57
Control Introduction Gustaf Olsson IEA Lund University [email protected]

Control - iea.lth.se

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Control - iea.lth.se

ControlIntroduction

Gustaf OlssonIEA

Lund University [email protected]

Page 2: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Lecture 3 Dec

• Nonlinear and linear systems– Aeration, Growth rate, DO saturation

• Feedback control• Cascade control• Manipulated variables

Page 3: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Lecture 6 Dec

• Control goals

• Dec 10 – no lecture

Page 4: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Lecture Dec 13

• Control of unit processes in the activated sludge system

Page 5: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Simple Control Structure

-1

Controller Process

Setpoint = reference value Control signalOutput =measurement

Error

Page 6: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Feedback Feedforward

Page 7: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Feedforward Control

Page 8: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Simple Controllers

Page 9: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

On-Off Control

Page 10: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

The PID controller

+++= ∫ dt

deTdte

TeKuu D

iP

10

Proportional gain

Error yd - y

Integral time

Derivative time

Controlsignal

Page 11: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

P vs. PI Control

Page 12: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

PI vs. PID Control

Page 13: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Control Structures for Aeration(a ) C o n s ta n t a e ra tio n ra te

(b ) O p e n lo o p c o n tro l b a s e d o n t im e

O n /o ff

(c ) C lo s e d lo o p c o n tro l

D is s o lv e d o x yg e n s e n s o r

V a r ia b le s p e e d d riv e

P ro g ra m m a b le c o n tro lle r

A e ro b ic re a c to r

C o m p re s s o r

T im e r

C o m m u n ic a tio n lin e

(d ) D is s o lv e d p ro file c o n tro l

(e ) D yn a m ic s e t p o in t c o n tro l

L in e s s e n d in g s e t p o in t

A m m o n ia s e n s o r

Page 14: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University1

1,5

2

2,5

3

3,5

22-okt 23-okt 24-okt 25-okt 26-okt 27-okt 28-okt 29-okt 30-okt

DO

, m

g/l

DO (6 and 7)

DO (8)

DO (9)

DO concentrations in 3 zones over a 7 day period

���������

controllednot controlled

Page 15: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University0

500

1000

1500

2000

2500

22-okt 23-okt 24-okt 25-okt 26-okt 27-okt 28-okt 29-okt 30-okt

Flo

w N

orm

al

M3/

ho

ur

Airflow (6 and 7)

Airflow (8)

Airflow (9)

Total

Air flow rates in 3 zones over a 7 day period

���������

Page 16: Control - iea.lth.se

Cascade Control

Page 17: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Cascade (Master-Slave) Control

Page 18: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Cascade Control Applications

• Valve positioners (remove hysteresis).• Fast rejection of disturbances in the

control signal (air/steam header pressure changes).

• Gain scheduling (master controller sees the slave sensor characteristics in place of the process characteristics).

Page 19: Control - iea.lth.se

Feedforward Control

Page 20: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Why Feedforward?

• Measure the disturbance before it hits the plant

• Compensate for the disturbance before it has affected the plant

• The price: must supply a model of the influence of the disturbance

Page 21: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Feedforward Control

Page 22: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Model Based Control (MBC)

• Feedforward Control – simplest

• Predictive Control– commercially available - too high price– mostly linear, can handle hard

constraints

• Generic Model Control– nonlinear, can handle hard constraints

• State Feedback Control– older linear technique

Page 23: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Feedforward Design

• Measure dynamics of manipulated variable and disturbance

• Check realisability– Manipulated variable dynamics faster than

disturbance dynamics

• Implement full or partial controller

Page 24: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Feedforward Performance

Page 25: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Predictive Control

• General principle of operation:– use past control actions (and predicted

disturbances) with the model to predict future measured variables

– compare to the goals and constraints

– determine appropriate control actions to take

Page 26: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Control Handles

Page 27: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Control HandlesSmall costs• waste sludge

flowrate• return sludge

flowrate• step feed• recycle schemes

Larger costs• chemical

additions• external carbon• sludge

conditioning• aeration

Page 28: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Manipulated variables

• Hydraulic– Sludge inventory

– Recirculations

• Chemical and carbon dosage• Air or oxygen supply• Pre-treatment of influent WW

Page 29: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Hydraulic (1)Influent flow control

• Pumping of the influent flow• Sewer control• Equalisation basin• Flow splitting• Bypassing

Page 30: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Hydraulic (2)Sludge Inventory Control

• Waste sludge return rate• Return sludge flowrate• Step feed flowrates

Page 31: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Hydraulic (3)Recirculation streams

• Recirculation of nitrate• Recirculations in bio P• Recirculation in two-stage anaerobic

systems• Supernatants• Backwashing

Page 32: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Hydraulic (4)Batch reactors

• Phase length control in sequential batch reactors

Page 33: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Källby WWTP, Lund

12345

109876

Inlet

Compressor house

DODO

DO DO, NH4, NO3, PO4

DO, SS

SS

Flow

NH4, NO3, PO4

Flow

Flow

Page 34: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Pre-denitrification plant

Aerobic reactor

Sludge outtakeSludge recirculation

Influent

Internal recirculation

Effluent

Anoxic reactor

Page 35: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Finding the Control Goals

Page 36: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Goals and ObjectivesSocietal goals

• care for surrounding environment

• care for employees• care for society

Process or plant goals

• Meet effluent discharge goals

• Achieve good disturbance rejection

• Minimize operating costs

Page 37: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Operational Objectives• grow the right biomass population• maintain good mixing• adequate loading and DO conc.• adequate air flow• good settling properties• avoid clarifier overload• avoid denitrification in clarifier

Page 38: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Major Influent Streams

Page 39: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Influence of DO conc. in nitrate recycle

RecirculationDO conc.

Page 40: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Anoxic reactor - control fast time scale

Reactionrate

control

Page 41: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Anoxic reactor - control medium time scale

Hydrauliccontrol

Page 42: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Anoxic reactor - control slow time scale

Reaction control

Page 43: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Controller Tuning

Page 44: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Objective

• Servo Loops– close following of frequent setpoint

changes

• Regulator Loops– filter disturbances from measured variable

• Averaging Loops– filter disturbances from output variable

Page 45: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Control Action Guidelines• use as few as possible• use only P action for liquid levels• use only P action on the inner loop of cascade

loops• use only I action for averaging loops• add I action to remove stationary errors• add D action for high order process dynamics

where the initial reaction is slow• use extra care with D action when the

measurement is noisy (filter the measurement)

Page 46: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Tuning Procedures• there are nearly as many techniques as

there are control engineers but all:– identify a simple model of the process (the

form of the model),

– estimate parameters for the model form chosen, usually by some type of stimulus-response experiment on the process, and

– design controller parameters according to some procedure (among the many techniques, we recommend IMC tuning).

Page 47: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Tuning Cascade Control

• Slave controller high-gain proportional servo loop (tune first).

• Master controller lower-gain regulator with integral action to remove offset.

• ( Analogous to the human master-slave relationship )

Page 48: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Identification (form)

• Depends on tuning rules and process knowledge.

• IMC supports integrator, integrator + first order, first order, second-order overdamped, second-order underdamped, and a few others (see literature).

Page 49: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Estimation (parameters)

• A simple open-loop step test.• A closed-loop step test with proportional

only control and a gain high enough to give a decay ratio of about one third.

• Fitting the chosen model to time series data, using standard least squares regression.

Page 50: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Tuning RulesModel KP KI KD TI TD First order

mKττ

mKτ

1

- τ -

2nd order overdamped

mKτττ 21 +

mKτ

1

mKτττ 21 21 ττ +

21

21

ττττ+

2nd order underdamped

mKτζτ2

mKτ

1

mKττ 2

ζτ2

ζτ2

Integrator

mKτ1

0 0 - -

Integrator plus 1st order

mKτ1

0

mKττ

- τ

Page 51: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

IMC Filter (τm) Tuning

Page 52: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

IMC Performance

Page 53: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Time-Varying Loops

• To maintain constant performance the controller must retune to compensate for changes in process characteristics.

• Approaches are:– scheduling

– self tuning– exact linearisation

Page 54: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Scheduling

• Changing loop characteristic must be related to a measurable parameter - the controller input, output or some other measurement.

• Construct a “schedule” for the controller gain that compensates.

• Schedules for nonlinear valve characteristics is common as function of controller output.

Page 55: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Self-Tuner & Auto-Tuners

Page 56: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Exact Linearisation

• This is where an invertible process model is used (essentially a model-based controller).

Page 57: Control - iea.lth.se

Control of Biological WWT 2002

Gustaf Olsson, IEA, Lund University

Summary

• PI(D) controllers can solve most problems in WWT

• Controller tuning rules• Cascade control common practice• Use feedforward to meet disturbances• More difficult problems

– Time varying systems– Nonlinear systems