21
Pergamon Prog. C/ystalGro?/thand Charact. Vo l 30, pp. 217-236. 1995 1995 Elsevier Science Ltd Printed in Great Bdtatn 0960-8974/95 $29.00 0960-8974(95)00006-2 CONTROL OF CRYSTAL GROWI"H IN BRIDGMAN FURNACE C. Batur,* A. Srinivasan,* W. M. B. Duvalt and N. B. Singh¢ *Department of Mecha nical Engineering, Universit y of Akron, Akron, OH 44325-3903, U.S.A. 1-Processing Science and Technology Branch , Materials Division, NA SA LE-WlS Research Center, Cleveland, OH 44135, U.S.A. :l:Westinghouse Research and DevelopmentCenter, 1310 Beulah Road, PiMsburgh, PA 15235 , U.S.A. ABSTRACT Control of crystal quality during crystal growth requires accurate implementation of thermal boundary conditions. We identify this problem as the furnace temperature control problem. The thermal boundary conditions, in turn, dictate the interface shape between the solid and the liquid region of the material. Determination of the boundary conditions for a given desired interface shape is considered as the material temperature control problem in this paper. W e outline the current efforts for the solution of the furnace temperature control and the material temperature control problems. We restrict our review to Bridgman growth control techniques. 1. INTRO DUCTION Density of crystal defects, poly-crystallization, homogeneity density of impurity atoms and non-uniform distribution of a dopant material are vital measures defining the quality of grown crystals, Gevelber et al [ 15], [ 16]. Control of crystal quality while the crystal is growing inside a furnace requires the measurement of quality. Alternatively, we need in- situ measurements that can be uniquely related to quality. For example, if the crystal is to be used as an acousto optical tunable filter, the acoustic and optical properties de fine the quality, therefore, som e measurements related to the acousto-optical properties should be received in-situ by the growth control algorithm. There are practical difficulties associated with the definition and the measurement of quality. Most of the time a set of variables defines the quality and they are not always accessible during growth. If they can be measured after the growth then the statistical process control techniques can be used to provide practical solutions to quality control problem. However, this is an off-line control methodology and the optimization is only possible at the expense of costly trials. From the manufacturing control point of view, it is 21 7

Control of Crystal Growth in Bridgeman

Embed Size (px)

Citation preview

Page 1: Control of Crystal Growth in Bridgeman

8/6/2019 Control of Crystal Growth in Bridgeman

http://slidepdf.com/reader/full/control-of-crystal-growth-in-bridgeman 1/20

PergamonProg. C/ystalGro?/thand Charac t. Vo l 30 , pp . 217-236 . 1995

1995 Elsevier Science LtdPrinted in Great Bdtatn

0960-8974 /95 $29 .00

0960-8974(95)00006-2

C O N T R O L O F C R Y S T A L G R O W I "H IN B R I D G M A N F U R N A C E

C. Batur,* A. Srinivasan,* W. M. B. Duvalt and N. B. Singh¢

*Department of Mecha nical Engineering, University of Akron, Akron,OH 44325-3903, U.S.A.

1-Processing Scienc e and Te chno logy Branch , Materials Division, NA SA LE-WlS ResearchCenter, Cleveland, OH 44 135, U.S.A.

:l:Westinghouse Res earch and Dev elopm entCenter, 1310 Beulah Road,

PiMsburgh, PA 15235 , U.S .A.

A B S T R A C T

Co ntro l o f crys tal qual i ty dur ing crys tal g ro wth requires accu rate implem entat ion o f

thermal bou nda ry condit ions . W e identify th is problem as the furnace tem perature contro l

problem. Th e thermal bound ary conditions , in tu rn , d icta te the in ter face shape betw een the

so lid and the l iqu id reg ion o f the m ater ia l . Determ inat ion of the bounda ry condit ions for a

g iven des ired in ter face shape is considered as the materia l tem perature con tro l p roblem in

th is paper . W e out l ine the c ur ren t ef for ts for the so lu t ion of the furnace tem peraturecontro l and the materia l tem perature contro l p roblems. W e res tr ic t our rev iew to

Br idg m an grow th contro l techniques.

1. I N T R O D U C T I O N

De nsi ty o f crys tal defects , poly-crys tal lizat ion , hom ogenei ty densi ty of im pur i ty a toms and

non-un iform dis tr ibu t ion of a d opant material are v i ta l m easures def in ing the qual i ty of

gro w n crystals, Ge velbe r et al [ 15], [ 16]. Control of crystal quality w hile the crystal is

grow ing ins ide a furnace requires the m easuremen t of quali ty . A lternat ively , w e need in-

s itu m easurem ents that can be uniquely rela ted to qual ity. Fo r example, i f the crys tal is to

be u sed as an acou sto opt ical tunable f il ter, the aco ust ic and opt ical p roper t ies de f ine thequal i ty , therefore , som e mea surem ents re la ted to the acousto-opt ical p roper t ies should be

received in-si tu by the grow th co ntro l a lgor ithm.

Th ere are pract ical d if ficu l ties associated with the def in it ion and the m easure m ent of

quali ty . M ost of the t ime a set o f variab les def ines the quali ty and they are not a lw ays

access ib le dur ing growth . I f they can be mea sured after the grow th then the s ta tist ical

proces s con tro l techniques can be used to provide pract ical so lu tions to qual i ty contro l

problem. H ow eve r , th is is an off -l ine contro l methodo logy and the opt imizat ion is on ly

poss ib le a t the expense o f cos t ly tr ia ls. F rom the ma nufactur ing contro l po in t o f v iew, i t is

21 7

Page 2: Control of Crystal Growth in Bridgeman

8/6/2019 Control of Crystal Growth in Bridgeman

http://slidepdf.com/reader/full/control-of-crystal-growth-in-bridgeman 2/20

2 1 8 C . Ba t u r e t a l .

prac t ica l to ident i fy a var iable tha t wi l l provide a reasonable m easure o f qua l i ty whi le the

crysta l is growin g.

The shape o f so l id - liqu id in te r face is comm only accep ted a s an ind ica to r tha t c an be

re la ted to c rysta l qua li ty . Th e shape inf luences the c rysta ll ine perfec t ion and com posi t ion a l

hom oge nei ty . A crysta l tha t grow s wi th a f ia t in te rface has minimal therm al s t resses

becau se the the rma l cha nges a re in one d im ens ion on ly , Fu and W i lcox [ 13 ]. Du t t a e t a l

[10] ob serv ed tha t G aSb crysta ls gro w n wi th a fia t mel t -so l id in te rface exhib i ted very low

dis loca t ion dens i t ie s due to the reduc t ion o f the rma l s tr e sse s a t t he in t er face . The re fo re , i t

m akes p rac t i c a l sense to con t ro l the shape o f in t e r face by m an ipu la t ing the the rm a l

bo und ary con di t ion s surro und ing the in te rface . I f a cer ta in in te rface shape is desi red , there

is a corres po ndin g tem pera ture d is t r ibut ion inside the m ater ial tha t gen era tes th is spec i f ied

in te r face shape . T he t a sk o f the in t er face shape con t ro l l e r i s to e s t ab l ish th is t em pe ra tu re

d i s tr i tmt ion . We iden ti fy th i s p rob lem a s the m a ter ia l t empe ra tu re con t ro l p rob lem. The

required te m per a tur e d is t r ibut ion or , equiva lent ly , the desi red in te rface shape can b e

accom pl i shed by m an ipu la t ing the boun da ry cond i t ions a round the m a ter ia l . The se

bou nda ry cond i t ions are e s t ab l ished by the ~ rn ac e t empe ra tu re con tro l le r . The

tem pera tu re con t ro l p rob lem in the fu rnace is s imp le r than the t emp era tu re con t ro l

p rob lem ins ide the ma te ri al . W e iden t ify th is p rob lem a s the fu rnace t em pera tu re con t ro l

p rob lem.

F igu re 1 sho w s the func t iona l b locks o f the c rystal g row th con t ro l le r . I f t he in t e r face

. shape o r the in s ide ma te ri a l temp e ra tu re s can be measu red , i t is com pared w i th the de s i red

in te r face shape o r the de s i red ma te ri a l t empe ra tu re s and the re su l ting e r ro r s igna l i s sen t to

the ma te r i al t em pe ra tu re con t ro l le r . T he requ i red bounda ry cond i t ions o r equ iva len t ly the

fu rnace t emp era tu re s a re d e te rmined by the ma te r ia l t emp e ra tu re con t ro ll e r . The boun da ry

cond i t ions a re u sed a s the se t -po in t t empe ra tu re s fo r the fu rnace t em pera tu re con t ro l le r . I t

may be n o t i ced tha t the fu rnace t empera tu re con t ro l sys tem is on ly a m inor con t ro l loop

wi th in the f ram ew ork o f the in t e rface con t ro l sys tem. The ac tua l boun da ry cond i t ions

e s tab li shed by the fu rnace t empera tu re co n t ro l l e r de te rmine the t em pe ra tu re s in s ide the

ma te r i a l t h rou gh th e dynam ics o f the c rys ta l g row th mechan i sm.

I f the in t e r face shape can no t be measu red , i t is imposs ible to con t ro l the shape o fin te rface w i th a f eedback con t ro l system. We can on ly con t ro l the var iab les tha t w e can

mea su re o r e s t ima te . How eve r , u nde r ce r t a in c i rcumstances , it is poss ib le to r ecove r the

in te rface shape in fo rma t ion by pa rt ia l m easu remen t s . Fo r example , i f t he ou t s ide w a ll

su r face t em pera tu re s o f the c ruc ib le can be measu red , then , th roug h a m ode l o f the g ro w th

dynam ics, the sh ape inform at ion can be part ia lly recovere d . This inform at ion then can be

fed back to the m a te ri a l tem pe ra tu re con t ro l le r a s in the p rev ious ca se .

Th e b lock d iag ram o f F igu re 1 a lso h igh l igh t s the fac t tha t fo r a g iven des i red in te r face

shape o ne can de te rmine m ore than one t emp era tu re d is t r ibu t ion in s ide the m a te ri a l tha t

co r re s pon ds to the sam e shape . In o the r words , t he re may no t be a phys ica lly real iz ab letem pera tu re d i s t ribu t ion fo r a g iven in te r face shape . Th i s non-un ique ness p rob lem can be

Page 3: Control of Crystal Growth in Bridgeman

8/6/2019 Control of Crystal Growth in Bridgeman

http://slidepdf.com/reader/full/control-of-crystal-growth-in-bridgeman 3/20

C o n t r o l o f C r y s t a l G r o w t h

reso lved by in t rod uc in g a f i l te r tha t determines a phy s ica l l y rea li zab le tem pera ture

d i s t r i b u t i o n i n s i d e t h e m a t e r ia l f o r a g i v e n a r b i tr a r y d e s i r e d i n t e r f a c e s h a p e .

2 1 9

--•RE-FILTER

\ DESIRED\ INTERFACE\ SI-L~PE

DESIREDIV~TERtAL IEIV~. REQUIRED ACTUA LT r BOUND~J'~Y BOUN DARY

C O N D ~ C O ND IT IO N S, T z

I V l A T E R I A L rE r ES, r

R

, a / d~ SURFACE IF::MpI:RAIU~S

OR Iqlrd~AC~

MEASURED OR ESI11vIATEDMATE RIAL TEMPERATURES

E S T I M A T O R M E A ~ M E N T s Y s T E M- - -

Figure 1 . Crys ta l g row th con t ro l system.

Th e des i red in te r face shape i s spec if ied by the opera to r . The p re - f il te r de te rmines the phys ica l ly

real izab le tem pera tu re d is t ribu t ion ins ide the mate r ia l . The mate r ia l tem pera tu re co n t ro l le r

es tab l i shes the requ ired bo undary cond i t ions which , in tu rn , a re im plem ented by the fu rnac etem pera tu re con t ro l le r . The es t imator es timates the ac tua l m ate r ia l temp era tu res g iven par t ia l

me a s u r e m e n t s s u c h a s t h e a m p o u le ' s o u t s id e s u r f ac e t e mp e r a tu r e s o r t h e i n te r f ac e s h a p e

T h i s r e v i e w d o e s n o t a d d r e s s t h e c o n t r o l p r o b l e m s t h a t a re s p e c if ic to t h e m a t e ri a ls g r o w n

a n d i s l im i t e d t o f u r n a c e a n d m a t e ri a l t e m p e r a t u r e c o n t r o l p r o b l e m i n B r i d g m a n g r o w t h

t e c h n i q u e s . F o r a r e v i e w o f m a t e r ia l re l a te d g r o w t h p r o b l e m s , t h e r e a d e r i s r e f e r r e d t o

P e t r o s y a n [ 3 2 ]. F o r t h e c o n t r o l l e r d e s ig n i s su e s re l a te d t o t h e C z o c h r a l s k i p r o c e s s ,

G e v e l b e r a n d S t e p h a n o p o l u s [ 17 ] , [1 8 ] p r o v i d e a n e x c e l le n t d i s c u s s io n o n t h e m o d e l

b a s e d i n t e r f a c e c o n t r o l .

T h e o r g a n i z a t i o n o f t h e p a p e r i s a s f o ll o w s . C o n t r o l o f f u rn a c e t e m p e r a t u r e s , i .e ., t h e

m i n o r c o n t r o l l o o p o f F i g u r e 1 , i s d i s c u s s e d in S e c t i o n 2. B o t h m o d e l b a s e d a n d

c o n v e n t i o n a l P I D t e m p e r a t u r e c o n t r o l le r s a r e r e v i ew e d . T h e m a t e r i a l t e m p e r a t u r e c o n t r o l

p r o b l e m i s p r e s e n t e d i n S e c t i o n 3. T h e m e a s u r e m e n t o f i n te r f a ce s h a p e a n d t h e i n t e r fa c e

s h a p e c o n t r o l l e r d e s i g n a r e g i v e n h e r e f o r t h e v e r t ic a l B r i d g r n a n c o n f i g u r a t i o n . F i n a ll y ,

c o n c l u s i o n s a r e s t a t e d i n S e c t i o n 4.

2 . C O N T R O L O F F U R N A C E T E M P E R A T U R E S

2 . 1 D Y N A M I C M O D E L O F H E A T I N G Z O N E S

F o r a m u l t i - z o n e c r ys t al g r o w t h f u r n a ce , t h e d y n a m i c s b e t w e e n t h e z o n e t e m p e r a t u r e s a n d

t h e e n e r g y i n p u t t o h e a t i n g z o n e s c a n b e e x p r e s s e d b y a li n ea r m o d e l a s

Page 4: Control of Crystal Growth in Bridgeman

8/6/2019 Control of Crystal Growth in Bridgeman

http://slidepdf.com/reader/full/control-of-crystal-growth-in-bridgeman 4/20

2 2 0 C . Ba t u r e t a l .

y ( t ) = A l y ( t - l ) + A z y ( t - 2 ) + . . . + A . y ( t - n ) + B i u ( t - 1 ) + B 2 u ( t - 2 ) +

+ . . . + a . u ( t - n ) + e ( t ) + C t e ( t - 1 ) + . . . + C , e ( t - n ) 2.1.1

w h e r e y ( t ) e R p is a ( p ) d i m e n s i o n a l v e c t o r i n d ic a t in g z o n e t e m p e r a t u r e s f o r a ( p ) z o n e

f u r n a c e . S i m i l a rl y , t h e v e c t o r u ( t ) e R p d e n o t e s t h e h e a t e n e r g y to ( p ) h e a t i n g z o n e s .

S i n c e t h e h e a t e n e r g y f l o w i s p r o p o r t i o n a l t o t h e v o l t a g e a p p l i e d t o e l e c t r i c a l h e a t i n g

e l e m e n t , t h e t e r m u ( t ) c a n b e a l so c o n s i d e r e d a s t h e i n p u t v o l t a g e t o h e a t e r s . T h e

t e m p e r a t u r e c o n t r o l h a r d w a r e r e a d s th e t e m p e r a t u r e s y ( t ) a t t i m e ( t) , i m p l e m e n t s th e

f u r n a c e t e m p e r a t u r e c o n t r o l a l g o r it h m d e s c r ib e d b e l o w a n d g e n e r a t e s t h e c o n t r o l l e r o u t p u t

u ( t) . T h e u n c e r t a i n ty o f th i s l in e a r m o d e l is r e p r e s e n t e d b y t h e t e r m s a s s o c i a t e d w i t h

e ( t) . T h e t e r m e ( t ) i s a r a n d o m v e c t o r w i t h z e r o m e a n a n d f in i te v a r i an c e . T h e

u n c e r t a i n t y i s d u e t o s e v e r a l fa c t o r s s u c h a s t h e l i n e a r iz a t i o n o f t h e a c t u a l n o n - l i n e a rh e a t i n g d y n a m i c s , a f in i te n u m b e r o f c o e f fi c ie n t s i n t h e m o d e l , a n d o t h e r e x t e r n a l i n p u t s

s u c h a s i n f i lt r a t io n a n d r a d i a t i o n f lu x e s w h i c h a r e n o t e x p l i c i tl y c o n s i d e r e d i n t h e m o d e l .

I f th e r a d i a t i o n h e a t e x c h a n g e b e t w e e n t h e h e a t i n g z o n e s i s v e r y s t r o n g , t h e l in e a r m o d e l

r e p r e s e n t e d i n ( 2 . I . 1 ) w i l l b e a v e r y w e a k I oc '~ l r e p r e s e n t a t i o n o f t h e a c t u a l d y n a m i c s . T h e

c o e f f i c i e n t m a t r i c e s ( & ; i = l , 2 , . . . n ) , ( B i ; i = l , 2 , . . . n ) a n d ( C i ; i = l , 2 , . . . n ) , a r e a ll ( p x p )

m a t r i c e s t h a t n e e d t o b e d e t e r m i n e d e x p e r i m e n t a l ly f o r a g i v e n f u rn a c e . I f t h e h e a t i n g

z o n e s a r e w e l l i n s u l a t e d f r o m e a c h o t h e r , t h e r e i s in s i g n i fi c a n t t h e r m a l i n t e r a c t i o n b e t w e e n

t h e m . I n t h i s c a s e , t h e m a t r i x c o e f f i c i e n t s ( & , Bi, C i ) a r e s im p l i f ie d t o d i a g o n a l m a t r i c e s .

T h e p r o c e s s i d e n t i f ic a t i o n t e c h n i q u e s c a n b e u s e d t o e s t i m a t e t h e c o e f f i c i e n t m a t r i c e s ,L j u n g [ 2 7 ], S o d e r s t r o m a n d S t o i c a [ 4 0] . I n t h e s e te c h n i q u e s , th e h e a t e r i n p u t s i g n a ls u ( t )

a r e c h o s e n s u c h t h a t t h e z o n e t e m p e r a t u r e s y ( t ) a re d i s tu r b e d s li g h tl y a r o u n d t h e i r n o r m a l

o p e r a t i n g t e m p e r a t u r e s . I n o r d e r t o o b t a in c o n s i s t e n t e s ti m a t e s o f t h e m a t r ix c o e f f i c ie n t s ,

t h e i n p u t s i g n a l s u ( t ) a r e r a n d o m s e q u e n c e s . T h e r e s u l t in g i n p u t o u t p u t d a t a ( u ( t ) , y ( t );

t = l , 2 , . . ) a r e s u b s t i t u t e d i n t o ( 2 . 1 . 1 ) a n d t h e m a t r i x c o e f f i c i e n t s ( A i , B i , C i ) a r e e s t i m a t e d

b y t h e l e a s t s q u a r e s m i n i m i z a t io n te c h n i q u e . T h e p e r f o r m a n c e i n d e x o f t h e l e a st s q u a r e s

a l g o r i t h m i s t h e m i n i m i z a t i o n o f t h e s u m o f s q u a r e s o f t h e r e s i d u a l s , i .e . ,

N

^ 2 ( t ) + ( t )= ~ . e ~ . . . p

t= l (2 .1 .2 )

w h e r e N i s t h e n u m b e r o f s am p l i n g p o i n ts d u r i n g w h i c h th e i d e n t i fi c a ti o n d a t a

( u ( t ), y ( t ); t = l , 2 , . . N ) i s c o l l e c te d a n d e , ( t ) i s t h e it h c o m p o n e n t o f t h e r e s i d u a l v e c t o r

~ ( t ) , d e f i n e d f r o m (2 . 1 .1 ) as

e ( t ) = y ( t ) - . 4 , y ( t -

1 ) - . . . - ~ 4 . y ( t- n ) - B , y ( t -

1 ) - . . . - B . y ( t- n ) - C ~ ( t -

1 ) - . . .- ( ~ . ~ ( t - n )

( 2 . 1 . 3 )

Page 5: Control of Crystal Growth in Bridgeman

8/6/2019 Control of Crystal Growth in Bridgeman

http://slidepdf.com/reader/full/control-of-crystal-growth-in-bridgeman 5/20

Cont ro l o f C rys ta l Grow th 221

2 .2 M O D E L B A S E D T E M P E R A T U R E C O N T R O L L E R S

If the crucib le is t rans lated axially , as in the c ase of mo st Br idgm an furnaces , the ax ial

tem pe ratu re distribution inside the furnace is kept constant. T here fore, the set-po int

tem peratu res for the furnace tem perature contro l sys tem should also remain constan t . Thisi s known as the tempera tu re r egu la tion p rob lem. In the case o f E lec t ro Dynam ic Grad ien t

(ED G) b ased furnaces , such as the Mellen furnace of Parsey and Thiel [31] , R ajendran and

M ellen [34], the axial temp eratu re distribution is translated wh ile the cru cible remains

constan t . T he crys tal g ro wth rate is determined by the speed of the m oving tempera ture

gradien t . In th is case, the set-poin t temperatures for the tem perature co ntro l sys tem

chan ge with respect to t ime. This is a lso the case for Rapid Therm al Process ing (RTP )

w her e a specif ic tem perature- t ime profi le has to be implem ented with in a few se conds ,

El la [ 11 ] Th e c ontro l ler des ign problem in th is case is mu ch m ore chal lenging and i t is

know~ as the se rvo p rob lem in con t ro l s. T he g row th r a te fo r mos t c ry s ta ls in Br idgman

furnaces is very s low, typ ical ly in the range o f a few ram/hour. In contras t , m ost

tem pera ture contro l lers w ork on the sampling per iod ranging f rom 0 .5 to 10 seconds .

The refore , the required changes in the set-pqin t tem peratures for the E D G type furnaces

are no t very fast for a typ ical tem perature contro l ler des ign problem. This ph eno m enon

just i f ies the use o f the regulator type contro l ler des ign for bo th the constan t thermal

gradien t and the var iab le thermal grad ien t (ED G) type furnaces. Ho we ver , for fas t

grow ing crys tals , the furnace temp erature contro l ler des ign should be based on the servo

con trolle r design principles. In the next sections, w e will review the con trolle r design

techniqu es for the furnace temp erature contro l p roblem.

2 .2 .1 S IN G L E I N P U T S IN G L E O U T P U T T E M P E R A T U R E C O N T R O L L E R S

This is the c ase w here the re is ins ignif ican t in teract ions betw een heat ing zon es an d the

contro l ler des ign can be per forme d separately for each zone. From (2 .1 .1) , dy nam ics of

each zone can be w r i tt en as

y(t) = aly (t-1) +a2y(t-2)+...+ a.y(t-n)+ blu(t-1 )+ b2u(t-2)+

+. . .+ b .u( t-n)+ e( t ) +cle ( t -1)+ . . .+ c~e(t -n) 2.2.1.1

w here u( t) , y ( t ) and e( t ) are n ow scalar variables represent ing the vol tag e to h eat ing

e lemen t , the tempera tu re in the hea t ing zone and the uncer ta in ty te rm o f the m odel ,

respect ively .

The furnace tem perature contro l ler can be des igned by minimizing the w eighted o utput

error variance, i .e. ,

I = E { [ r ( t + 1 ) - y ( t + 1)]2 + ~ , [ u ( t ) - u ( t - 1)]: } 2.2.1 .2

wh ere (E ) is the e xpectat ion operator , r ( t ) is the set-poin t tem perature for the heat ing

zone, y ( t ) is the zone tem perature and (~ ,) is a posit ive w eight parameter . The bas ic

Page 6: Control of Crystal Growth in Bridgeman

8/6/2019 Control of Crystal Growth in Bridgeman

http://slidepdf.com/reader/full/control-of-crystal-growth-in-bridgeman 6/20

222 C. Batur e t a l .

The t e rms w i t h ( ^ ) i nd i ca te t he e s t i ma t ed pa r ame t e r s o f t he ma t r i x coe f f ic i en t s. U n l es s t he

ma t r ix coe f f ic ients (Ci; i= l ,2 , . .n) a re a ll zero , the minim izat ion of (2 .1 .2 ) i s a non- l ine ar

mi n i mi za t i on p rob l em an d can be pe r fo rmed by i t e ra t ive t echn i ques on l y .

F i gu re 2 show s a t yp i ca l i npu t ou t pu t i den t if ica t ion da t a f o r an e igh t zone t r anspa ren t

crys ta l gro w th fu rna ce f rom Ba tur e t a l [3] and Sr in ivasan e t ai [36]. Th e input s ignal is a

P s e u d o R a n d o m B i n a r y S i g n al [ 40 ] t h a t d is tu r b s th e f u r n a c e t e m p e r a t u r e s a r o u n d t h e i r

norm a l o pe ra t i ng po i n t f o r co ns i s ten t i den t if i ca t ion o f ma t r i x coe f f ic i en ts .

300

25 0

ii irt"

t--~; 200

ii i

uJI.-a 150Z<

I-

o..

Z 100

LUZON

5O

00

FURNACE INPUT OUTPUT IDENTIFICATION DATA

f I I I I I

T Y P I C A L P R B S I N P U T S IG N A L T O H E A T E R

I I I I I I

200 400 600 800 1000 1200 1400

SAMPLES

Figure 2. Experimental input output data fo r identification of furnace zone dynamics

Plots sh ow typical iden tification data obtained from a transparent crystal growth furnace . All eight

zones are simultaneously perturbed around 225 C. For clarity, only input to zone one is shown.

Th e othe r zone inputs are simply the shifted version o f this pseudo random b inary input. D ata a re

sampled in eve ry 4 seconds.

Page 7: Control of Crystal Growth in Bridgeman

8/6/2019 Control of Crystal Growth in Bridgeman

http://slidepdf.com/reader/full/control-of-crystal-growth-in-bridgeman 7/20

Page 8: Control of Crystal Growth in Bridgeman

8/6/2019 Control of Crystal Growth in Bridgeman

http://slidepdf.com/reader/full/control-of-crystal-growth-in-bridgeman 8/20

224

e ( t) = r ( t ) - y ( t )

C. Batur et aL

( 2 . 3 . 2 )

T h e t e m p e r a t u r e c o n t r o l l e r re a d s t h e z o n e t e m p e r a t u r e y ( t ) a t t i m e ( t) , d e t e r m i n e s t h ec o n t r o l l e r o u t p u t u ( t ) f r o m ( 2 . 3 .1 ) a n d s e n d s it t o t h e h e a t in g e l e m e n t . T h e s a m e p r o c e s s

i s r e p e a t e d a g a i n a f t e r a s a m p l i n g p e r i o d ( T ) . F o r m o s t i n d u s t r ia l c o n t r o l l e r s , t h e

d e r i v a t i v e e f f e c t , i .e . , t h e l a s t t e r m o f ( 2 . 3 . 1 ) i s i m p l e m e n t e d wi t h a l o w p a s s f i l t e r s i n c e

t h e d e r i v a t iv e t e r m a m p l i fi e s t h e h i g h f r e q u e n c y n o i s e th a t m a y e x i s t in t h e t e m p e r a t u r e

c o n t r o l l o o p a n d c a u s e s s a t u r a ti o n i n t h e a m p l if ie r s. D e t e r m i n a t i o n o f t h e c o n t r o l l e r

p a r a m e t e r s K p , Ti a n d T d f o r a g i v e n fu r n a c e is k n o w n a s t h e c o n t r o l l e r t u n i n g . A v a s t

m a j o r i ty o f P I D c o n t r o l l e rs a r e t u n e d m a n u a l ly b y c o n t r o l e n g i n e e rs , b a s e d o n t h e i r p a s t

e x p e r i e n c e s a n d h e u r i s t i c r u l e s , A s t r o m e t a l [ 2] . S o m e o f t h e s e h e u r i s t i c r u l e s a r e a l s o

c a p t u r e d b y c o m m e r c i a l e x p e r t t u n i n g s y s t em s s u c h as F o x b o r o E X A C T c o n t r o l l e r, e .g . ,

C a U a g h a n e t a l [ 6 ].

I f a p a r t ia l m o d e l c a n b e c o n s t r u c t e d f o r t h e h e a t i n g z o n e d y n a m i c s , t h e c o n t r o l l e r t u n i n g

b e c o m e s l e s s h e ur is t ic . A c o m m o n l y u s e d s i m p l e m o d e l i s a fi rs t o r d e r s y s t e m w i t h d e a d

t ime , i . e . ,

y ( t ) = a y ( t - 1) + b u ( t - d ) ( 2 . 3 . 3 )

w h e r e u ( t ) i s t h e v o l t a g e t o h e a t in g e l e m e n t a t ti m e ( t ), y ( t ) is th e z o n e t e m p e r a t u r e a n d

( d ) i n d i c a t e s th e t i m e d e l a y b e t w e e n i n p u t a n d o u t p u t . A n e x p e r i m e n t a l i d e n ti f ic a t io n o f

t h e m o d e l p a r a m e t e r s ( a , b , a n d d ) c a n b e p e r f o r m e d b y e x c i ti n g t h e h e a t i n g z o n e b y as t e p c h a n g e o r a r a n d o m c h a n g e i n t h e v o l t a g e u ( t ), s e e , f o r e x a m p l e , A s t r o m a n d

W i t t e n m a r k [ 1 . O n c e th e m o d e l p a r a m e t e r s a r e e s t im a t e d , t h e c o n t r o l l e r p a r a m e t e r s c a n

b e d e t e r m i n e d b y t h e w e l l k n o w n Z i e g l e r N i c h o l s ru l e s [4 3 ]. S o m e c o m m e r c i a l

t e m p e r a t u r e c o n t r o l le r s c a n i m p l e m e n t a m o d e l b a s e d s e l f- t u n in g a l g o r it h m i n o r d e r t o

d e t e r m i n e th e c o e f f ic i e n ts o f t h e P I D c o n t ro l le r . T h e s e c o n t r o l l e rs d o n o n e e d a n o p e r a t o r

t o t u n e t h e c o n t r o l l e r .

F o l l o w i n g t h e w o r k o f A s t r o m e t al [2 ] a n d K a y a a n d T i tu s [ 2 5 ], s o m e c u r r e n t i nd u s t ri a l

t e m p e r a t u r e c o n t r o l le r s a n d t h e ir a u to - t u n i n g p r o p e r t ie s c a n b e s u m m a r i z e d a s i n T a b l e 1 .

Control ler ManufacturerE X A C T F o x b o r o

U D C 6 0 0 0 H o n e y w e l l

S L P C Y o k o g a w a

C L C O 4 B a i le y C o n t r o ls

Tuning T echniqueI d e n ti f ie s z o n e d y n a m i c s b y t h e r e s p o n s e o f

h e a t i n g z o n e t o d i s tu r b a n c e s. U s e s Z i e g l e r - N i c h o l s

t y p e r u l e s t o t u n e t h e c o n t r o l l e r .

I d e n ti fi e s t h e z o n e d y n a m i c s b y a s t e p c h a n g e i n

v o l t a g e u . H e u r i s ti c a n d Z i e g l e r N i c h o l s t y p e r u l e s

a r e u s e d t o t u n e t h e P I D c o n t r o ll e r .

M o d e l o f t y p e (2 . 1 . 3 ) is i d e n ti f ie d b y i n t r o d u c i n g

a s t ep c h a n g e i n p r o c e s s i n p u t u . P I D p a r a m e t e r s a r e

d e t e r m i n e d w i t h t h e m o d e l p a ra m e t e r s . E x a c t

e q u a t i o n s a r e n o t p u b l i s h e d .

I d e n ti f ie s P r o c e s s M o d e l b y S t e p R e s p o n s e .

Page 9: Control of Crystal Growth in Bridgeman

8/6/2019 Control of Crystal Growth in Bridgeman

http://slidepdf.com/reader/full/control-of-crystal-growth-in-bridgeman 9/20

DPR 900 F i sher Con t ro ls

S I P A R T S i emen s

TO S D I C To s h i b a

S Y S M A C O m r o n

FU JI PY X-4 Fuji Elect r ic

Control of Crystal Growth

Identi fies P rocess M odel Freq uenc y Response.

Identi fies P rocess M odel by S tep Resp onse.

Identi fies P rocess M odel by R ando m Input u( t ) .

Implem ents fuzzy cont ro l wi th use r def ined ru les

and membership functions.

Implem ents fuzzy co nt ro l w i th f ixed ru les .

T a b l e 1 . C u r r e n t T e m p e r a t u r e C o n t r o ll e rs a n d T u n i n g P r o p e r t i e s

225

Th e S YS M AC cont ro l ler of Om ron i s a fuzzy logic cont ro l ler [39] w i thout sel f- tuning

proper ty . I t implem ents fuzzy cont ro l ru les such as" i f t h e t e m p e r a t u r e e r r o r i s Smal l ,

a n d t h e c h a n g e i n te m p e r a t u r e e r r o r i s M e d i u m t h e n a p p l y S m a l l P o s i t iv e h e a t e r

c o n t r o l vol tag e" . Th e quali fiers Sm all , M edium, etc . are def ined through thei r

m em bership functions. Fo r a detai led analysis o f fuzzy control lers, see, for example, Ba tur

and Kaspar i an [4] . The SYS MA C con t ro ll e r can accom mo date up to 128 ru les. The

fuzzy tem pera ture cont ro l ler of Fuj i [14] work s on the set -point fo l lowing er ror wh ich

happ ens fo l lowing disturbances or cha nges in the set-points. I t im plem ents a f ixed set o f

fuzzy c ont ro l ru les .

3 . C O N T R O L O F M A T E R I A L T E M P E R A T U R E

Te m pera ture and conve ct ive f low dis tr ibution ins ide the material determ ine the shape o f

the solid-liquid interface. This distribution, in turn, is dic tate d by the furn ac e axialtem pe ratu re profi le, p art icularly nea r the sol id-liquid interface. Additionally, th e a m po ule 's

t ranslat ional veloci ty , the hea t losses from the s ide wal ls o f the am poule, and pressu re in

the app aratus af fect the material tem perature d is tr ibution and consequ ent ly the shape of

in ter face. Since the heat losses f rom the s ide wai l s are not con t ro llable param eters dur ing

grow th, w e w i ll consider the axial furnace temperature d is t r ibut ion and th e t ranslat ional

rate as the m ain proc ess variables tha t affect the shape o f the sol id-liquid interfac e during

growth .

Taghav i and Duv al [41 ] analy tically determined the requi red furnace tem pera ture prof i le

in order to obtain a f iat in ter face in the s teady s tate . Th e resul t s are obtained u nde r thesimpl ify ing assump t ions that the thermophysical proper t ies of the me l t and crystal are

equal and inde pende nt of tempe rature. Fur thermore, co nvec t ive f lows inside the m el t are

assum ed negligible. Th eir results indicated that a f iat interface requires a rath er cha llenging

axial temp era ture distr ibution w hich includes a discontinuity at the interface. Ne verth eless,

th is w ork i s the f i rs t ser ious at tempt to so lve the material tem perature cont ro l problem in

the steady state.

Da ntzig and Tor torel l i [8] , and Dantzig [9] have s tudied the ef fects of furnace axial

tem pera ture d is t ribut ion on the shape of the solid- liquid inter face. Th ey posed th e

problem as an op t imizat ion problem w here the fo l lowing perform ance index is minimizedwi th respect to zone tem peratures Tz, i .e. ,

Page 10: Control of Crystal Growth in Bridgeman

8/6/2019 Control of Crystal Growth in Bridgeman

http://slidepdf.com/reader/full/control-of-crystal-growth-in-bridgeman 10/20

2 2 6 C . Ba t u r e t a l .

I(T~) = (T~ - T) r (Tr - T ) (3.1)

w here Tr(x ,y) is the des ired reference temp erature that w e wa nt to es tab lish at a g iven

loca tion (x,y) inside the material. T(x,y) is the actual material tem per atur e distr ibution

estab l ished at the sam e locat ion . This d is tr ibu tion is gene rated by the zon e tem perature s

Tz , dynam ics o f the furnace and the mater ia l a t hand . Dantzig and co-wo rkers ob tained

the tem peratu re d is tr ibu tion T(x ,y) by s imulating the thermal dynam ics of the m ater ia l by a

f in i te e lem ent model .

Th e c onst i tu t ive equat ions descr ib ing the dynam ics of the in ter face are g iven by the

foll ow ing partial differential equations, see e.g., Jasinski and Witt [21],

OTp , c , = V . ( k , V T )

(3.2)

,gTpsc, ~ = V . (k , VT )

( 3 . 3 )

k a T k a T = p L y, - g - , - g

(3 .4)

w he re (T) is the material tem peratu re, (p) is the density, (c) is the specif ic he at and (k ) isthe c ond uc tive heat transfer coefficient. T he subscripts (1) and (s) refer to liquid and solid,

respect ively and (n) ind icates the uni t normal vecto r to sur face. The equat ion (3 .4) is

know n as the S te fan ' s cond i t ion wh ich descr ibes the hea t f low ba lance a t the in te r face .

He re, (L) is the la ten t heat of the materia l and (v) is the crys tal g row th veloci ty . The

gro w th dynam ics can b e c haracter ized by s imulating (3 .2) - (3 .4) by f ini te e lem ent , f in i te

d if ference or with n on- l inear e lectr ical analogue s imulators [19] , [22] un der p roper

bounda ry cond i tions .

A_~er spatial disc retization by the f inite elemen t techniqu e, the m aterial tem pe rat ure 's

dynam ic model can be wr i t ten in an abstract form as ,

M ( T ) T +K (T)T = T~ ( 3 . 5 )

wh ere (M ) is the tem perature dep enden t thermal mass matrix, (K) is the thermal s t if fness

matr ix and (T) is the tem perature ins ide the materia l. Th e material tem peratu re contro l

p rob lem beco me s the de te rmina tion o f the fu rnace zone tempera tu res Tz such tha t the

perform ance index (3 .1) is minimum. The problem can be considered as the constrained

minim izat ion problom w here the constrains are g iven by (3.5) . Alternat ively , one ma y v iew

the problem as in inverse problem in heat t ransfer wh ere the bou ndary con dit ions (Tz) is to

be determ ined such that a des ired temp erature d ist ribu t ion (Tr ) o r , equivalen tly, a

desire d interfa ce shape can be established inside the material.

Page 11: Control of Crystal Growth in Bridgeman

8/6/2019 Control of Crystal Growth in Bridgeman

http://slidepdf.com/reader/full/control-of-crystal-growth-in-bridgeman 11/20

Control of Crystal Growth 227

T h e s o l u t io n t o i n v e r se p r o b l e m i s f o u n d b y t h e f o ll o w i n g s te p s:

1 . T h e r e f e r e n c e t e m p e r a t u r e d i s t r ib u t i o n ( T , ) i s s p e c i f ie d f o r t h e t i m e i n s t a n t ( t) .

2 . F o r a g i v e n s e t o f z o n e t e m p e r a t u r e s ( T ~ ) , t h e m a t e r ia l d y n a m i c s i s s i m u l a t e d b y ( 3 . 5 )

u n t i l a s t e a d y s t a t e m a t e r i a l t e m p e r a t u r e d i s tr i b u t io n T ( x , y ) i s f o u n d .

3 . A n e w s e t o f z o n e t e m p e r a t u r e ( T ~ ) i s d e t e r m i n e d b y t h e g r a d i e n t d e s c e n t a l g o r it h m ,

i .e . ,

= ( o t a ) - a ,

( 3 . 6 )

w h e r e ( e t ) is o p t i m i z e d b y a l i n e s e a r c h a l g o r i th m .

4 . S t e p s ( 2 ) - ( 3 ) a r e r e p e a t e d u n t i l c o n v e r g e n c e i s a c h i e v e d . A t t h e e n d o f t h i s st e p , t h e

m a t e r i a l t e m p e r a t u r e ( T ) i s t h e l e a s t sq u a r e s a p p r o x i m a t i o n t o t h e d e s i r e d m a t e ri a lt e m p e r a t u r e ( T r ).

5 . T o g r o w t h e c r y s t al , a n e w r e f e r e n c e t e m p e r a t u r e s ( T , ) i s s p e c if i ed a t t i m e 0 + 8 0 i n

s u c h a w a y t h a t i t c o r r e s p o n d s t o t h e d e s i r e d s h a p e o f t h e i n te r f a c e a t t im e ( t + r t ) .

D a n t z i g a n d c o - w o r k e r s s o l v e d t o m a t er ia l t e m p e r a t u r e c o n t r o l p r o b l e m f o r t h e s t e a d y

s t a t e c o n d i t i o n s , i . e . , t h e o p t i m i z a t i o n i s p e r f o r m e d o n c e t h e t e m p e r a t u r e s , s i m u l a t e d b y

( 3 . 5 ) , r e a c h e d t h e i r s t e a d y s t a t e v a l u e s . T h e y a ls o a s s u m e d t h a t t h e r e i s n o a v a i l a b l e

m e a s u r e m e n t f o r t h e m a t e r ia l t e m p e r a t u r e o r t h e i n t e rf a c e s h a pe .

i f t h e t e m p e r a t u r e d y n a m i c s r e p r e se n t e d b y ( 3 . 5 ) i s a t ru e r e p r e s e n t a t io n f o r t h e m a t e ri a l

a n d t h e f u r n a c e , a n d i f t h is d y n a m i c s d o e s n o t c h a n g e i n ti m e , t h e n t h e i r s o l u t i o n i s

o p t i m u m i n a l e a s t s q u a r e s s e n s e . Ho w e v e r , i f t h e m o d e l i s n o t e x a c t , a s i t i s e x p e c t e d f o r

m o s t a p p l i c a ti o n s , w e n e e d s o m e f e e d b a c k s ig n a l t o m a k e c o r r e c t i o n s i n o r d e r t o

c o m p e n s a t e f o r t h e m o d e l u n c e r t a i n t i e s . S r i n i v a s a n e t a l [ 3 7 ] c o n s i d e r e d t h e s i t u a t i o n

w h e r e s o m e f e e d b a c k i n f o r m a t i o n m a y b e a v a il ab le . F o r e x a m p l e , it m a y b e p o s s i b le t o

m e a s u r e t h e o u t s i d e s u r f a ce t e m p e r a t u r e s o f t h e a m p o u l e . A l te r n a ti v e ly , t h r o u g h i m a g e

p r o c e s s i n g t e c h n i q u e s , o n e c a n d e t e r m i n e t h e s h a p e o f th e i n t e r fa c e , t h e r e fo r e , t h e m a t e r ia l

t e m p e r a t u r e s a t i n t e r fa c e p o i n ts . I n d e e d , t h e i n t e rf a c e s h a p e c a n b e q u a n t i f ie d f o r

t r a n s p a r e n t f u r n a c e s , s e e , f o r e x a m p l e , B a t u r e t a l [ 3 ] , K a s p a r i a n e t a l [ 2 4 ], P o t t s a n dW i l c o x [ 3 3 ], C h a n g a n d W i l c o x [7 ] , N e u g e b a u e r a n d W i l c o x [ 30 ] a n d L a n e t a l [2 6 ] . E v e n

f o r n o n - t r a n s p a r e n t f u r n a c e s , X - r a y i m a g i n g c a n l o c a t e th e i n t e r f a c e , . e . g ., F r i p p e t a l [ 1 2 ],

H u b e r t e t a l [ 2 0 ], K a k i m o t o e t a l [ 2 3 ], a n d W a r g o a n d W i t t [4 2 ] a s in th e c a s e o f

C z o c h r a l s k i m e t h o d . A n o t h e r i n - s it u m e a s u r e m e n t to o l t o l o c a t e th e i n t e r f a c e is t o u s e a n

E d d y c u r r e n t p r o b e a s d e m o n s t r a t e d b y S t e fa n i e t a l [ 3 8] a n d R o s e n e t a l [ 3 5 ].

T h e m a t e r i a l t e m p e r a t u r e c o n t r o l t e c h n i q u e p r o p o s e d b y S r i n iv a s a n e t al [ 3 7 ] i s

i m p l e m e n t e d t h r o u g h t h e f o l lo w i n g s t ep s .

1 . F o r e a c h s a m p l i n g p e r i o d , t h e m a t e r i a l t e m p e r a t u r e d y n a m i c s i s r e p r e s e n t e d b y a f in i t e

e l e m e n t m o d e l a s i n (3 . 5 ).2 . T h e f u r n a c e z o n e t e m p e r a t u r e s e t -p o i n ts a r e d e t e r m i n e d b y

Page 12: Control of Crystal Growth in Bridgeman

8/6/2019 Control of Crystal Growth in Bridgeman

http://slidepdf.com/reader/full/control-of-crystal-growth-in-bridgeman 12/20

2 2 8

= +

C. Batur e t a l .

(3.7)

w he re (]1) is the estim ated tempe rature distr ibution inside the material, (Kf) is the gain o f

the contro l le r and (TQ is the b ias s ignal that m akes sure that

T = T , (3 .8 )

in the ste ady state. If all tem peratu res inside the material can be me asu red (an ideal case) ,

then ]h = T. Ho we ver , i f on ly part ia l me asureme nts such as the amp oule ' s ou ts ide sur face

tem perature s or the in ter face shape is avai lab le , then (T ) is on ly an es t imate o f unk now n

mater ia l tempera tures (T). A consis ten t est imate of (T) can be determ ined by apply ing

Kalm an es t imation techniques to the dynam ic mod el (3 .5) , p rovided that the re is asuff ic ien t n um ber of tem perature measurem ents , M aciejowski [28].

The f eedback con t ro l ga in (Kf) is determined by minimizing the per forman ce index of the

Linea r Quadrat ic R egulator , i .e. ,

I(T~) = (7~ - T) r Q(T~ - T) + (T ,)r R(T~)(3 .9)

w her e (Q) and (R) are the user specif ied weigh t matr ices emphasizing on the cost o f

contro l act ion .

As in the case o f Da ntzig and co -work ers , the in ter face is t rans lated by changing the

re fe rence tem pera tu re (T , ) acco rd ing to a g iven des i red g rowth r a te fo r the c rys ta l. The

am poule is assum ed to be in a f ixed posi t ion inside the furnace. F igure 3 show s the

required furnace zo ne tem peratures for the grow th o f f la t in terface in the case of s imulated

L e a d B r o m id e g r o w th .

The cho ice o f r e f e rence tempera tu re (Tr ) fo r the mate rial t em pera tu re con t ro lle r i s

determ ined by the d es ired in terface shape. Ho we ver , for a g iven des ired in ter face shape

one can specify m ore than one set o f reference temp eratures and they al l cor resp ond to thesam e shape. Therefore , addit ional constrain ts are need ed to uniquely determine the

referenc e temp erature . On e obvious constrain is the physical real izab il it iy o f the req uested

tem peratu re d is t ribu t ion ins ide the materia l. One can only specify a set o f reference

tem perature s (T ,) that can be realizab le by the furnace tem perature d is t r ibu tion see, for

example, Srinivasan et al [37]. Oth er constrains such as therm ally indu ced stress limits

arou nd th e interfa ce and inside the crystal can also be used to specify the re feren ce

tem peratures , as d iscussed by Gevelber and Stephanopolus [15] in the case o f Czoc hralsk i

g r o w th .

Th e crystal qual i ty contro l p roblem becom es much m ore d if ficu l t i f one also conside rsthe inf luence of convec t ion in the melt. In fact , as s imulated by C hang and B row n [44] and

M urray et a l [29], the comp osi t ional un iformity depend s on the conve ct ive f lows and the

Page 13: Control of Crystal Growth in Bridgeman

8/6/2019 Control of Crystal Growth in Bridgeman

http://slidepdf.com/reader/full/control-of-crystal-growth-in-bridgeman 13/20

Control of Crystal Growth 229

shape of the m elt-sol id interface. In all three tech niques pre sented in this sect ion, i .e. ,

Ta gha vi an d Duv al [41], Da ntzig and Tortorelli [8], and Srinivasan e t al [37], it is

assum ed that the con duct ion is the main heat t ransfer phenom enon inside the ampo ule.

The refore, thei r resul ts ma y not be valid for large Rayleigh or Pec klet number. From the

cont ro l e ngineer ing point of v iew, the m ain di ff iculty is the lack o f mea surem ents o f the

var iables to be cont ro l led . A s in the case o f temperatures , i f the o uts ide surface

tem per ature s or the interfac e shape is measurable, then i t is possible to est ima te the inside

mater ial temp eratures . How eve r , the measurem ent of the flow veloci t ies and pat terns

inside the m el t is prohibit ive. Therefore, the const ruct ion of the feedba ck cont ro l laws to

m anipula te the con vec tive f lows to a desirable pat tern is also prohibi tive at this stage.

C O N C L U S I O N

An ideal contro l sytem should control the quality of crystal during grow th. Th is defini t ion

implies in-si tu m easurem ent of quali ty . H ow ever , the qual i ty can m ost ly be determ ined

off-line by a co m bination o f variables such as den si ty of crystal defects, poly-

crystal lization, dens i ty o f imp uri ty atom s, uniformity of dop ing material , etc. T hese

variables are not no rm ally available to the control ler due to m eas urem ent diff icul ties.

Th e sha pe of the sol id-liquid interface can be related to crystal quali ty since i t influences

the crystal line perfect ion and composi t ional hom ogenei ty . The refore, i t i s pract ical to

cont ro l the shape by m anipulating the thermal boundary condi t ions surrounding the

in ter face. For a g iven in ter face shape, there i s a correspon ding tem perature d is tr ibutioninside the m aterial that ge ner ates this specified interface shape. T he task o f the in terface

shap e con trol ler is to establish this tempe rature distr ibution by set t ing up the ap prop riate

bou nd ary cond it ions, i .e. the tem pera ture distribution inside the furnace .

W e su rveyed the cu r ren t con t ro l des ign methodo log ies fo r t he con t ro l o f zone

tem peratu res ins ide the furnace. M ost industr ial tem perature cont ro l lers can h andle the

tem pera ture cont ro l problem easi ly i f there i s negl ig ib le in teract ion am ong heat ing zones ,

s ince the zon e dynam ics are general ly s low. I f the therma l in teract ions are s t rong, a m ul t i-

input mu l t i-output m odel based con t ro l ler i s needed.

The m ater ial tem perature cont ro l problem can be solved wi th or wi thout the feedback.

Open loop solu t ions not requi ring feedback temp erature measu reme nts can determ ine the

optim um fu rnace tem pera ture distribution for a desired interface shape. Th e optima li ty is

in a least square s sense and the solut ion only applies to stea dy state condit ions. If som e

m easure m ents such as the outs ide ampou le surface temp eratures and/or the in ter face

shape a re available then a Linea r Quadrat ic Reg ulator can be designed to ge nerate the

opt imu m fu rnace tem perature d is tr ibution for any time instant. These tec hnique s are

successful ly appl ied to s imulated crystal grow th and remain to be d em onst rated on real

crystal grow th systems.

Page 14: Control of Crystal Growth in Bridgeman

8/6/2019 Control of Crystal Growth in Bridgeman

http://slidepdf.com/reader/full/control-of-crystal-growth-in-bridgeman 14/20

2 3 0 C . B a t u r e t a l .

r~

o

~3

0 0 0 0

0

~th

0

0

e q

e,h

o

t--

o c-4

0

0q c~

L~

r*'h

I l l l l (&)

0

~)

L )<

. Q

l l l l [ I

~ S D

t~r'h

C ~

t ~

c, 9

&

Er ~

(',4

II

r-

E

II

("4v ~

T0

(' 4

O ~Hr~

Et' J

c~ h

II

E

?4c- q

~ . > , ~ ~ o

~ ' ~ ~ o ~

' I Z ~ ~ , ~ . _ . "~ . o

. ~ . - - '1 = ~ ~

Page 15: Control of Crystal Growth in Bridgeman

8/6/2019 Control of Crystal Growth in Bridgeman

http://slidepdf.com/reader/full/control-of-crystal-growth-in-bridgeman 15/20

Page 16: Control of Crystal Growth in Bridgeman

8/6/2019 Control of Crystal Growth in Bridgeman

http://slidepdf.com/reader/full/control-of-crystal-growth-in-bridgeman 16/20

2 3 2 C . Ba t u r e t a l ,

13. Fu, T . W . , W i lcox, W. R. , " Inf luence of Insula t ion on S tabi l i ty o f Inter face Shap e

and P o s i t ion i n t he V er ti ca l Br idgm an S tockbarge r Tecn ique" , Journa l o f Crys t a l Grow th ,48, pp: 416-424, 1980.

14 . F u j i P Y X-4 , F uzzy C ont ro ll e r, To t a l Tem pera tu re Ins t rum enta t ion , V i l li s ton , VT .

15. Geve lbe r , M . A . , S t ephanopoulus , G . , W argo , J . " Dyn am ics and Con t ro l o f t he

Czoc hra l sk i P rocess" , Journa l o f Crys t a l Grow th , 91 . pp : 199 , 1988 .

16. Geve lbe r , M. A . , S t ephano poulus " Con t ro l and S ys t em Des ign fo r t he Czoch ra l sk i

C r y s t al G r o w t h P r o c e s s ", J o u r n a l o f D y n a m i c S y s te m s M e s u r e m e n t s a n d C o n t ro l , M a r c h

Vol . 115 pp : l 15-1 21 , 1993 .

17 . Geve lbe r , M. A . , S t ephanopoulus " I I I , I n t e r face Dyn amics and Con t ro l

Req ui r emen t s" , Journa l o f Crys t a l Grow th , V139 , No . 3 -4 , pp :281-285 , 1994a.

18. Geve lbe r , M . A . , S t ephanopo ulus " Dynam ics and Cont ro l o f t he Czochra l sk i P rocess ,

IV . Co nt ro l S t ruc tu re Des ign fo r In t e r face S hape Cont ro l and P er fo rman ce Eva lua t i ons" ,

Journa l o f Cry s ta l G row th, V13 9, No . 3-4, pp:286-301, 1994b.

19 . Ho lde r , J . D . , Ro we , T . " S p i ce Hea t T rans fe r M ode l fo r S i li con Crys t a l Grow th" , The

f i f t h Eas t e rn R eg iona l Confe rence on Crys t a l Grow th . Oc tob er 4 -7 , A t l an ti c C i ty , Inv i t ed

lecture .

20 . Hub er t , J . A . , F r i pp , A . L . , W elch, C . S . , " R eso lu t i on o f t he D i sc repanc i es be tween

the T em pera tu re Ind i ca t ed In t e r face and Rad iograph i ca l ly De t e rm ined In t e r f ace i n a

Ver t i ca l Br idgm an F urnace" , Journa l o f Crys t a l Grow th , Vol . 131 , no 12 , pp :75-82 , Ju ly

1993.

21 . J as insk i, T ., W i tt , A . F . , " O n Cont ro l o f t he c rys t a l-Mel t In t e r f ace S hape D ur ing

G row th i n a Ver t i ca l Br idgrnan Conf igura t ion" , Journa l o f Crys t a l Grow th , 71 , pp : 2 95-304 1985 .

22. Jones , C . L . , C a p p e r , P . , G o s n e y , J . J . , " T h e rm a l M o d e l li n g o f B r i d g m a n C r y s t a l

Gro wth " , Journa l o f Crys t a l Grow th , 56 , pp: 581-590 , 1982 .

23 . Kak imoto , K . , Eguch i , M . , W atanabe , H . , H ib iya , T ., " In - s i tu Ob se rva t i on o f S o l id -

L iqu id In t e r f ace S h ape by X - ray r ad iography Dur ing S i li con S ing l e Crys t a l Grow th" ,

Journa l of Cry s ta l G row th, 91, pp: 509-514, 1988.

24 . Kaspa r i an V .S . , Ba tu r, C . , Duva l, W .M B , Rosen tha l , B .N . , S ingh , N B " Appl i ca t ion

of S t e r eo Im aging fo r Recog ni t ion o f Crys t a l S ur face S hapes", Journa l o f Crys t a l Growth ,

Vol . , 141 455-464, 1994.

Page 17: Control of Crystal Growth in Bridgeman

8/6/2019 Control of Crystal Growth in Bridgeman

http://slidepdf.com/reader/full/control-of-crystal-growth-in-bridgeman 17/20

Control of Crystal Growth

25. Kay a, A. , T i tus , S ., "A cr it ica l Per form ance E valuat ion o f four S ingle Lo op Se l f

Tun ing Cont ro l P rodu c t s " , P roc. o f t he 1988 amer ican C ont ro l Confe rence , A t l an t a ,

Georg i a 1988 .

233

26 . Lan , C. W . , Y an g, D . T . , T ing , C . C . , Chert , F . C . , "A T r a n s p a re n t M u l t iz o n e F u r n a c e

for Crys t a l Grow th and F low V i sua li za ti on" , Journa l o f Crys t a l Grow th , 142 , pp :373-378 ,

1994.

27. Ljung, L. , System Identif icat ion, Prent ice Hall , 1987.

28. Ma cie jow ski , J. M. , Mul tivariable Feed back De sign, Ad dison W esley Pub l i shing

C o m p a n y , 1 9 8 9

29 . M ur ray , B . T . , Cor ie ll, S . R . , McF adden , G . B . , " Th e E f fec t o f Grav i t y M odu la t ion o f

Soluta l Con vec t ion Du r ing Direct ional Sol idi ficat ion" , Jo urnal o f Cry s ta l Gro wth , V ol .

110, pp: 713-723, 1991.

30 . Neugebau er , G . T . , W i l cox , W . R . , " Co nv ec t i o n i n t he Ver t ica l Br idgm an-

S tockb arge r T echn ique" , Journa l o f Crys t a l Grow th , 89 , pp : 143-154 , 1988 .

31 . P a r sey , J. M. , Th i e l, F . A . " A N ew App ara tus fo r t he Cont ro ll ed G row th o f S ing l e

Crys t a l s by Ho r i zon t a l Br idgman T echn iques" , Journa l o f Crys t a l Grow th , 73 , pp :211-

220, 1985.

32 . P e t rosyan , A . G . , " C rys t a l Grow th o f Lase r Ox ides in t he V er t ica l Br idgm an

Con f igura t i on" , Journa l o f Crys t a l Grow th , 139 , pp : 372-392 , 1994 .

33. Pot t s , H. , W i lcox, W . R. , Journal of Crys ta l Gro wth, 73, pp:350, 1985.

34. Rajendran, S . , Mel len, R. H . , " Adva nces Toward In t e ll igen t P rocess ing o f E l ec t ron i c

M ater ia l s" , Journal of Cry s ta l Gro wth, 85, pp: 130-135, 1987.

35 . Rosen , G . J . , Car l son , F . M . , W i l cox , W . R . , W al lace, J . P . " M on i to r in g C dTeS ol id if i ca ti on by an Ed dy C ur ren t Techn ique" , N in th Amer ican Co nfe rence o n C rys t a l

Grow th , Augu s t 1 -6 , 1993 , pp : 16 8

36 . S r in ivasan A , Ba tur , C . , Ve i l le t te R . , " P ro j ec t ive Cont ro l Des ign fo r M ul t i - zone

Crys t a l G row th F urnace" , IEE E Transac t ions on Cont ro l S ys t em Technology , Vol . 2 .

No. 2 , June 1994.

37. Sr inivasan, A. , Batur , C. , Duval W. M. B. , Rosenthal , B . N. S ingh N. B. "S ol id-Liq uid

I n t e rf a c e S h a p e C o n t r o l D u r in g G r o w t h " , P r o c e e d in g s o f t h e A m e r ic a n C o n t r o l

Con fe rence , S ess ion o f M ic roe lec t ron ics and Thermal P rocess Con t ro l, June 21 , 1995 .

Page 18: Control of Crystal Growth in Bridgeman

8/6/2019 Control of Crystal Growth in Bridgeman

http://slidepdf.com/reader/full/control-of-crystal-growth-in-bridgeman 18/20

2 3 4 C , B a tu r et aL

38. S tefani, J . A. , T ien, J . K. , Cho e, K. S . , W al lace , J . P . "M ul t i f r eq ue nc y Edd y Cu rrent

Diag nos t i c s o f Axia l and Rad ia l Thermal P rofi le s Dur ing S i li con Crys t a l Grow th" , Journa l

o f Crys t a l Grow th , 106 , pp :611-621 , 1990 .

39 . S ysm ac , C2 00H P rogramm able Cont ro l le r s , Om ron E lec tron i cs , I li ., Ca t. No .P o 2 F A X 2 , 1 9 9 4 .

40. So ders t rom , T . , S toica , P . Sys tem Identi ficat ion, Prent ice Hall , 1989.

41 . Tagha v i , K . , Duva l, W . M. B . ' " I nv er s e Hea t T rans fe r Ana lys i s o f Br idgm an Crys t a l

G row th" , In ternat iona l Journal o f H eat Transfer, Vol . 32, No . 9 , pp. 1741-1750, 1989.

4 2 . W a r g o , M . J . , W it t, A . F . , " Rea l T ime Thermal Imaging fo r Ana lys i s and Co nt ro l o f

Crys t a l Grow th by t he Czochra l sk i Techn ique" , Journa l o f Crys t a l Grow th , 116 , pp :213-

224, 1992.

43 . Z i eg l e r, J . G ., N icho l s , N B . , " Op t imu m,S e t t ings fo r Automat i c C ont ro l l e r s" , T rans ,AS ME, 64 , pp .759-768 , 1942 .

44 . Chang , C . J ., B row n R . A . , , " R ad i a l S egrega t i on Induced by Na tura l Conv ec t i on and

M el t /S o l i d In t e r f ace S hape i n Ver ti ca l Br idgm an Grow th " , Journa l o f Crys t a l Grow th , 63 ,

pp :343-364 , 1983 .

Page 19: Control of Crystal Growth in Bridgeman

8/6/2019 Control of Crystal Growth in Bridgeman

http://slidepdf.com/reader/full/control-of-crystal-growth-in-bridgeman 19/20

Cont ro l o f C rys ta l Grow th 235

C. Batur received B.S.M.E and M .S. de grees from the Technical Univers i ty of Is tanbul ,

Tu rkey in 1970 and 1971 respectively. H is Ph. D deg ree is from the Un iversity o f

Leices ter , England, 1976. H e is presently o n the facul ty of De partme nt o f Mechanical

Eng ineering at the Univers i ty of Akron, Akron, OH, U SA. Dr. B atur published

extens ively in proce ss control, co m pute r imaging and neural-fuzzy systems. C urrently he

w ork s on th e co ntrol o f interface shape dt~ring crystal grow th and the structural para me ter

contro l in polym er process ing machines .

Arvind Srin ivasan received the B. Tech degree in Mechanical E ngineering from th e Indian

Inst i tu te o f Technology, Madras , India in 1989, an M.S. deg ree in mechanical enginee ring

in 1991 and a M.S. degre e in electr ical engineering in 1993 from the Un ivers i ty of A kron.

H e obtained h is Ph.D. degr ee in mechanical engineering in 1 994. H e s tudied the contro l o f

in terface shape during crys tal growth. Be twe en 1991 and 1994 he co nducted research on

prob lem s related to b oth tem perature con trol and solid-liquid interface contro l in crystal

grow th furnaces. T his research was supported by the N AS A Lewis Research Center ,

Clev eland Ohio. Currently he work s for InterBol Inc., Canton, O hio. Dr. Srinivasan 's

resea rch interests span the areas o f m odeling and contro l of distributed systems, system

theory , multivariable robust com rol, neural netw ork and fuzzy logic.

Page 20: Control of Crystal Growth in Bridgeman

8/6/2019 Control of Crystal Growth in Bridgeman

http://slidepdf.com/reader/full/control-of-crystal-growth-in-bridgeman 20/20

236 C. Batur e t a / .

W al t e r M. D uva l r ece ived h i s P h .D in M echan i ca l Eng inee r ing f rom R ensse l ae r

P o ly t ech n i c Ins t i t u t e i n 1984 . H i s re sea rch a rea was in t he two-p hase f l ow, cond ensa t i on

and evap ora t i on o f a mu l t icom ponen t f lu id i ns ide a hor i zon t a l tube .H e i s a resea rch sc ient i s t in the m ater ia ls divis ion, proces s ing sc ienc e and techn olo gy

b r a n c h , a t N A S A R e s e a r c h C e n t e r. H e j o i n e d N A S A L e w i s i n 1 98 5 t o p i o n e e r th e n e w l y -

fo rmed r esea rch a r ea i n t he m a te ri a ls d i~ s ion o n m ic rograv it y e ff ec ts on c rys t a l g ro w th

t r anspor t phenom ena . H i s r e sea rch in t e r es ts inc lude con t ro l sys t ems fo r op t imiza t i on o f

c r y s ta l g r o w t h p r o c e s se s , e x p e r im e n t s a n d c o m p u t a t io n s o f c r y s ta l g r o w t h p h e n o m e n a ,

hydro dyn am ic i ns tab i li ty , phase ch ange phenomena, and chao t i c dynam ics o f d i s sipa t ivesys t ems .

N . B . S i n g h j o i n e d t h e W e s t in g h o u s e S c ie n c e a n d T e c h n o l o g y C e n t e r i n 1 98 4 a R e r

resea rch an d t each ing exper i ence o f more t ha t 15 yea r s in t he a r ea o f so li d i fi ca ti on and

c r y s ta l g r o w t h . H e o b t a i n e d M s c a n d P h D d e g r e e s f r o m t h e G o r a k h p u r U n i v e r s i t y ( U P ) ,

I n d ia , a n d w a s a f a c u l ty m e m b e r i n t h e C h e m i s t ry d e p a rt m e n t o f T i l ak D h a r i P o s t -

Grad ua t e Col l ege un t i l June 1979 , wh en be j o ined Rensse l ae r P o ly t echn i c Ins t i t u te , T roy ,

N ew Yo rk . A t W es tm_ghouse he i s t he p rogram man ager fo r c rys t a l g row th . D r . S ingh has

pub l i shed ex t ens ive ly i n the a r e o f c rys t a l g row th and cha rac t e r iza t i on and i s fe l l ow o f

A S M i n te r n a ti o n a l. H e h a s b e e n i n v o lv e d in th e o r g a n i z in g a n d p r o g r a m c o m m i tt e e s o f

m any na t iona l and i n t e rna t i ona l confe rences and wo rkshops . Dr . S ingh i s an ac t ive

m e m b e r o f A A C G ( e le c t ed ex e c u ti v e c o m m i tt e e m e m b e r ) , A S M , T M S , A I A A , a n d

S igm a Xi S c i en ti fi c Resea rch S oc i e ty , and he i s t he founde r o f P i tt sburgh Ch ap te r o f

C r y s t a l G r o w e r s .