33
http://www.mosek.com Convex Optimization : Conic Versus Functional Form Erling D. Andersen MOSEK ApS, Fruebjergvej 3, Box 16, DK 2100 Copenhagen, Blog: http://erlingdandersen.blogspot.com Linkedin: http://dk.linkedin.com/in/edandersen Email: [email protected] WWW: http://www.mosek.com September 7, 2011

Convex Optimization : Conic Versus Functional Form · Conic optimization. A recap Basic cone types Comments An illustrative example Algorithms 3 / 33 Given a convex optimization problem

  • Upload
    others

  • View
    20

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Convex Optimization : Conic Versus Functional Form · Conic optimization. A recap Basic cone types Comments An illustrative example Algorithms 3 / 33 Given a convex optimization problem

http://www.mosek.com

Convex Optimization : Conic VersusFunctional Form

Erling D. Andersen

MOSEK ApS,Fruebjergvej 3, Box 16, DK 2100 Copenhagen,Blog: http://erlingdandersen.blogspot.com

Linkedin: http://dk.linkedin.com/in/edandersenEmail: [email protected]: http://www.mosek.com

September 7, 2011

Page 2: Convex Optimization : Conic Versus Functional Form · Conic optimization. A recap Basic cone types Comments An illustrative example Algorithms 3 / 33 Given a convex optimization problem

Introduction

2 / 33

Page 3: Convex Optimization : Conic Versus Functional Form · Conic optimization. A recap Basic cone types Comments An illustrative example Algorithms 3 / 33 Given a convex optimization problem

Topic

Introduction

Topic

Considerationsabout the formsConic optimization.A recap

Basic cone types

Comments

An illustrativeexample

Algorithms

3 / 33

Given a convex optimization problem then is the classical

formmin c(x)st a(x) ≥ 0

or the conic form

min cTxst Ax = b,

x ∈ K.

preferable from an user perspective?Assumptions

■ c(x) is convex and a(x) is concave.

■ K is a convex cone.

■ We can only solve convex problems efficiently.

Page 4: Convex Optimization : Conic Versus Functional Form · Conic optimization. A recap Basic cone types Comments An illustrative example Algorithms 3 / 33 Given a convex optimization problem

Considerations about the forms

Introduction

Topic

Considerationsabout the formsConic optimization.A recap

Basic cone types

Comments

An illustrativeexample

Algorithms

4 / 33

■ Robustness.

◆ Accuracy of the solution.

◆ How sensitive is the optimizer to the problem data.

■ Solution time.

■ Does the form help the user to build a good model.

◆ Does it prevent nonconvex problems becausechecking convexity is hard.

■ Ease of use.

Page 5: Convex Optimization : Conic Versus Functional Form · Conic optimization. A recap Basic cone types Comments An illustrative example Algorithms 3 / 33 Given a convex optimization problem

Conic optimization. A recap

Introduction

Topic

Considerationsabout the formsConic optimization.A recap

Basic cone types

Comments

An illustrativeexample

Algorithms

5 / 33

Primal problem:

(COP ) min cTxst Ax = b,

x ∈ K1 ×K2 × · · · × Kk,

where each Kk is a cone (closed, pointed and solid).Dual problem:

(COP ) max bT yst AT y + s = c,

s ∈ K∗

1 ×K∗

2 × · · · × K∗

k,

where each K∗

k is the dual convex cone i.e.

K∗

k ≡ {s : xT s ≥ 0, ∀x ∈ K}.

Page 6: Convex Optimization : Conic Versus Functional Form · Conic optimization. A recap Basic cone types Comments An illustrative example Algorithms 3 / 33 Given a convex optimization problem

Basic cone types

Introduction

Topic

Considerationsabout the formsConic optimization.A recap

Basic cone types

Comments

An illustrativeexample

Algorithms

6 / 33

■ Linear:Kl := {x ∈ R : x ≥ 0}

■ Quadratic:

Kq :=

x ∈ Rn : x1 ≥

n∑

j=2

x2j

Page 7: Convex Optimization : Conic Versus Functional Form · Conic optimization. A recap Basic cone types Comments An illustrative example Algorithms 3 / 33 Given a convex optimization problem

Comments

Introduction

Topic

Considerationsabout the formsConic optimization.A recap

Basic cone types

Comments

An illustrativeexample

Algorithms

7 / 33

■ We will only deal with the above 2 self-dual cones.

■ A quote from Stephen Boyd of Stanford: ”Almost allconvex optimization problem can be formulated using acombination of linear, quadratic, semi-definite and theexponential cones”.

■ See also the book of Ben-Tal and Nemirovski for conicquadratic representable sets.

Page 8: Convex Optimization : Conic Versus Functional Form · Conic optimization. A recap Basic cone types Comments An illustrative example Algorithms 3 / 33 Given a convex optimization problem

An illustrative example

8 / 33

Page 9: Convex Optimization : Conic Versus Functional Form · Conic optimization. A recap Basic cone types Comments An illustrative example Algorithms 3 / 33 Given a convex optimization problem

Convex quadratic optimization

Introduction

An illustrativeexample

Convex quadraticoptimization

example continued

Practical issues

Algorithms

9 / 33

Functional formulation:

min 12x

TQx+ cTxst Ax = b,

x ≥ 0.

Given convexity then there exists a H such that

Q = HHT .

Conic reformulation

min 12 t+ cTx

st Ax = b,HTx− y = 0,s = 1,||y||2 ≤ 2st,x ≥ 0.

Page 10: Convex Optimization : Conic Versus Functional Form · Conic optimization. A recap Basic cone types Comments An illustrative example Algorithms 3 / 33 Given a convex optimization problem

example continued

Introduction

An illustrativeexample

Convex quadraticoptimization

example continued

Practical issues

Algorithms

10 / 33

■ Conic reformulation requires more constraints andvariables.

■ The addition is highly structured and sparse.

■ Conic form is convex by construction.

◆ Q is frequently negative semi-definite due torounding errors or mistakes. How to deal with:

[

1 11 1− ǫ

]

?

■ In practice Q is frequently low rank and dense.Implying the conic reformulation requires much lessspace to store.

Page 11: Convex Optimization : Conic Versus Functional Form · Conic optimization. A recap Basic cone types Comments An illustrative example Algorithms 3 / 33 Given a convex optimization problem

Practical issues

Introduction

An illustrativeexample

Convex quadraticoptimization

example continued

Practical issues

Algorithms

11 / 33

■ Many users of the nonlinear capabilities in MOSEK:

◆ Do believe their nonlinear problems are convex.

◆ Do believe convexity is not important.

◆ Almost always make mistakes. (Errors in functionor gradient computations).

■ Checking and verifying convexity is an issue even forquadratic problems.

■ Checking convexity and smoothness for arbitrary blackbox functions are hard.

■ Data for the conic form is very simple. Just vectors,matrices and list of indexes.

Page 12: Convex Optimization : Conic Versus Functional Form · Conic optimization. A recap Basic cone types Comments An illustrative example Algorithms 3 / 33 Given a convex optimization problem

Algorithms

12 / 33

Page 13: Convex Optimization : Conic Versus Functional Form · Conic optimization. A recap Basic cone types Comments An illustrative example Algorithms 3 / 33 Given a convex optimization problem

A comparison

Introduction

An illustrativeexample

Algorithms

A comparison

A primal-dualalgorithm forproblems onfunctional form

Langrange function

KKT optimalityconditionsThe homogeneousmodel

A theoremThe homogeneousalgorithm

The algorithm

alg. cont

alg. cont.

alg. cont.

The nonlinearupdate

A primal-dualalgorithm for conicquadratic problems

One iterationProperties of thesearch directionSummary aboutalgorithms

13 / 33

■ The available algorithms determines which form ispreferable.

■ Only primal-dual interior-point algorithms areconsidered.

■ They are efficient in practice.

■ Polynomial complexity holds:

◆ For some problems on functional form.

◆ All conic quadratic problems.

■ Claim: The algorithm for problems on conic form ismore efficient and robust than problems on functionalform.

■ Justification of claim: Follows.

Page 14: Convex Optimization : Conic Versus Functional Form · Conic optimization. A recap Basic cone types Comments An illustrative example Algorithms 3 / 33 Given a convex optimization problem

A primal-dual algorithm for problems on functionalform

Introduction

An illustrativeexample

Algorithms

A comparison

A primal-dualalgorithm forproblems onfunctional form

Langrange function

KKT optimalityconditionsThe homogeneousmodel

A theoremThe homogeneousalgorithm

The algorithm

alg. cont

alg. cont.

alg. cont.

The nonlinearupdate

A primal-dualalgorithm for conicquadratic problems

One iterationProperties of thesearch directionSummary aboutalgorithms

14 / 33

Problem:min c(x)st ai(x) ≥ 0, ∀i,

x ≥ 0.

Assumptions:

1. x ∈ Rn

2. c is convex and twice differentiable.

3. ai is concave and twice differentiable.

Page 15: Convex Optimization : Conic Versus Functional Form · Conic optimization. A recap Basic cone types Comments An illustrative example Algorithms 3 / 33 Given a convex optimization problem

Langrange function

Introduction

An illustrativeexample

Algorithms

A comparison

A primal-dualalgorithm forproblems onfunctional form

Langrange function

KKT optimalityconditionsThe homogeneousmodel

A theoremThe homogeneousalgorithm

The algorithm

alg. cont

alg. cont.

alg. cont.

The nonlinearupdate

A primal-dualalgorithm for conicquadratic problems

One iterationProperties of thesearch directionSummary aboutalgorithms

15 / 33

Lagrange function

L(x, y) ≡ c(x)− yTa(x),

where y ≥ 0.The dual problem:

max L(x, y)− xT sst ∇(x)L(x, y)

T = s,

x, y, s ≥ 0,

s ∈ Rn.

Alternatively:

max L(x, y)−∇xL(x, y)xst ∇xL(x, y)

T = s,x, y, s ≥ 0.

Page 16: Convex Optimization : Conic Versus Functional Form · Conic optimization. A recap Basic cone types Comments An illustrative example Algorithms 3 / 33 Given a convex optimization problem

KKT optimality conditions

Introduction

An illustrativeexample

Algorithms

A comparison

A primal-dualalgorithm forproblems onfunctional form

Langrange function

KKT optimalityconditionsThe homogeneousmodel

A theoremThe homogeneousalgorithm

The algorithm

alg. cont

alg. cont.

alg. cont.

The nonlinearupdate

A primal-dualalgorithm for conicquadratic problems

One iterationProperties of thesearch directionSummary aboutalgorithms

16 / 33

(MCP ) min (x; y)T (s; z)st a(x) = z,st ∇xL(x, y)

T = s,x, z, y, s ≥ 0.

where z ∈ Rm is slack variables.

Note:

■ The KKT conditions is a monotone complementarityproblem.

■ Primal-dual interior-point type algorithm.

■ Difficulties with detecting infeasibility!

■ Feasibility constraints are potentially highly nonlinear!

Page 17: Convex Optimization : Conic Versus Functional Form · Conic optimization. A recap Basic cone types Comments An illustrative example Algorithms 3 / 33 Given a convex optimization problem

The homogeneous model

Introduction

An illustrativeexample

Algorithms

A comparison

A primal-dualalgorithm forproblems onfunctional form

Langrange function

KKT optimalityconditionsThe homogeneousmodel

A theoremThe homogeneousalgorithm

The algorithm

alg. cont

alg. cont.

alg. cont.

The nonlinearupdate

A primal-dualalgorithm for conicquadratic problems

One iterationProperties of thesearch directionSummary aboutalgorithms

17 / 33

The homogeneous model denoted (HMCP ):

min (x; τ)T (s;κ)st τa(x/τ) = z, primal feasibility

τ∇xL(x/τ, y/τ)T = s, dual feasibility,

−xT∇xL(x/τ, y/τ)T − yTa(x/τ) = κ, zero gap,

x, z, τ, s, y, κ ≥ 0.

■ Has two additional variables τ, κ and one additionalconstraint.

■ (HMCP ) is a homogeneous monotonecomplementarity problem.

■ Always has solution (0).

Page 18: Convex Optimization : Conic Versus Functional Form · Conic optimization. A recap Basic cone types Comments An illustrative example Algorithms 3 / 33 Given a convex optimization problem

A theorem

Introduction

An illustrativeexample

Algorithms

A comparison

A primal-dualalgorithm forproblems onfunctional form

Langrange function

KKT optimalityconditionsThe homogeneousmodel

A theoremThe homogeneousalgorithm

The algorithm

alg. cont

alg. cont.

alg. cont.

The nonlinearupdate

A primal-dualalgorithm for conicquadratic problems

One iterationProperties of thesearch directionSummary aboutalgorithms

18 / 33

Theorem: (Andersen and Ye 95)Let (x∗, z∗, y∗, τ∗, s∗, κ∗) be a maximal complementaritysolution to (HMCP ). Then (MCP ) has a solution if and onlyif τ∗ > 0. In this case, (x∗, z∗, y∗, s∗)/τ∗ is a complementaritysolution for (MCP ).Conclusion: Compute a maximal solution to (HMCP ).

Page 19: Convex Optimization : Conic Versus Functional Form · Conic optimization. A recap Basic cone types Comments An illustrative example Algorithms 3 / 33 Given a convex optimization problem

The homogeneous algorithm

Introduction

An illustrativeexample

Algorithms

A comparison

A primal-dualalgorithm forproblems onfunctional form

Langrange function

KKT optimalityconditionsThe homogeneousmodel

A theoremThe homogeneousalgorithm

The algorithm

alg. cont

alg. cont.

alg. cont.

The nonlinearupdate

A primal-dualalgorithm for conicquadratic problems

One iterationProperties of thesearch directionSummary aboutalgorithms

19 / 33

Algorithm: Apply a primal-dual interior-point method to(HMCP ) i.e. apply Newtons method to the perturbedoptimality conditions:

τ∇xL(x/τ, y/τ)T = s,

τa(x/τ) = z,−xT∇xL(x/τ, y/τ)

T − yTa(x/τ) = κ,Xs = µe,Zy = µe,τκ = µ,

x, z, τ, s, y, κ > 0.

µ > 0: Is a parameter.

■ Primal feasibility cond. is nonlinear.

■ Dual feasibility cond. is nonlinear.

■ Perturbed complementarity cond. is nonlinear.

Page 20: Convex Optimization : Conic Versus Functional Form · Conic optimization. A recap Basic cone types Comments An illustrative example Algorithms 3 / 33 Given a convex optimization problem

The algorithm

Introduction

An illustrativeexample

Algorithms

A comparison

A primal-dualalgorithm forproblems onfunctional form

Langrange function

KKT optimalityconditionsThe homogeneousmodel

A theoremThe homogeneousalgorithm

The algorithm

alg. cont

alg. cont.

alg. cont.

The nonlinearupdate

A primal-dualalgorithm for conicquadratic problems

One iterationProperties of thesearch directionSummary aboutalgorithms

20 / 33

Step 0: Choose (x; z; τ ; y; s;κ) > 0.Step 1: Choose parameters.Step 2: Compute the residuals:

r ≡

rDrGrP

≡ −

s− τgκ+ xT g − yTa(x/τ)z − τa(x/τ)

,

wherew ≡ (x; z; τ ; y; s;κ)J ≡ ∇a(x/τ),g ≡ ∇xL(x/τ, y/τ)

T

H ≡ ∇2xL(x/τ, y/τ).

Page 21: Convex Optimization : Conic Versus Functional Form · Conic optimization. A recap Basic cone types Comments An illustrative example Algorithms 3 / 33 Given a convex optimization problem

alg. cont

Introduction

An illustrativeexample

Algorithms

A comparison

A primal-dualalgorithm forproblems onfunctional form

Langrange function

KKT optimalityconditionsThe homogeneousmodel

A theoremThe homogeneousalgorithm

The algorithm

alg. cont

alg. cont.

alg. cont.

The nonlinearupdate

A primal-dualalgorithm for conicquadratic problems

One iterationProperties of thesearch directionSummary aboutalgorithms

21 / 33

Step 3: Solve the Newton equation system:

H v2 −JT

(v1)T HG −(v3)T

J v3 0

dxdτdy

dsdκdz

= ηr

andSdx +Xds = −Xs+ γµe,Y dz + Zdy = −Zy + γµe,κdτ + τdκ = −τκ+ γµ,

wherev1 ≡ ∇c(x/τ )T −Hx/τ,v2 ≡ −∇c(x/τ )T −Hx/τ,v3 ≡ a(x/τ )− Jx/τ,Hg ≡ x/τTH(x/τ ),µ ≡ (x; z; τ )T (s; y;κ)/(n+m+ 1).

Page 22: Convex Optimization : Conic Versus Functional Form · Conic optimization. A recap Basic cone types Comments An illustrative example Algorithms 3 / 33 Given a convex optimization problem

alg. cont.

Introduction

An illustrativeexample

Algorithms

A comparison

A primal-dualalgorithm forproblems onfunctional form

Langrange function

KKT optimalityconditionsThe homogeneousmodel

A theoremThe homogeneousalgorithm

The algorithm

alg. cont

alg. cont.

alg. cont.

The nonlinearupdate

A primal-dualalgorithm for conicquadratic problems

One iterationProperties of thesearch directionSummary aboutalgorithms

22 / 33

■ η = (γ− 1) where γ ∈ [0, 1] is an algorithmic parameters.

Step 4: Update.

(x+; τ+; y+; ) = (x; τ ; y) + α(dx; dτ ; dy)

Update of slacks:

(z+; s+;κ+) = (z + αdz; s+ αds;κ+ αdκ)

orz+ = ((1 + αη)rP + τ+a(x+/τ+),s+ = ((1 + αη)rD + g+),κ+ = ((1 + αη)rG + g+κ ,

where

g+ ≡ τ+∇xL(x+/τ+, y+/τ+)T

g+κ ≡ −(x+)T∇xL(x+/τ+, y+/τ+)T − (y+)Ta(x+/τ+)

for some step-size α ∈ (0, 1].

Page 23: Convex Optimization : Conic Versus Functional Form · Conic optimization. A recap Basic cone types Comments An illustrative example Algorithms 3 / 33 Given a convex optimization problem

alg. cont.

Introduction

An illustrativeexample

Algorithms

A comparison

A primal-dualalgorithm forproblems onfunctional form

Langrange function

KKT optimalityconditionsThe homogeneousmodel

A theoremThe homogeneousalgorithm

The algorithm

alg. cont

alg. cont.

alg. cont.

The nonlinearupdate

A primal-dualalgorithm for conicquadratic problems

One iterationProperties of thesearch directionSummary aboutalgorithms

23 / 33

Step 5: Repeat step 2 to 4.Issues:

■ Gap and residuals are reduced by the factor (1 + αη) inevery iteration (given the nonlinear update).

■ Polynomial complexity holds under certainassumptions.

■ OBSERVE: The nonlinear update

z+ = ((1 + αη)rP + τ+a(x+/τ+),s+ = ((1 + αη)rD + g+).κ+ = ((1 + αη)rG + g+κ ).

Does not always work well!!!

Page 24: Convex Optimization : Conic Versus Functional Form · Conic optimization. A recap Basic cone types Comments An illustrative example Algorithms 3 / 33 Given a convex optimization problem

The nonlinear update

Introduction

An illustrativeexample

Algorithms

A comparison

A primal-dualalgorithm forproblems onfunctional form

Langrange function

KKT optimalityconditionsThe homogeneousmodel

A theoremThe homogeneousalgorithm

The algorithm

alg. cont

alg. cont.

alg. cont.

The nonlinearupdate

A primal-dualalgorithm for conicquadratic problems

One iterationProperties of thesearch directionSummary aboutalgorithms

24 / 33

■ Alternative. A linear update

z+ = x+ αdz,s+ = s+ αdsκ+ = κ+ αdκ

but then a merit function is required e.g. two norm ofthe residuals.

■ Works most of the time.

■ Can lead to very slow convergence and robustnessproblems.

■ A major weakness.

■ Nonlinear primal and dual feasibility constraints are thecause of the problems.

Page 25: Convex Optimization : Conic Versus Functional Form · Conic optimization. A recap Basic cone types Comments An illustrative example Algorithms 3 / 33 Given a convex optimization problem

A primal-dual algorithm for conic quadraticproblems

Introduction

An illustrativeexample

Algorithms

A comparison

A primal-dualalgorithm forproblems onfunctional form

Langrange function

KKT optimalityconditionsThe homogeneousmodel

A theoremThe homogeneousalgorithm

The algorithm

alg. cont

alg. cont.

alg. cont.

The nonlinearupdate

A primal-dualalgorithm for conicquadratic problems

One iterationProperties of thesearch directionSummary aboutalgorithms

25 / 33

The homogeneous model:

(H) Ax− bτ = 0, (primal feasibility)AT y + s− cτ = 0, (dual feasibility)

−cTx+ bT y − κ = 0, (zero gap)(x; τ) ∈ K, (s;κ) ∈ K

■ In linear case suggested suggested Goldman andTucker. Later rediscovered by Mizuno, Todd and Ye.

■ All solutions satisfies: xT s+ τκ = 0.

■ If and only if τ > 0, then an optimal solution exists.

■ Find a solution such that τ + κ > 0.

■ Linear primal and dual feasibility conditions!!!

■ Algorithmic framework: The Nesterov-Todd direction.

Page 26: Convex Optimization : Conic Versus Functional Form · Conic optimization. A recap Basic cone types Comments An illustrative example Algorithms 3 / 33 Given a convex optimization problem

One iteration

Introduction

An illustrativeexample

Algorithms

A comparison

A primal-dualalgorithm forproblems onfunctional form

Langrange function

KKT optimalityconditionsThe homogeneousmodel

A theoremThe homogeneousalgorithm

The algorithm

alg. cont

alg. cont.

alg. cont.

The nonlinearupdate

A primal-dualalgorithm for conicquadratic problems

One iterationProperties of thesearch directionSummary aboutalgorithms

26 / 33

NT search direction:

Adx − bdτ = η(Ax− bτ ),ATdy + ds − cdτ = η(AT y + s− cτ ),

−cTdx + bT dy − dκ = η(−cTx+ bT y − κ),X̄T (ΘW )−1ds + S̄TΘWdx = −X̄S̄e+ γµe,

τdκ + κdτ = −τκ+ γµ.

where η := γ − 1 and γ ∈ [0, 1).New iterate:

x+

τ+

y+

s+

κ+

=

xτysκ

+ α

dxdτdydsdκ

.

Page 27: Convex Optimization : Conic Versus Functional Form · Conic optimization. A recap Basic cone types Comments An illustrative example Algorithms 3 / 33 Given a convex optimization problem

Properties of the search direction

Introduction

An illustrativeexample

Algorithms

A comparison

A primal-dualalgorithm forproblems onfunctional form

Langrange function

KKT optimalityconditionsThe homogeneousmodel

A theoremThe homogeneousalgorithm

The algorithm

alg. cont

alg. cont.

alg. cont.

The nonlinearupdate

A primal-dualalgorithm for conicquadratic problems

One iterationProperties of thesearch directionSummary aboutalgorithms

27 / 33

Fact:

Ax+ − bτ+ = (1 + αη)(Ax− bτ ),AT y+ + s+ − cτ+ = (1 + αη)(AT y + s− cτ ),

−cTx+ + bT y+ − κ+ = (1 + αη)(−cTx+ bT y − κ),dTx d

Ts + dτdκ = 0,

(x+)T s+ + τ+κ+ = (1 + αη)((x)T s+ τκ).

Observations:

■ NT search direction can be seen as Newtons method.

■ The method is symmetric!

■ The complementarity gap is reduced by a factor of(1 + αη) ∈ [0, 1).

■ The infeasibility is reduced by the same factor.

■ No merit function is required.

Page 28: Convex Optimization : Conic Versus Functional Form · Conic optimization. A recap Basic cone types Comments An illustrative example Algorithms 3 / 33 Given a convex optimization problem

Summary about algorithms

Introduction

An illustrativeexample

Algorithms

A comparison

A primal-dualalgorithm forproblems onfunctional form

Langrange function

KKT optimalityconditionsThe homogeneousmodel

A theoremThe homogeneousalgorithm

The algorithm

alg. cont

alg. cont.

alg. cont.

The nonlinearupdate

A primal-dualalgorithm for conicquadratic problems

One iterationProperties of thesearch directionSummary aboutalgorithms

28 / 33

■ Both algorithms are called primal-dual interior-point.

■ Only in the conic form are the feasibility constraintslinear.

■ The functional one is more like primal algorithm for theKKT system

■ The conic algorithm is truly symmetric i.e. you can flipthe primal and dual problem.

■ Due to issues with the merit function then the functionalform is not as robust as conic one.

Page 29: Convex Optimization : Conic Versus Functional Form · Conic optimization. A recap Basic cone types Comments An illustrative example Algorithms 3 / 33 Given a convex optimization problem

An illustrative example

Introduction

An illustrativeexample

Algorithms

A comparison

A primal-dualalgorithm forproblems onfunctional form

Langrange function

KKT optimalityconditionsThe homogeneousmodel

A theoremThe homogeneousalgorithm

The algorithm

alg. cont

alg. cont.

alg. cont.

The nonlinearupdate

A primal-dualalgorithm for conicquadratic problems

One iterationProperties of thesearch directionSummary aboutalgorithms

29 / 33

Conic form:min yst x = y

‖x‖ ≤ y,x ∈ R

Functional form:min yst x = y

x2

y≤ y,

y ≥ 0,x, y ∈ R

Page 30: Convex Optimization : Conic Versus Functional Form · Conic optimization. A recap Basic cone types Comments An illustrative example Algorithms 3 / 33 Given a convex optimization problem

MOSEK v6 on the conic formulation

Introduction

An illustrativeexample

Algorithms

A comparison

A primal-dualalgorithm forproblems onfunctional form

Langrange function

KKT optimalityconditionsThe homogeneousmodel

A theoremThe homogeneousalgorithm

The algorithm

alg. cont

alg. cont.

alg. cont.

The nonlinearupdate

A primal-dualalgorithm for conicquadratic problems

One iterationProperties of thesearch directionSummary aboutalgorithms

30 / 33

ITE PFEAS DFEAS KAP/TAU POBJ DOBJ MU0 1.0e+000 0.0e+000 1.0e+000 1.000e+000 0.0000e+000 1.0e+0001 5.0e-002 0.0e+000 5.0e-002 5.000e-002 0.0000e+000 5.0e-0022 2.5e-003 0.0e+000 2.5e-003 2.500e-003 0.0000e+000 2.5e-0033 1.3e-004 0.0e+000 1.3e-004 1.250e-004 0.0000e+000 1.3e-0044 6.3e-006 2.2e-016 6.3e-006 6.250e-006 0.0000e+000 6.3e-0065 3.1e-007 0.0e+000 3.1e-007 3.128e-007 0.0000e+000 3.1e-0076 1.6e-008 0.0e+000 1.6e-008 1.564e-008 0.0000e+000 1.6e-0087 7.8e-010 1.1e-016 7.8e-010 7.821e-010 0.0000e+000 7.8e-010

Page 31: Convex Optimization : Conic Versus Functional Form · Conic optimization. A recap Basic cone types Comments An illustrative example Algorithms 3 / 33 Given a convex optimization problem

MOSEK v6 on the functional formulation

Introduction

An illustrativeexample

Algorithms

A comparison

A primal-dualalgorithm forproblems onfunctional form

Langrange function

KKT optimalityconditionsThe homogeneousmodel

A theoremThe homogeneousalgorithm

The algorithm

alg. cont

alg. cont.

alg. cont.

The nonlinearupdate

A primal-dualalgorithm for conicquadratic problems

One iterationProperties of thesearch directionSummary aboutalgorithms

31 / 33

ITE PFEAS DFEAS KAP/TAU POBJ DOBJ MU0 1.0e+000 1.4e+000 1.0e+000 1.000e+000 0.000e+000 1.0e+0001 1.2e-001 6.4e-001 3.9e-003 1.648e-001 0.000e+000 1.1e-0012 2.2e-003 6.8e-001 1.8e-003 1.972e-003 0.000e+000 2.0e-003...50 3.2e-009 3.5e-003 1.5e-009 2.040e-009 -4.135e-025 2.4e-00951 2.9e-009 3.1e-003 1.3e-009 1.836e-009 0.000e+000 2.1e-00952 2.6e-009 2.8e-003 1.2e-009 1.653e-009 0.000e+000 1.9e-009...122 1.6e-012 1.4e-006 7.4e-013 1.036e-012 0.0000e+000 1.2e-012123 1.5e-012 1.2e-006 6.7e-013 9.327e-013 0.0000e+000 1.1e-012

■ Performance on the functional formulation is bad.

■ Merit function forces the alg. to take small steps.

■ Behavior seen occasionally on large instances.

■ Other interior-point optimizers may do better of course.

Page 32: Convex Optimization : Conic Versus Functional Form · Conic optimization. A recap Basic cone types Comments An illustrative example Algorithms 3 / 33 Given a convex optimization problem

Summary

Introduction

An illustrativeexample

Algorithms

A comparison

A primal-dualalgorithm forproblems onfunctional form

Langrange function

KKT optimalityconditionsThe homogeneousmodel

A theoremThe homogeneousalgorithm

The algorithm

alg. cont

alg. cont.

alg. cont.

The nonlinearupdate

A primal-dualalgorithm for conicquadratic problems

One iterationProperties of thesearch directionSummary aboutalgorithms

32 / 33

The (restricted) conic formulation of nonlinear problems isadvantageous because

■ The problem data is simpler to deal in a software senseand no blackbox functions are required.

■ It is impossible to formulate nonconvex problems.

■ The available algorithm is much better.

■ It easy to dualize the conic formulation.

Caveats:

■ The conic formulation is usually bigger in terms ofnumber of variables and constraints but also highlystructured.

■ Usually the storage and time spend per iteration will besame or less for the conic formulation.

Page 33: Convex Optimization : Conic Versus Functional Form · Conic optimization. A recap Basic cone types Comments An illustrative example Algorithms 3 / 33 Given a convex optimization problem

Conclusion

Introduction

An illustrativeexample

Algorithms

A comparison

A primal-dualalgorithm forproblems onfunctional form

Langrange function

KKT optimalityconditionsThe homogeneousmodel

A theoremThe homogeneousalgorithm

The algorithm

alg. cont

alg. cont.

alg. cont.

The nonlinearupdate

A primal-dualalgorithm for conicquadratic problems

One iterationProperties of thesearch directionSummary aboutalgorithms

33 / 33

■ The conic form is better than the functional form!