29
Continuous-Time Hybrid Computation with Programmable Nonlinearities Columbia University New York, NY USA Ning Guo, Yipeng Huang, Tao Mai, Sharvil Patil, Chi Cao, Mingoo Seok, Simha Sethumadhavan, and Yannis Tsividis ESSCIRC2015 41th European Solid-State Circuits Conference Session B5L: Continuous-Time HybridComputation with Programmable Nonlinearities 1

Continuous-Time Hybrid Computation with Programmable ...yipenghuang.com/wp-content/uploads/2016/07/ESSCIRC...Continuous-Time Hybrid Computation with Programmable Nonlinearities Columbia

  • Upload
    others

  • View
    13

  • Download
    0

Embed Size (px)

Citation preview

Continuous-TimeHybridComputationwithProgrammable

Nonlinearities

ColumbiaUniversityNewYork,NYUSA

NingGuo,Yipeng Huang,TaoMai,Sharvil Patil,ChiCao,Mingoo Seok,Simha Sethumadhavan,andYannis Tsividis

ESSCIRC201541thEuropeanSolid-StateCircuitsConference

SessionB5L:Continuous-TimeHybridComputationwithProgrammableNonlinearities 1

ESSCIRC201541thEuropeanSolid-StateCircuitsConference

SessionB5L:Continuous-TimeHybridComputationwithProgrammableNonlinearities 2

CTHYBRIDCOMPUTER

t

t0 0

111

Both analoganddigitalsignalsarefunctionsofcontinuous-time

Thistalkpresentsanewprinciple:Continuous-timehybridcomputation

DIGITALCOMPUTER

INTERFAC

ESynergywithadigitalcomputerthroughacommoninterface

Timeintervals:Importantinfo,unlike thecaseinasync digital.

Outline1. Backgroundandmotivation

2. Mathoperations

3. Systemarchitecture

4. Circuitdesign

5. Measurementresults

6. Conclusions

3ESSCIRC201541thEuropeanSolid-StateCircuitsConference

SessionB5L:Continuous-TimeHybridComputationwithProgrammableNonlinearities

Backgroundandmotivation

• Analogcomputersweredominantinthe1960s;theyhelpedsendMantothemoon!• Solvingordinary/partial differential equations• Parallelcomputation• Noconvergence issues

4ESSCIRC201541thEuropeanSolid-StateCircuitsConference

SessionB5L:Continuous-TimeHybridComputationwithProgrammableNonlinearities

https://en.wikipedia.org/wiki/Analog_computer

Backgroundandmotivation

• Analogcomputerswereabandonedinthe1960sand1970s,whiletheywerestillusingthetechnologyyousawonthepreviousslide.

5ESSCIRC201541thEuropeanSolid-StateCircuitsConference

SessionB5L:Continuous-TimeHybridComputationwithProgrammableNonlinearities

[1]G.Cowanetal.,ISSCC2005

• TheirpotentialinmodernVLSItechnologywasnotconsidereduntilrecently[1].

• ItwasshownthatVLSIanalogcomputersaresuitablefor:• Low-power, self-contained approximatecomputation• Speed-up ofdigitalcomputation throughco-processing.

�̈� = −0.2�̇� − 0.5𝑥 + 1;

Mathequation:

Initialconditions:𝑥 0 = 9;�̇� 0 = −7

ESSCIRC201541thEuropeanSolid-StateCircuitsConference

SessionB5L:Continuous-TimeHybridComputationwithProgrammableNonlinearities 6

BackgroundandmotivationAnalogcomputationexample

𝑥

Physicalsystem

Mass

Spring∫ ∫

Force

Mass

Spring∫ ∫

Force

Physicalsystem

ESSCIRC201541thEuropeanSolid-StateCircuitsConference

SessionB5L:Continuous-TimeHybridComputationwithProgrammableNonlinearities 7

BackgroundandmotivationAnalogcomputationexample

�̇��̈� 𝑥

-0.2

-0.5

1

�̈� = −0.2�̇� − 0.5𝑥 + 1;

Mathequation:

Initialconditions:𝑥 0 = 9;�̇� 0 = −7

𝑥

Electricalsystem

-10

-5

0

5

10

20 40 60

𝑥 (µA)

𝑡 (ms)

Backgroundandmotivation

• Wepresentanewprinciple:continuous-timehybridcomputation• Continuous-time analogcomputation• Continuous-time digitalcomputation

• Comparedtothefullyanalogapproach,thenewapproachresultsin:• Betteraccuracy• Higherprogrammabilityandgenerality

8ESSCIRC201541thEuropeanSolid-StateCircuitsConference

SessionB5L:Continuous-TimeHybridComputationwithProgrammableNonlinearities

NOCLOCK

Basicarithmeticoperations:

Addition𝑧 𝑡 = 𝑥 𝑡 + 𝑦(𝑡)

Subtraction𝑧 𝑡 = 𝑥 𝑡 − 𝑦(𝑡)

Multiplication𝑧 𝑡 = 𝑥 𝑡 𝑦(𝑡)

Integration𝑦 𝑡 = ∫ 𝑥 𝜏 𝑑𝜏C

D

Nonlinearfunction𝑦 𝑡 = 𝐹(𝑥 𝑡 )

Mathoperations

ESSCIRC201541thEuropeanSolid-StateCircuitsConference

SessionB5L:Continuous-TimeHybridComputationwithProgrammableNonlinearities 9

F( )

Problemvariable

Machinevariable

Amplitude scaling:

Mathoperations

ESSCIRC201541thEuropeanSolid-StateCircuitsConference

SessionB5L:Continuous-TimeHybridComputationwithProgrammableNonlinearities 10

Problemvariable- 10cm + 10cm

0

- 2µA + 2µA0

Machinevariable

Example:

Problemtime

Machinetime

Timescaling:

Problemtime

Machinetime

0 1s

0 1µs

Example:

4 AN

ALO

G O

UTPU

TS

8 FANOUT BLOCKS 4 INTEGRATORS 8 MULTIPLIER/VGAs

8 8 8 8

8 8 8 8SPI CONTROLLER

SRAM SRAM

CT

AD

C

CT

DA

C

8 8DIGITAL OUTPUT

DIG

ITAL

INPU

T

4SPI

4 ANALOG INPUTS

CT

AD

C

CT

DA

C

Accuracy: 8-bit

Signalrepresentation:Differential current

Analogblockinterface:DCcoupled,Class-AB

Offsets:<1LSBaftercalibration

Analogsignalbandwidth:DC- 20KHz

Systemarchitecture

ESSCIRC201541thEuropeanSolid-StateCircuitsConference

SessionB5L:Continuous-TimeHybridComputationwithProgrammableNonlinearities 11

Inputstage Integrationstage Outputstage

Circuitdesign:Integratorblock

ESSCIRC201541thEuropeanSolid-StateCircuitsConference

SessionB5L:Continuous-TimeHybridComputationwithProgrammableNonlinearities 12

+

-

Gm

8

DACDigital code

Input current mirrors

Output transconductor

C

Initial condition setting block

Common mode feedback block

+

-

Gm

IC+

IC-

IIN-

IIN+

IDAC+

IDAC-

10RF ,RF

10RF ,RF

VC+

VC-

VREF

10R, R10R, R

VCM

IOUT-

IOUT+

Multiplierblock(principle)

Analogsignalrouting

MG,MI,MJ,MK inweakinversion𝑉MNG + 𝑉MNJ = 𝑉MNI + 𝑉MNK ⇒ 𝐼G 𝐼J = 𝐼I𝐼K

Fanoutblock

CircuitdesignCircuittechniquesusedinotherblocks:

∫ ONON

ESSCIRC201541thEuropeanSolid-StateCircuitsConference

SessionB5L:Continuous-TimeHybridComputationwithProgrammableNonlinearities 13

M1

VA VA

I1 I2 I3 I4

M2 M3 M4

VA

VB

VC

VD

IIN+ IOUT1-

VA

VD

IOUT2-IOUT3-

AVDD

4 AN

ALO

G O

UTPU

TS

8 FANOUT BLOCKS 4 INTEGRATORS 8 MULTIPLIER/VGAs

8 8 8 8

8 8 8 8SPI CONTROLLER

SRAM SRAM

CT

AD

C

CT

DA

C

8 8DIGITAL OUTPUT

DIG

ITAL

INPU

T

4SPI

4 ANALOG INPUTS

CT

AD

C

CT

DA

C

Systemarchitecture

ESSCIRC201541thEuropeanSolid-StateCircuitsConference

SessionB5L:Continuous-TimeHybridComputationwithProgrammableNonlinearities 14

Nonlinearfunction𝑦 𝑡 = 𝐹(𝑥 𝑡 )

F( ) 𝑦 𝑡x 𝑡

CT DAC

8

TRIGGER

DATA8

TRIGGER

DATAANALOG

INPUTANALOG OUTPUT

NONLINEAR FUNCTION F( )

CT ADC

SRAM

x F(x)

Ourapproach:Acontinuous-time programmablelookuptable

Advantagesoverdiscrete-timecounterpart:

• Activity-dependent powerdissipation• Fasterresponse toinputchanges• Noaliasing

Circuitdesign:Nonlinearfunctionblock

ESSCIRC201541thEuropeanSolid-StateCircuitsConference

SessionB5L:Continuous-TimeHybridComputationwithProgrammableNonlinearities 15

[2]B.Schelletal.,ISSCC2008

NOCLOCK

Implementation:

Circuitdesign:Nonlinearfunctionblock

ESSCIRC201541thEuropeanSolid-StateCircuitsConference

SessionB5L:Continuous-TimeHybridComputationwithProgrammableNonlinearities 16

NOCLOCK[2]B.Schelletal.,ISSCC2008

[2]

CT DAC

8

TRIGGER

DATA8

TRIGGER

DATAANALOG

INPUTANALOG OUTPUT

CT ADC

SRAM

TRIGGER

Voltage mode

CT ADC DATA

8

I-V CONVERTERDELAY

x F(x)

NONLINEAR FUNCTION F( )

i-

i+

RF ,10RF

RF ,10RFVREF

t0 0

1118t

AnalogInput ADC’soutput

Implementation:

Circuitdesign:Nonlinearfunctionblock

ESSCIRC201541thEuropeanSolid-StateCircuitsConference

SessionB5L:Continuous-TimeHybridComputationwithProgrammableNonlinearities 17

[2]B.Schelletal.,ISSCC2008

[2]

CT DAC

8

TRIGGER

DATA8

TRIGGER

DATAANALOG

INPUTANALOG OUTPUT

CT ADC

SRAM

TRIGGER

DFF

s

DFF

s8 COLUMNSX 32 WORDS

X 8BIT

88D

ECO

DER

SRAM IN READ MODE

DATA

Voltage mode

CT ADC DATA

8

I-V CONVERTER

8

DELAYDELAY DELAY

x F(x)

NONLINEAR FUNCTION F( )

i-

i+

RF ,10RF

RF ,10RFVREF

t0 0

1118 t0 0

1118t

AnalogInput ADC’soutput SRAM’soutput

NOCLOCK

Implementation:

Circuitdesign:Nonlinearfunctionblock

ESSCIRC201541thEuropeanSolid-StateCircuitsConference

SessionB5L:Continuous-TimeHybridComputationwithProgrammableNonlinearities 18

[2]B.Schelletal.,ISSCC2008

[2]

CT DAC

8

TRIGGER

DATA8

TRIGGER

DATAANALOG

INPUTANALOG OUTPUT

CT ADC

SRAM

TRIGGER

DFF

s

DFF

s8 COLUMNSX 32 WORDS

X 8BIT

88D

ECO

DER

SRAM IN READ MODE

DATA

Voltage mode

CT ADC DATA

8

I-V CONVERTER

1/8

3 MSBs

DFF

s

1/8

... +

1/161/8 1/32 1/256

...

5 LSBs

THERMO WEIGHTED

BINARY WEIGHTED

THER

MO

D

ECO

DER

8

DELAYDELAY DELAY

x F(x)

NONLINEAR FUNCTION F( )

i-

i+

RF ,10RF

RF ,10RFVREF

t0 0

1118 t0 0

1118 tt

AnalogInput ADC’soutput SRAM’soutput DAC’soutput

NOCLOCK

Diephoto Keyperformancesummary*Supply voltage 1.2VTechnology TSMC65nmLP

Diearea/active area 3.8 mm²/2.0mm²Integratornonlinearity 0.44%Fanoutnonlinearity 0.13%Multiplier/VGAnonlinearity 0.15%

ADC+DACSNDR@20KHz 53dBDACDNL/INL 0.73LSB /0.67LSB

*MeasurementconditionslistedinDigestpaper

Measurementresults

ESSCIRC201541thEuropeanSolid-StateCircuitsConference

SessionB5L:Continuous-TimeHybridComputationwithProgrammableNonlinearities 19

4× INTEGRATOR

8× FANOUT

8× MULTIPLIER

/ VGA

2×CT ADC 2×CT DAC

SPI CONTROLLER

2×SRAM

Nonlineardifferentialequation

RMSerror(uncalibrated)

RMSerror(calibrated)

VanderPoloscillator 17.7% 1.9%

Largeanglemotionofpendulum

7.3% 1.5%

Mass-springdamperswith

Coulombfriction18.0% 1.5%

Calibrationhelpsimproveaccuracy

*Measurement conditions listedinDigestpaper

Measurementresults

ESSCIRC201541thEuropeanSolid-StateCircuitsConference

SessionB5L:Continuous-TimeHybridComputationwithProgrammableNonlinearities 20

0 20 40 60 80

Fanout

Integrator

Multiplier

VGA

CTADC

CTDAC

SRAM

Powerdissipation*(μW)

Nonlinearfunctiongeneration: Activity-dependentpowerdissipation:

Measurementresults

ESSCIRC201541thEuropeanSolid-StateCircuitsConference

SessionB5L:Continuous-TimeHybridComputationwithProgrammableNonlinearities 21

50556065707580859095

0 2 4 6 8 10 12 14 16 18 20LookupRate(kHz)

F(X)=sin(X)lookup

PowerDissipation(μW)

-1-0.5

00.5

1

X(rad)

F(X)=sin(X)

-2%

-1%0%

1%

2%

-π +π

X(rad)-π

Y

F(Y)=sigmoid(Y)

-6 +6

Y-6 +6

0

0.5

1

-2%-1%0%1%2%

RelativeErrorRelativeError

x

y

Atwo-wheeldriverobotwithmodelpredictivecontrol

Currentstate

Possible futuresstates in0.1s

cossin

x

y =

!!!

Continuous-timesystemdynamics

ω:angularvelocity

ν:linearvelocity

Applicationdemonstration

ESSCIRC201541thEuropeanSolid-StateCircuitsConference

SessionB5L:Continuous-TimeHybridComputationwithProgrammableNonlinearities 22

ω

ν

θ(t)

x(t)

y(t)

CT DAC

CT ADC

SRAM8

DATA

TRIGGER SIGNAL

CT DAC

SRAM

COS( )

SIN( )

θ(t)

8DATA

TRIGGER SIGNAL

8DATA

TRIGGER SIGNAL

8DATA

TRIGGER SIGNAL

∫ ∫

Atwo-wheeldriverobotwithmodelpredictivecontrol

Applicationdemonstration

ESSCIRC201541thEuropeanSolid-StateCircuitsConference

SessionB5L:Continuous-TimeHybridComputationwithProgrammableNonlinearities 23

T=0.84μs,Energy=0.48nJRMSerror=0.6%

x

y

Currentstate

Possible futuresstates in0.1s

cossin

x

y =

!!!

Continuous-timesystemdynamics

ω:angularvelocity

ν:linearvelocity

Onemacroin[1] Our chipSupplyvoltage 2.5V 1.2VTechnology 250nmCMOS 65nmCMOS

Active area(estimate) 6.3mm² 2.0mm²Numberoffunctionblocks 25 26Powerwithallblockson

(estimate) 18.8mW 1.2mW

Calibration Integratorsonly AllblocksComputation types CTanalogonly CTanalog/CThybrid

Nonlinearities availableforcomputation

Specifictypes:exp(),log(), absolute,saturation,etc.

Arbitrary

On-chip ADC,SRAM,DAC N/A Available

Comparisontopriorart

[1]G.Cowanetal.,ISSCC2005ESSCIRC201541thEuropeanSolid-StateCircuitsConference

SessionB5L:Continuous-TimeHybridComputationwithProgrammableNonlinearities 24

• Wehavepresentedthefirstcontinuous-timehybridcomputingunit.

• Arbitrarynonlinearfunctionsareimplementedbyacontinuous-timehybridarchitecture(ADC+SRAM+DAC).

• Wehaveusedthechiptosuccessfullysolveseveralbenchmarkequationsanddemonstratedtheuseofthechipinaroboticapplication.

• Weexpectthistechniquetofindapplicationsinlow-powerapproximatecomputationandinaccelerationofdigitalcomputation.

Conclusions

ESSCIRC201541thEuropeanSolid-StateCircuitsConference

SessionB5L:Continuous-TimeHybridComputationwithProgrammableNonlinearities 25

WethankChien-TangHu,Doyun Kim,Jianxun Zhu,Teng Yang,YangXu,YuChenandZhe Caoforvaluablediscussions.

ThisworkhasbeensupportedbyNationalScienceFoundationgrantCNS1239134.

Acknowledgement

ESSCIRC201541thEuropeanSolid-StateCircuitsConference

SessionB5L:Continuous-TimeHybridComputationwithProgrammableNonlinearities 26

[1]G.Cowan,R.Melville,andY.Tsividis,“AVLSIanalogcomputer/mathco-processorforadigitalcomputer”,DigestIEEE2005ISSCC,pp.82-83.[2]B.SchellandY.Tsividis,“AclocklessADC/DSP/DACsystemwithactivity-dependentpowerdissipationandnoaliasing”,Digest2008IEEEISSCC,pp.550-551

[3]D.Kimetal.,“A1.85fW/bitultralowleakage10TSRAMwithspeedcompensationscheme”,Proc.IEEEISCAS,pp.69-72,May2011.[4]G.Klancar andI.Skrjanc,"Tracking-errormodel-basedpredictivecontrolformobilerobotsinrealtime,"RoboticsandAutonomousSystems,vol.55,no.6,pp.460-469, 2007.

[6]G.A.Korn,T.M.Korn,ElectronicAnalogandHybridComputers,McGrawHill,1964.[7]B.Gilbert,"Current-mode,voltage-mode,orfreemode?Afewsagesuggestions”,AnalogIntegratedCircuitsandSignalProcessing,vol.38,pp.83-101, February2004

References

ESSCIRC201541thEuropeanSolid-StateCircuitsConference

SessionB5L:Continuous-TimeHybridComputationwithProgrammableNonlinearities 27

Thankyou!

Questions?

ESSCIRC201541thEuropeanSolid-StateCircuitsConference

SessionB5L:Continuous-TimeHybridComputationwithProgrammableNonlinearities 28

ESSCIRC201541thEuropeanSolid-StateCircuitsConference

SessionB5L:Continuous-TimeHybridComputationwithProgrammableNonlinearities 29

Comparisondetails

[8] D.Bol,etal,“SleepWalker: A25-MHz0.4-VSub-mm27-µW/MHzMicrocontroller in65-nmLP/GPCMOSforLow-CarbonWireless SensorNodes”, IEEEJSSC,vol.48,pp.20-32,2013.

Timestepsize

Total clockcycles

Timeneededforonesolution

Energyconsumption foronesolution

Our hybridchip N/A N/A 0.84μs 0.48nJ

0.4VRISCmicroprocessor [8] 0.1s 734 29μs 5.14nJ

35Xbetter 11Xbetter