14
1 Video Segment BigDog Reflexes Boston Dynamics Robot Control • PID Control • Joint-Space Dynamic Control C o n t r o l • Natural Systems • Task-Oriented Control • Force Control Joint-Space Control Task-Oriented Control

Control

Embed Size (px)

DESCRIPTION

ROBOTICS

Citation preview

  • 1Video SegmentBigDog Reflexes Boston Dynamics

    Robot Control

    PID Control Joint-Space Dynamic Control

    C o n t r o l Natural Systems

    Task-Oriented Control Force Control

    Joint-Space Control

    Task-Oriented Control

  • 2Joint Space Control

    Inv.Kin.

    xd qd q

    Control

    Control

    Control

    Joint n

    Joint 2

    Joint 1q1

    qn

    q2 q2

    qn

    q1

    Resolved Motion Rate Control (Whitney 72)

    x J ( )Outside singularities

    J x1( )Arm at Configuration

    x f ( )x x xd J x1

    Resolved Motion Rate Control

    xJ -1

    q q

    Control

    Control

    Control

    Joint n

    Joint 2

    Joint 1q1

    qn

    q2 q2

    qn

    q1

    ForwardKinematics

    xd x

    Conservative Systemsx

    km

    Natural Systems

    ( ) ( )( ) 0ddt x

    KV Vx

    K 2

    12

    K mx

    Conservative Forces

    Fm xx k

    x

    km

    Natural Systems

    ( )d K Kdt x x

    Vx

    0 21( )2x

    V Work kx x kx Potential Energy of a spring

    21( )2kx

    x

    Conservative Forces

    Fm xx k

    x

    km

    Natural Systems

    ( )d K Kdt x x

    Vx

    0 21( )2x

    V Work kx x kx Potential Energy of a spring

    21( )2kx

    x

  • 3Conservative Systems

    0k xm x

    x

    km

    Natural Systems

    ( ) ( )( ) 0ddt x

    KV Vx

    K

    212

    V kx

    212

    K mx

    Conservative Systems

    Natural Systems

    0k xm x V kx 1

    22

    x

    t

    Frequency increaseswith stiffnessand inverse mass

    n kmx xn 2 0

    x t c tn( ) cos( )

    Natural Frequency

    Dissipative Systemsx

    kmx x x x Friction

    Viscous friction: f bxfriction mx bx kx 0

    Natural Systems

    ( ) ( )( ) frictiond fdt x x

    K VKV

    Dissipative Systemsk

    mx x x x Friction mx bx kx 0 x b

    mx k

    mx 0

    2 nbm

    x

    tOscillatorydamped

    x

    tCriticallydamped

    x

    tOverdamped

    Higher b/m

    n2

    2d order systems mx bx kx 0 x b

    mx k

    mx 0

    bmn2

    n2Natural damping ratio

    Critically dampedwhenb/m=2n

    n nbm

    2

    bkm

    2

    Critically damped system: n b km 1 2 ( )

    Time Response x x xn n n 2 02 n km ; n

    bkm

    2

    Naturalfrequency

    Naturaldampingratio

    x t ce tn nt n n( ) cos( ) 1 2

    dampedNaturalfrequency

    x(t)

    t

    21 2

    n n

    21 nn

  • 4kmx x x x b

    x

    mx bx kx 0m 2 0.b 4 8.k 8 0.what is the damped Natural frequency

    n n1 2 n km 2 ; n

    bkm

    2

    0 6.

    2 1 0 36 1 6. .

    Example

    1-dof Robot Controlm f

    x0 xd

    mx f V(x)

    x0 xdx

    Potential Field

    V x x xV x x x

    d

    d

    ( ) ,( ) ,

    00

    V x k x xp d( ) ( ) 122 ; f V x V

    x ( )

    mxx

    k x xp d [ ( ) ] 12

    2 ; mx k x xp d ( ) 0Position gain

    12 Tgoal p g gV k x x x x System

    d K Kdt x x

    f goalVfX

    Passive Systems (Stability)

    0goal

    Kd Kdt x x

    V StableConservative Forces

    Asymptotic Stability

    is asymptotically stable if

    0 ; 0Ts x fF or x 0s v vF k kx

    p goalk x xF Control

    a system

    x

    0goal

    Kd Kdt x x

    V goal

    s

    Kd Kdt x x

    VF

    vk x

    sF

    Proportional-Derivative Control (PD)mx f k x x k xp d v ( )

    ( ) 0v p dmx k x k x x

    1. ( ) 0pv dkkx x x x

    m m

    21. 2 ( ) 0dx x x x k

    mp k

    k mv

    p2closed loopdamping ratio

    closed loopfrequency

    Velocity gain Position gain

    Gainsk m

    k mp

    v

    2

    2( )Gain Selection

    set

    FHGIKJ

    k m

    k mp

    v

    2

    2( )

    k

    kp

    v

    2

    2

    Unit mass system m - mass systemk mk

    k mkp

    v

    k

    kp

    v

  • 5Control Partitioningmx f (1. )x fm m

    ( )v p df k x k x x

    fm mx f 1. x f unit mass system

    1. ( ) 0v p dx k x k x x 2 2

    [ ( )]v p df k x k x x fm m

    Non Linearities( , )mx b x fx

    Control Partitioningf f

    with

    , ( , )( ) mf b x xmx b x x 1. x f

    Systemf ( , )x x

    ++

    ( , )b x x

    mf

    Unit mass system

    ( , )

    m

    b x x

    Motion Control

    ( , )mx b x x f 1. x ff mf b

    Goal Position (xd):Control:Closed-loop System:

    f k x k x xv p d ( )

    1 0. ( )x k x k x xv p d

    Trajectory Trackingx t x t x td d d( ); ( ); ( )and

    Control: f x k x x k x xd v d p d ( ) ( )Closed-loop System:

    ( ) ( ) ( )x x k x x k x xd v d p d 0with de x x

    e k e k ev p 0

    e k e k ev p 0

    +-

    +-

    ++

    dx

    dx

    dxkpkv

    f m Systemb x x( , )

    xx

    f

    ( , )mx b x x f Disturbance Rejection

    +-

    +-

    ++

    dx

    dx

    dxkpkv

    f m Systemb x x( , )

    xx

    f

    ( , )mx b x x f Disturbance Rejection

    fdist

    ( , ) distmx b x x ff ( , )f mf b x x

    e k e k e fmv pdist

    Control

    Closed loop

  • 6 0 :e e k e f

    mpdist

    e fmkdist

    p

    fkdist

    pClosed looppositiongain (stiffness)

    Steady-State Error

    The steady-state

    e k e k e fmv pdist

    mx k x k x xv p d ( ) 0m

    f fdist

    kpmx x x x kv

    fdistk x x fp d dist( ) x x f

    kddist

    p

    xf k xdist p

    x fkdist

    p

    Closed LoopStiffness

    Steady-State Error - Example

    PID (adding Integral action)

    ( , )mx b x fx distf( , )f mf b x x

    zf x k x x k x x k x x dtd v d p d i d ( ) ( ) ( ) e k e k e k edt f

    mv p idist z

    e k e k e k ev p i 0e 0

    System

    Control

    Closed-loop System

    Steady-state Error

    Rr

    Motor

    m LIm

    IL

    Linkr

    R

    Gear ratio

    ( )

    L m

    L m

    1

    m m m L L m m L LI I b b ( ) 1 1

    L m1

    m mL

    m mL

    mII b b ( ) ( ) 2 2

    L L m L L m LI I b b ( ) ( ) 2 2Effective Inertia Effective Damping

    Gear Reduction

    Effective InertiaI I Ieff L m 2

    for a manipulatorI I qL L ( )

    1Direct Drive

    Gain Selection

    k I I k

    k I I kp L m p

    v L m v

    ( )

    ( )

    2

    2

    Time Optimal Selection

    ( )min max

    I I IL L L 142

    Manipulator Control

    M V G( ) ( , ) ( )

    m mm m

    m mm

    GG

    11 12

    21 22

    1

    2

    1121 2

    122

    11212

    22

    1

    2

    1

    20

    0

    20

    FHG

    IKJFHGIKJ FHGIKJ

    FHG

    IKJFHGIKJ FHGIKJ FHGIKJ

    d i

    m m m m G

    m m m G

    11 1 12 2 112 1 2 122 22

    1 1

    22 2 21 1112

    12

    2 22

    m2

    l2 2m1l1

    1

  • 7+- d1 kp1 Link1(m11)++

    kv1

    Link1(m11) 1++

    d2 kp2 Link2(m22)++- +kv2

    2

    G1

    G2

    1

    2 2

    1m m m12 2 122 22 122 1 2 m m21 1 112 1

    2

    2

    Joint 1PD m11q d1 q q1 1,

    Joint nPD mnnqnd q qn n,

    Joint 2PD m22q d2 q q2 2,

    Joint 1PD m11q d1 q q1 1, D

    YNAMIC

    COUPLING

    i j ij jm q b g, 1 1 1 q1

    Joint nPD mnnqnd q qn n,

    qn

    Joint 2PD m22q d2 q q2 2,

    q2 i j ij jm q b g, 2 2 2

    i j n ij j n nm q b g,

    2( ) ( )[ ] ( )[ ] ( )M q q B q qq C q q G ( )p d vk q q k q

    ( ) sVd K Kdt q q q

    PD Control Stability

    d vV k qq

    21/2 ( )d p dV k q q

    2( ) ( )[ ] ( )[ ] ( )M q q B q qq C q q G ( )p d vk q q k q

    ( )( ) s dV Vd K Kdt q q q

    PD Control Stability

    s

    1/2 ( ) ( )Td p d dV k q q q q

    s vk q with 0 0; 0Ts vq for q k

    PerformanceHigh Gains better disturbance rejection

    Gains are limited bystructural flexibilitiestime delays (actuator-sensing)sampling rate

    nres

    ndelay

    nsampling rate

    2

    3

    5

    lowest structural flexibility

    largest delay2 delayFHGIKJ

  • 8[( ) ( )] M V V G G1 ( )M M11.

    Nonlinear Dynamic DecouplingM V G( ) ( , ) ( )

    ( ) ( , ) ( )M V G

    with perfect estimates( ) t1.

    : input of the unit-mass systems ( ) ( )d v d p dk k

    Closed-loop

    ( )t E k E k Ev p 0

    -

    ( )M q Arm

    ( , ) , ( )B q q C q q G q a f

    kvkp

    qdqdqd

    q

    q

    e+

    - e

    +

    d+

    ++

    Task Oriented Control

    Joint Space Control

    Joint Space Control

    F

    ( )GoalV xF

    ( )GoalV x

    TJ F

    Operational Space Control

  • 9Unified Motion & Force Control

    motion contactF F F contactF

    motionF

    F

    [ , , , ( )]x x x GoalM V G V xF F

    x

    xM x Fx xV G

    Operational Space Dynamics

    Task-Oriented Equations of Motion

    Non-Redundant Manipulator ; n m 1 2 Tmx x x x 1 2 Tnq q q q

    {0}{ 1}n

    10n

    Equations of Motiond L L Fdt x x

    with

    ( , ) ( , ) ( )L x x K x x U x

    xyz

    x

    ( ) ( , ) ( )x x xM x x V x x G x F Operational Space Dynamics

    End-Effector Centrifugal and Coriolis forces

    ( , ) :xV x x( ) :xG x End-Effector Gravity forces:F End-Effector Generalized forces

    ( ) :xM x End-Effector Kinetic Energy Matrix

    :x End-Effector Position andOrientation

    Joint Space/Task Space Relationships

    ( , )xK x x 1 ( ) 1 ( )

    22TT

    xx M x x q M q q ( , )qK q q

    Kinetic Energy

    ( )x J q q Using ( )1 1

    2 2T TT

    x MJ M Jq q q q

  • 10

    where ( , ) ( )h q q J q q

    1( ) () ( )( )xT M qM qq Jx J

    ( , ) ( )) ( )( ,( ) ,Tx xV qV x x M qqJ q h q q

    ( )( () )TxG J q G qx

    Joint Space/Task Space Relationships

    Example

    2

    2

    11

    d cx

    d s

    20

    2

    1 11 1

    d s cJ

    d c s

    2 2q dg

    l1y

    1CI

    2CI

    m1

    m2

    d2

    x

    20

    2

    1 11 1

    d s cJ

    d c s

    21 1 0 1 ;1 0

    dJ

    11 21

    2 22

    0 1 0 0 11 0 0 1 0x

    m dM

    d m

    0

    2

    0 11 101 1

    c sJ

    ds c

    1 J g

    l1y

    1CI

    2CI

    m1

    m2

    d 2

    x

    Mm l I m d I

    mzz zz L

    NMOQP

    1 12

    1 2 22

    2

    2

    00

    g

    l1y

    1CI

    2CI

    m1

    m2

    d2

    x

    21

    2 2

    00xm

    Mm m

    21 2 1 1

    2 22

    zz zzI I m lmd

    2 2m m

    1x1y

    1m2m

    2m

    Mm l I m d I

    mzz zz L

    NMOQP

    1 12

    1 2 22

    2

    2

    00

    20

    2 2

    01 1 1 101 1 1 1xmc s c s

    Mm ms c s c

    2

    0 2 2 22

    2 2 2

    1 11 1x

    m m s m s cM

    m sc m m c

    Mml I m d I

    mzz zz L

    NMOQP

    1 12

    1 2 22

    2

    2

    00

    Task Space

    Joint Space

    1x1y

    1m2m

  • 11

    2m2 2m m

    20 2 2 2

    22 2 2

    1 11 1

    m m s m s cm sc m m c

    21

    2 2

    00xm

    Mm m

    End-Effector Control

    ( )T FJ q F

    12 Tgoal p g gV k x x x x System

    ( ) ( )d K Kdt x

    V V Fx

    Passive Systems (Stability)

    0goal

    Kd Kdt x x

    V StableConservative Forces

    goalF V VX

    Asymptotic Stability

    is asymptotically stable if

    0 ; 0Ts x fF or x 0s v vF k kx

    p goal xx GF k x Control

    a system

    x

    0goal

    Kd Kdt x x

    V goal

    s

    Kd Kdt x x

    VF

    vk x

    sF

    Example2-d.o.f arm:Non-Dynamic Control

    ( )p g vk x x k GF x x 1q1

    l

    2q2l

    ( ) ( , ) ( )x x xM x x V x x Fx G

    Closed loop behavior

    111 * 1( ) v p g xm q x k x k x Vx m y 122 * 2( ) v p g xm q y k y k y Vy m x

    * 2 *1 2 1 112 p gx vk x x k xm c m x m y V * 2 *1 2 1 212 p gx vk y y k ym c m y m x V

  • 12

    Nonlinear Dynamic Decoupling

    with T FJ

    ( ) ( ' , ) ( )x xx xF M F V x xG Control Structure

    'I Fx Decoupled System

    Model( ) ( , ) ( )x x xM x x V x x Fx G

    Perfect Estimates'I Fx

    input of decoupled end-effector'F

    Goal Position Control

    ' ' 'v p gF k x k x x Closed Loop

    ' ' ( ) 0v p gI x k x k x x

    Trajectory TrackingTrajectory: , , d d dx x x

    ' '' ( ) ( )d v d p dF I x k x x k x x ' '( ) ( ) ( ) 0d v d p dx x k x x k x x

    with

    or

    x dx x ' ' 0x v x p xk k

    In joint space

    ' ' 0q v q p qk k

    with q dq q

    Task-Oriented Control

    -

    ( )M qx J qT a f ArmKin qa f

    J qa f

    ( , ) ( )V q q G qx x

    kvkp

    xdxdxd

    q

    qx

    xF

    e

    +- e

    +

    Compliance I x F 0 0

    0 0 ( )

    0 0

    x

    y

    z

    p

    p d v

    p

    k

    k x x k x

    k

    F

    set to zero

    ' '

    ' '

    '

    ( ) 0

    ( ) 0

    0

    v px d

    v py d

    v

    x k x k x x

    y k y k y y

    z k z

    Compliance along Z

  • 13

    Stiffness( ) 0

    zv p dz k z k z z

    x p pM k k

    determines stiffness along z

    Closed-Loop Stiffness:

    ( )x dF K x x J F J K x J K J KT T x T x ( )

    K J K JT x ( ) ( )

    mf

    Force Control1-d.o.f. mx f

    fdset f fdProblem

    f Nmd 1

    output~0

    friction

    Break away

    Coulomb friction10(N.m)

    Force Sensing

    mfdf s

    fs

    s ; f k xs smx k x fs

    fsAt static Equilibrium

    f fd f fs dDynamics

    f fd Dynamicmx k xs

    Dynamicsmx k x fs mk

    f f fs

    s s

    f mk

    k f f k fds

    p s d v sf f ( ( ) )

    Closed Loopmk

    f k f k f f f fs

    s v s p s d s df f[ ( )]

    f k x

    f k x

    f k x

    s s

    s s

    s s

    Control

    sf

    Steady-State errormk

    f k f k f f f fs

    s v s p s d s df f( ( )) ( ) 0

    fdist f fs s 0( )mkk

    e fps

    f distf 1e fmk

    k

    fdist

    p

    s

    f

    1

    Task Description

  • 14

    Task Specification

    motion forceF F F

    1 0 00 1 0 ;0 0 0

    I

    Selection matrix

    Unified Motion & Force Control

    Two decoupled Subsystems

    *motionF *forceF