24
Monte Carlo Methods for Uncertainty Quantification Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Mike Giles (Oxford) Monte Carlo methods 2 1 / 24

Contemporary Numerical Techniquespeople.maths.ox.ac.uk/gilesm/infomm/lec3.pdf · MikeGiles (Oxford) MonteCarlomethods 2 4/24. SDEs in Finance 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 50

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Contemporary Numerical Techniquespeople.maths.ox.ac.uk/gilesm/infomm/lec3.pdf · MikeGiles (Oxford) MonteCarlomethods 2 4/24. SDEs in Finance 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 50

Monte Carlo Methods for Uncertainty Quantification

Mike Giles

Mathematical Institute, University of Oxford

Contemporary Numerical Techniques

Mike Giles (Oxford) Monte Carlo methods 2 1 / 24

Page 2: Contemporary Numerical Techniquespeople.maths.ox.ac.uk/gilesm/infomm/lec3.pdf · MikeGiles (Oxford) MonteCarlomethods 2 4/24. SDEs in Finance 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 50

Lecture outline

Lecture 3: financial SDE applications

financial models

approximating SDEs

weak and strong convergence

mean square error decomposition

multilevel Monte Carlo

Mike Giles (Oxford) Monte Carlo methods 2 2 / 24

Page 3: Contemporary Numerical Techniquespeople.maths.ox.ac.uk/gilesm/infomm/lec3.pdf · MikeGiles (Oxford) MonteCarlomethods 2 4/24. SDEs in Finance 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 50

SDEs in Finance

In computational finance, stochastic differential equations are usedto model the behaviour of

stocks

interest rates

exchange rates

weather

electricity/gas demand

crude oil prices

. . .

Mike Giles (Oxford) Monte Carlo methods 2 3 / 24

Page 4: Contemporary Numerical Techniquespeople.maths.ox.ac.uk/gilesm/infomm/lec3.pdf · MikeGiles (Oxford) MonteCarlomethods 2 4/24. SDEs in Finance 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 50

SDEs in Finance

Stochastic differential equations are just ordinary differential equationsplus an additional random source term.

The stochastic term accounts for the uncertainty of unpredictableday-to-day events.

The aim is not to predict exactly what will happen in the future, butto predict the probability of a range of possible things that might happen,and compute some averages, or the probability of an excessive loss.

This is really just uncertainty quantification, and they’ve been doing itfor quite a while because they have so much uncertainty.

Mike Giles (Oxford) Monte Carlo methods 2 4 / 24

Page 5: Contemporary Numerical Techniquespeople.maths.ox.ac.uk/gilesm/infomm/lec3.pdf · MikeGiles (Oxford) MonteCarlomethods 2 4/24. SDEs in Finance 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 50

SDEs in Finance

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

50

100

150

200

250multiple Geometric Brownian Motion paths

years

asse

t va

lue

Mike Giles (Oxford) Monte Carlo methods 2 5 / 24

Page 6: Contemporary Numerical Techniquespeople.maths.ox.ac.uk/gilesm/infomm/lec3.pdf · MikeGiles (Oxford) MonteCarlomethods 2 4/24. SDEs in Finance 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 50

SDEs in Finance

Examples:

Geometric Brownian motion (Black-Scholes model for stock prices)

dS = r S dt + σ S dW

Cox-Ingersoll-Ross model (interest rates)

dr = α(b − r)dt + σ√r dW

Heston stochastic volatility model (stock prices)

dS = r S dt +√V S dW1

dV = λ (σ2−V )dt + ξ√V dW2

with correlation ρ between dW1 and dW2

Mike Giles (Oxford) Monte Carlo methods 2 6 / 24

Page 7: Contemporary Numerical Techniquespeople.maths.ox.ac.uk/gilesm/infomm/lec3.pdf · MikeGiles (Oxford) MonteCarlomethods 2 4/24. SDEs in Finance 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 50

Generic Problem

Stochastic differential equation with general drift and volatility terms:

dS(t) = a(S , t)dt + b(S , t)dW (t)

W (t) is a Wiener variable with the properties that for any q< r<s< t,W (t)−W (s) is Normally distributed with mean 0 and variance t−s,independent of W (r)−W (q).

In many finance applications, we want to compute the expected value ofan option dependent on the terminal state P(S(T ))

Other options depend on the average, minimum or maximum over thewhole time interval.

Mike Giles (Oxford) Monte Carlo methods 2 7 / 24

Page 8: Contemporary Numerical Techniquespeople.maths.ox.ac.uk/gilesm/infomm/lec3.pdf · MikeGiles (Oxford) MonteCarlomethods 2 4/24. SDEs in Finance 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 50

Euler discretisation

Given the generic SDE:

dS(t) = a(S) dt + b(S) dW (t), 0< t<T ,

the Euler discretisation with timestep h is:

Sn+1 = Sn + a(Sn) h + b(Sn)∆Wn

where ∆Wn are Normal with mean 0, variance h.

How good is this approximation?

How do the errors behave as h → 0?

These are much harder questions when working with SDEs instead ofODEs.

Mike Giles (Oxford) Monte Carlo methods 2 8 / 24

Page 9: Contemporary Numerical Techniquespeople.maths.ox.ac.uk/gilesm/infomm/lec3.pdf · MikeGiles (Oxford) MonteCarlomethods 2 4/24. SDEs in Finance 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 50

Weak convergence

For most finance applications, what matters is the weak order ofconvergence, defined by the error in the expected value of the payoff.

For a European option, the weak order is m if

E [f (S(T ))] − E

[f (SN)

]= O(hm)

The Euler scheme has order 1 weak convergence, so the discretisation“bias” is asymptotically proportional to h.

Mike Giles (Oxford) Monte Carlo methods 2 9 / 24

Page 10: Contemporary Numerical Techniquespeople.maths.ox.ac.uk/gilesm/infomm/lec3.pdf · MikeGiles (Oxford) MonteCarlomethods 2 4/24. SDEs in Finance 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 50

Strong convergence

In some Monte Carlo applications, what matters is the strong order ofconvergence, defined by the average error in approximating each individualpath.

For the generic SDE, the strong order is m if

(E

[(S(T )− SN

)2])1/2

= O(hm)

The Euler scheme has order 1/2 strong convergence.

The leading order errors are as likely to be positive as negative, and socancel out – this is why the weak order is higher.

Mike Giles (Oxford) Monte Carlo methods 2 10 / 24

Page 11: Contemporary Numerical Techniquespeople.maths.ox.ac.uk/gilesm/infomm/lec3.pdf · MikeGiles (Oxford) MonteCarlomethods 2 4/24. SDEs in Finance 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 50

Exotic options

Lookback option: P =

(S(T )− min

0<t<T

S(t)

)

Approximation Smin = minn Sn gives O(h1/2) weak convergence

Barrier option (down-and-out call):P = 1( min

0<t<T

S(t) > B) max(0,S(T )−K )

Approximation using Smin gives O(h1/2) weak convergence

It is possible to improve these (using something called a Brownian Bridgeconstruction) and recover first order weak convergence.

Key point: getting high order convergence is very difficult.

Mike Giles (Oxford) Monte Carlo methods 2 11 / 24

Page 12: Contemporary Numerical Techniquespeople.maths.ox.ac.uk/gilesm/infomm/lec3.pdf · MikeGiles (Oxford) MonteCarlomethods 2 4/24. SDEs in Finance 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 50

Mean Square Error

Finally, how to decide whether it is better to increase the number oftimesteps (reducing the weak error) or the number of paths (reducing theMonte Carlo sampling error)?

If the true option value is V = E[f ]

and the discrete approximation is V = E[f ]

and the Monte Carlo estimate is Y =1

N

N∑

n=1

f (n)

then . . .

Mike Giles (Oxford) Monte Carlo methods 2 12 / 24

Page 13: Contemporary Numerical Techniquespeople.maths.ox.ac.uk/gilesm/infomm/lec3.pdf · MikeGiles (Oxford) MonteCarlomethods 2 4/24. SDEs in Finance 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 50

Mean Square Error

. . . the Mean Square Error is

E

[(Y − V

)2]

= E

[(Y −E[f ] + E[f ]−E[f ]

)2]

= E

[(Y −E[f ])2

]+ (E[f ]−E[f ])2

= N−1V[f ] +

(E[f ]−E[f ]

)2

first term is due to the variance of estimator

second term is square of bias due to weak error

Hence the cost to achieve a RMS error of ε requires N = O(ε−2), andM = O(ε−1) timesteps (so that weak error is O(ε)) and hence the totalcost is O(ε−3).

Mike Giles (Oxford) Monte Carlo methods 2 13 / 24

Page 14: Contemporary Numerical Techniquespeople.maths.ox.ac.uk/gilesm/infomm/lec3.pdf · MikeGiles (Oxford) MonteCarlomethods 2 4/24. SDEs in Finance 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 50

Multilevel Monte Carlo

When solving finite difference equations coming from approximating PDEs,multigrid combines calculations on a nested sequence of grids to get theaccuracy of the finest grid at a much lower computational cost.

Multilevel Monte Carlo uses a similar idea to achieve variance reduction inMonte Carlo path calculations, combining simulations with differentnumbers of timesteps – same accuracy as finest calculations, but at amuch lower computational cost.

Can also be viewed as a recursive control variate strategy.

Mike Giles (Oxford) Monte Carlo methods 2 14 / 24

Page 15: Contemporary Numerical Techniquespeople.maths.ox.ac.uk/gilesm/infomm/lec3.pdf · MikeGiles (Oxford) MonteCarlomethods 2 4/24. SDEs in Finance 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 50

Multilevel MC Approach

Consider multiple sets of simulations with different timestepshℓ = 2−ℓ T , ℓ = 0, 1, . . . , L, and payoff approximation Pℓ on level ℓ.

E[PL] = E[P0] +

L∑

ℓ=1

E[Pℓ−Pℓ−1]

Expected value is same – aim is to reduce variance of estimator for a fixedcomputational cost.

Key point: approximate E[Pℓ−Pℓ−1] using Nℓ simulations with Pℓ andPℓ−1 obtained using same Brownian path.

Yℓ = N−1ℓ

Nℓ∑

i=1

(P(i)ℓ −P

(i)ℓ−1

)

Mike Giles (Oxford) Monte Carlo methods 2 15 / 24

Page 16: Contemporary Numerical Techniquespeople.maths.ox.ac.uk/gilesm/infomm/lec3.pdf · MikeGiles (Oxford) MonteCarlomethods 2 4/24. SDEs in Finance 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 50

Multilevel MC ApproachDiscrete Brownian path at different levels

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

P7

P6

P5

P4

P3

P2

P1

P0

Mike Giles (Oxford) Monte Carlo methods 2 16 / 24

Page 17: Contemporary Numerical Techniquespeople.maths.ox.ac.uk/gilesm/infomm/lec3.pdf · MikeGiles (Oxford) MonteCarlomethods 2 4/24. SDEs in Finance 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 50

Multilevel MC Approach

Using independent paths for each level, the variance of the combinedestimator is

V

[L∑

ℓ=0

Yℓ

]=

L∑

ℓ=0

N−1ℓ Vℓ, Vℓ ≡ V[Pℓ−Pℓ−1],

and the computational cost is proportional to

L∑

ℓ=0

Nℓ h−1ℓ .

Hence, the variance is minimised for a fixed computational cost bychoosing Nℓ to be proportional to

√Vℓ hℓ.

The constant of proportionality can be chosen so that the combinedvariance is O(ε2).

Mike Giles (Oxford) Monte Carlo methods 2 17 / 24

Page 18: Contemporary Numerical Techniquespeople.maths.ox.ac.uk/gilesm/infomm/lec3.pdf · MikeGiles (Oxford) MonteCarlomethods 2 4/24. SDEs in Finance 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 50

Multilevel MC Approach

For the Euler discretisation and the Lipschitz payoff function

V[Pℓ−P ] = O(hℓ) =⇒ V[Pℓ−Pℓ−1] = O(hℓ)

and the optimal Nℓ is asymptotically proportional to hℓ.

To make the combined variance O(ε2) requires

Nℓ = O(ε−2L hℓ).

To make the bias O(ε) requires

L = log2 ε−1 + O(1) =⇒ hL = O(ε).

Hence, we obtain an O(ε2) MSE for a computational cost which isO(ε−2L2) = O(ε−2(log ε)2).

Mike Giles (Oxford) Monte Carlo methods 2 18 / 24

Page 19: Contemporary Numerical Techniquespeople.maths.ox.ac.uk/gilesm/infomm/lec3.pdf · MikeGiles (Oxford) MonteCarlomethods 2 4/24. SDEs in Finance 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 50

Results

Geometric Brownian motion:

dS = r S dt + σ S dW , 0 < t < 1,

S(0)=1, r=0.05, σ=0.2

Heston model:

dS = r S dt +√V S dW1, 0 < t < 1

dV = λ (σ2−V )dt + ξ√V dW2,

S(0)=1, V (0)=0.04, r=0.05, σ=0.2, λ=5, ξ=0.25, ρ=−0.5

All calculations use M=4, more efficient than M=2.

Mike Giles (Oxford) Monte Carlo methods 2 19 / 24

Page 20: Contemporary Numerical Techniquespeople.maths.ox.ac.uk/gilesm/infomm/lec3.pdf · MikeGiles (Oxford) MonteCarlomethods 2 4/24. SDEs in Finance 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 50

Results

GBM: European call, max(S(1)−1, 0)

0 1 2 3 4−10

−8

−6

−4

−2

0

l

log

M v

aria

nce

Pl

Pl− P

l−1

0 1 2 3 4−10

−8

−6

−4

−2

0

l

log

M |m

ea

n|

Pl

Pl− P

l−1

Mike Giles (Oxford) Monte Carlo methods 2 20 / 24

Page 21: Contemporary Numerical Techniquespeople.maths.ox.ac.uk/gilesm/infomm/lec3.pdf · MikeGiles (Oxford) MonteCarlomethods 2 4/24. SDEs in Finance 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 50

Results

GBM: European call, max(S(1)−1, 0)

0 1 2 3 410

2

104

106

108

1010

l

Nl

ε=0.00005

ε=0.0001

ε=0.0002

ε=0.0005

ε=0.001

10−4

10−3

10−2

10−1

100

101

ε

ε2 C

ost

Std MC

MLMC

Mike Giles (Oxford) Monte Carlo methods 2 21 / 24

Page 22: Contemporary Numerical Techniquespeople.maths.ox.ac.uk/gilesm/infomm/lec3.pdf · MikeGiles (Oxford) MonteCarlomethods 2 4/24. SDEs in Finance 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 50

Results

Heston model: European call

0 1 2 3 4−10

−8

−6

−4

−2

0

l

log

M v

aria

nce

Pl

Pl− P

l−1

0 1 2 3 4−10

−8

−6

−4

−2

0

l

log

M |m

ea

n|

Pl

Pl− P

l−1

Mike Giles (Oxford) Monte Carlo methods 2 22 / 24

Page 23: Contemporary Numerical Techniquespeople.maths.ox.ac.uk/gilesm/infomm/lec3.pdf · MikeGiles (Oxford) MonteCarlomethods 2 4/24. SDEs in Finance 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 50

Results

Heston model: European call

0 1 2 3 4

104

106

108

1010

l

Nl

ε=0.00005

ε=0.0001

ε=0.0002

ε=0.0005

ε=0.001

10−4

10−3

10−1

100

101

ε

ε2 C

ost

Std MC

MLMC

Mike Giles (Oxford) Monte Carlo methods 2 23 / 24

Page 24: Contemporary Numerical Techniquespeople.maths.ox.ac.uk/gilesm/infomm/lec3.pdf · MikeGiles (Oxford) MonteCarlomethods 2 4/24. SDEs in Finance 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 50

References

M.B. Giles, “Multi-level Monte Carlo path simulation”,

Operations Research, 56(3):607-617, 2008.

M.B. Giles. “Improved multilevel Monte Carlo convergence using theMilstein scheme”, pages 343-358 in Monte Carlo and Quasi-Monte CarloMethods 2006, Springer, 2008.

people.maths.ox.ac.uk/gilesm/mlmc.html

people.maths.ox.ac.uk/gilesm/mlmc community.html

Mike Giles (Oxford) Monte Carlo methods 2 24 / 24