    Consi!er C' input an! impulseresponse signals hich are unit(loc$s

    */t02 5 2 7 other ise

    6*ample 4 C' L'& Convolution

    '2('(2% −−=≤≤ t ut ut

  • 8/9/2019 Convolution Part B

    25/39

    ∫ ∫ ∫ ∫

    ∫ ∫

    −=

    −−−−=

    −−−=

    −=

    ∞−

    ∞−

    ∞−

    ∞−

    t t

    d d

    d t uud t uu

    d t uuu

    d t h xt y

    2%

    11

    '(''2('('(

    '(''2('((

    '('('(

    τ τ

    τ τ τ τ τ τ

    τ τ τ τ

    τ τ τ

    '2('2('(

    2#2$

    2%#$

    %#%$#$#$ 2%

    −−−=

    >=

  • 8/9/2019 Convolution Part B

    26/39

    Calculate the convolution of

    6*ample 3 C' L'& Convolution

    '1('(

    '('(

    '1(

    2

    −=

    =

    −−

    t uet h

    t uet x

    t

    t

    τ τ τ d t h xt y '('('( ∫ ∞

    ∞−

    −=

  • 8/9/2019 Convolution Part B

    27/39

    ummary to C' Convolution+ C' signal */t0 can (e represente! via the sifting property

    here there are an inFnite num(er of time shifted,impulse basis signals one for each value of+ny C' L'& system /1D60 can (e uni#uely represente! interms of its impulse response h/t0Iiven the input signal an! the impulse response, the C' L'&systems output can (e !etermine! via convolution

    Jote that this is an alternative ay of calculating thesolution y/t0 compare! to an 1D6. h/t0 contains the!erivative information a(out the " of the 1D6/ naturalresponse0 an! the convolve! input signal represents the' " /force! response0

    δ #$ τ −t τ

    ∫ ∞

    ∞− −= τ τ τ d t h xt y '('('(

  • 8/9/2019 Convolution Part B

    28/39

  • 8/9/2019 Convolution Part B

    29/39

    )evie C' D' Convolution

    C' an! D' L'& systems are completely !escri(e! (y theirimpulse response through convolution sum integral

    'his is (ecause the impulse response signal representsthe unforced solution , an! the convolution operatorcalculates the impulse response for each impulse (asissignals (sifting) of the input signal an! aggregates thepieces / superposition) .

    e can transform / ith a (it of or$0 from the!i"erential !i"erence e#uation to the impulse response

    signal an! (ac$ again without loss of information .

    #$+#$#$#$#$ nhn xk nhk xn yk

    =−= ∑∞

    −∞=

    '(+'('('('( t ht xd t h xt y =−= ∫ ∞

    ∞−τ τ τ

  • 8/9/2019 Convolution Part B

    30/39

    Convolution is a commutative operat

    Convolution is a commutative operator

    'his can (e easily proven. 'he t o systems aree#uivalent

    'herefore, hen calculating the response of a systemto an input signal *[n], e can imagine the input signal(eing convolve! ith the unit impulse response h[n],or vice versa, hich ever appears the easiest . &t isimportant to realise, the input an! impulse responseare both *ust signals .

    ∑∑ ∞

    −∞=

    −∞=

    −=−k k

    k n xk hk nhk x #$#$#$#$ ∫ ∫ ∞

    ∞−

    ∞−−=− τ τ τ τ τ τ d t xhd t h x '('('('(

  • 8/9/2019 Convolution Part B

    31/39

    Convolution is a Linear 1perator

    Convolution is a Linear 1perator

    'his can (e easily veriFe! an! also for the C' case. 'herefore, the t o systems in parallel

    are e#uivalent. 'he convolve! sum of t o impulseresponses is e#uivalent to consi!ering the t o e#uivalentparallel system /e#uivalent for !iscrete-time systems0

    '('('(+'('(+'(''('((+'(

    #$#$#$+#$#$+#$#'$#$(+#$

    212121

    212121

    t yt yt ht xt ht xt ht ht x

    n yn ynhn xnhn xnhnhn x+=+=+

    +=+=+

  • 8/9/2019 Convolution Part B

    32/39

    6*ample Linear Commutative roperties

    Let y[n] !enote the output /convolution0 of thefollo ing t o signals

    M[n] is non Gero for all n. Jo use linear an!commutative properties to e*press y[n] as the sum oft o simpler convolution pro(lems. Let x 5[n ] 2 7.@ n u [n ], x 4[n ] 2 7.; n u [n ], it follo s that

    +n! N[n]2 N5[n]

  • 8/9/2019 Convolution Part B

    33/39

    Causality for L'& ystems)emem(er , a causal system only !epen!s on presentan! past values of the input signal . &t !oes not use$no le!ge a(out future information.8or a causal D' L'& system, the impulse response musth[n]27 for n 7+s y[n] must not !epen! on *[$] for $Hn, so theimpulse response must be 0er1 (efore the impulseis applie!. imilarly for causal C' D' systems, the

    convolution sum2 integral will only go up to n2t ,respectively

    + non causal/ elec mech0 system cannot (emanufacture!

    #$+#$#$#$#$ nhn xk nhk xn yk

    =−= ∑∞

    −∞='(+'('('('( t ht xd t h xt y =−= ∫

    ∞−τ τ τ

  • 8/9/2019 Convolution Part B

    34/39

    5 ! #ausal "ystem 'he system representing the D' impulse response

    is causal (ecause h[n]27 for n 7.

    4 ! 3on4causal "ystem 'he system representing the C' impulse response

    h/t02 sin/t0 pi=t is not causal (ecause h/t0 is not e#ual to 7for t 7.

    Jote 'here are very famous e*amples of non causalsystems, such as perfect high pass or lo pass Flter as e

    shall e*amine in the course.

    6*ample Causality

  • 8/9/2019 Convolution Part B

    35/39

    )emem(er + system is sta(le if every (oun!e!input pro!uces a (oun!e! output

    5 ./ /% system is stable if an! only if itsimpulse response is absolutely summable$

    5 #/ /% system is stable if anl! only if itsimpulse response is abslotely integratable$

    /% "ystem "tability via%mpulse 'esponse

  • 8/9/2019 Convolution Part B

    36/39

    L'& ystem ta(ility via &mpulse)esponse

    roof /D' systems0, consi!er a (oun!e! inputsignalO*[n]O B for all n

    +pplying convolution an! ta$ing the a(solute value

    9sing the triangle ine#uality /magnitu!e of a sumof a set of num(ers is no longer than the sum ofmagnitu!e of the num(ers0

    ∑∑ ∞=

    −∞=

    −∞=

    ≤−≤ K

    K k

    k h Bk n xk hn y ,#$,,#$#$,,#$,

  • 8/9/2019 Convolution Part B

    37/39

    6*ample ystem ta(ility5. C' )C circuit ith a negative e*ponential impulse

    response signal

    4. D' system ith a step impulse response signal

    'he D' accumulator integrator system is unsta(le asthe impulse response signal sums to inFnity. 'his ise#uivalent for C' systems ith h/t02u/t0

    2%2% '(

    1,'(

    11,'(,

    '('(

    '(1

    '(

    RC e

    RC dt e

    RC dt t h

    t xt ydt dy

    RC

    t ue RC

    t h

    RC t

    RC t

    RC t

    =−==

    =+

    =

    ∞−∞ −∞

    ∞−

    ∫ ∫

    ∞===

    =−−=

    ∑∑∑ ∞=

    =

    ∞=

    −∞=

    ∞=

    −∞=

    k

    k

    k

    k

    k

    k

    k uk h

    n xn yn ynunh

    %

    1,#$,,#$,

    #$#1$#$#$#$

  • 8/9/2019 Convolution Part B

    38/39

    ummaryL'& systems are completely characteri0ed(y their impulse response h[n], h/t0

    Convolution iso Commutative

    o Linear

    'hese properties can (e use! to simplifyevaluating convolution, (y !ecomposing thepro(lem into simpler parts, an! then solving

    them in!ivi!ually.

    ∑∑ ∞

    −∞=

    −∞=

    −=−k k

    k n xk hk nhk x #$#$#$#$

    ∫ ∫ ∞∞−∞

    ∞−−=− τ τ τ τ τ τ d t xhd t h x '('('('(

    '('('(+'('(+'(''('((+'(

    #$#$#$+#$#$+#$#'$#$(+#$

    212121

    212121

    t yt yt ht xt ht xt ht ht x

    n yn ynhn xnhn xnhnhn x+=+=+

    +=+=+

  • 8/9/2019 Convolution Part B

    39/39

    tan!ar! system properties of

    o Causality h[n]27 for n 7, h/t027 t 7o ta(ility

    Can (e interprete! using5. Di"erential !i"erence e#uation (ehaviour4. &mpulse response3. 'ransfer function

    +n important part of this course is to analyse !esignsystems using /transforme!0 impulse responserepresentations.

    ummary