152
Constraining the nature of E- and N-type components in the Baffin Island picrites using olivine-hosted melt inclusions Melissa Maisonneuve Department of Earth & Planetary Sciences McGill University Montréal, Québec, Canada December 2012 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master of Science © Melissa Maisonneuve 2012

Constraining the nature of E- and N-type components in the Baffin

Embed Size (px)

Citation preview

Page 1: Constraining the nature of E- and N-type components in the Baffin

Constraining the nature of E- and N-type components in the Baffin Island

picrites using olivine-hosted melt inclusions

Melissa Maisonneuve

Department of Earth & Planetary Sciences

McGill University

Montréal, Québec, Canada

December 2012

A thesis submitted to McGill University in partial fulfillment of the requirements

of the degree of Master of Science

© Melissa Maisonneuve 2012

Page 2: Constraining the nature of E- and N-type components in the Baffin

ii

Abstract

The Baffin Island picrites are interpreted to represent primitive magmas

(up to ~22 wt % MgO) that are minimally changed since leaving their mantle

source and thus provide important insights into our understanding of high-MgO

primary magmas and the heterogeneity of their mantle sources. In this study of

olivine-hosted melt inclusions, the ratio of potassium to titanium (K/Ti) is used as

a probe for the mantle source as both these elements are incompatible in olivine

and plagioclase, K/Ti behaves in a similar manner to La/Sm and remains

unaffected by crystal fractionation. We define depleted glass compositions (N-

type) as those with K/Ti < 0.2 and enriched glass compositions (E-type) as those

with K/Ti > 0.2, based on an apparent population minimum in the melt inclusion

data set at ~ 0.2. Whereas N-type melt inclusions are hosted dominantly in the

higher-Fo content olivines (Fo89 to Fo87), the E-type melt inclusions are mostly

found in the lower-Fo content olivines (Fo87-Fo83), suggesting that the E-type

component was less magnesian than the N-type. Both E- and N-type melt

inclusions and pillow margin glasses are low in volatile contents, indicating that

both magmas were significantly degassed upon eruption. Higher overall Cl and F

contents in the E-type melt inclusions, however, may indicate that the E-type

magmas were slightly less degassed than the N-type. The variation in K/Ti

observed in the melt inclusions cannot be successfully modeled by crystal

fractionation of olivine and plagioclase, by contamination by continental crust,

nor by contamination by hydrothermally altered oceanic crust. Therefore, the E-

type and N-type components likely reflect small-scale heterogeneities in the

Page 3: Constraining the nature of E- and N-type components in the Baffin

iii

mantle source. The similarity in composition between the melt inclusions and the

pillow margin glasses indicates that the melt inclusions were trapped immediately

before eruption. Melt inclusions in olivines from the same outcrop have restricted

K/Ti ratios (within ~0.1), whereas the two components are both present in single

hand specimens and in at least one sample within a single olivine phenocryst. This

indicates that the two components were present at least on the scale of tens of

centimetres (i.e., hand sample), and implies a fine-scale mixing of the two

magmas. We conclude that the E- and N-type magmas were distinct in the mantle

and partially homogenized in a shallow-level reservoir of less than 4 kilometers

depth.

Page 4: Constraining the nature of E- and N-type components in the Baffin

iv

Résumé

Les picrites provenant de l'île de Baffin sont considérés comme

représentant de magmes primitifs (jusqu'à ~ 22% en poids de MgO) qui auront

étés peu changés depuis leur extraits de leur source mantellique et sont au cœur de

notre compréhension de magmes primaires contenant haute-MgO et les sources

mantelliques hétérogènes. Dans cette étude d’inclusions de fonte de silice piégés

en olivine, le rapport du potassium au titane (K/Ti) est utilisé comme analogue

d’enrichissement d’éléments de trace car ces deux éléments sont incompatibles en

olivine et plagioclase, K/Ti se comporte d'une manière similaire à La/Sm et cette

proportion est insensible à la cristallisation d’olivine et plagioclase. Nous

considérons des compositions de roche comme appauvri (« N-type ») quand leurs

rapports de K/Ti <0,2 et enrichies (« E-type ») quand leurs rapports de K/Ti> 0,2.

Cette limite est basée sur une population minimale d’inclusions de fonte apparente

~ 0,2. Alors que les inclusions de fonte N-type sont hébergés dans les olivines

avec un contenu de forstérite à partir de Fo89 à Fo87, les inclusions E-type se

trouvent principalement dans les olivines moins forstéritiques (Fo87-Fo83) ; cela

implique que le composant E-type était moins riche en Mg que le composant N-

type. Les deux types d’inclusions vitreuses et les bordures vitreuses des laves

cousinées sont faibles en matières volatiles, ce qui indique que les deux magmes

étaient significativement dégazé à l'éruption. Cependant, des contenus supérieurs

de Cl et F dans les inclusions magmatiques de type E peuvent indiquer que les

magmes de type E sont légèrement moins dégazés que type N. La variation de K /

Ti observée dans les inclusions vitreuses ne peut pas être modélisé avec succès

Page 5: Constraining the nature of E- and N-type components in the Baffin

v

par la cristallisation fractionnée d'olivine et de plagioclase, ni par la contamination

par la croûte continentale, ni par la contamination par la croûte océanique subie

d’altération hydrothermale. Par conséquent, probablement que les variations de

composition de type E et de type N reflètent des petites hétérogénéités dans la

source mantellique. La similitude de composition entre les inclusions vitreuses et

les bordures vitreuses des laves cousinées, ainsi que des profils de composition

plats dans les olivines hébergeant à la fois des inclusions vitreuses de type E et de

type N, indiquent que les inclusions vitreuses ont été piégées immédiatement

avant l'éruption. Les inclusions vitreuses provenant des mêmes sites

geographiques ont des rapports de K/Ti restreints (~ 0,1), tandis que les deux

composants sont présents dans les échantillons à la main et dans au moins un

échantillon dans un seul phénocristal d'olivine. Ceci indique que les deux

composants sont présents au moins sur l'échelle de quelques dizaines de

centimètres (c.-à-échantillons à la main), et que les deux composants étaient

présents à petite échelle. Nous concluons que les magmes de type E et type N

étaient distincts dans le manteau et partiellement homogénéisé dans un réservoir

peu profond, moins de 4 kilomètres de profondeur.

Page 6: Constraining the nature of E- and N-type components in the Baffin

vi

Preface

The following thesis presents original research by the author at the

Department of Earth and Planetary Sciences, McGill University. It is submitted in

a traditional thesis format, and is ultimately intended to form a manuscript to be

submitted to a peer-reviewed journal.

Sample cutting for thin section, sample crushing and grain picking,

microprobe analysis and ion microprobe analysis were performed by the author.

The author was responsible for writing the thesis. All new scientific data is the

responsibility of the author. Data acquisition, analysis and interpretation were

supervised by Professors Donald Francis and John Stix.

Page 7: Constraining the nature of E- and N-type components in the Baffin

vii

Acknowledgements

Leaving the comforts of a small town in BC and settling into the big city

of Montréal was not a decision I took lightly and so I would first like to thank my

family for encouraging me to pursue my academic goals and to always challenge

myself, no matter how daunting the next step may be. In particular, I’d like to

acknowledge my mother for always pushing me to better myself through

academia. Knowledge truly is our greatest tool.

It is thanks to the generous financial support from the National Sciences

and Engineering Research Council (NSERC) of Canada that this project could be

completed. Additional financial support was graciously provided by R. Wares,

J.B. Lynch, L. Trottier and C. Reinhardt.

I would like to extend my deepest gratitude to Don Francis, my principal

supervisor, who inspired me early on to continue into the field of igneous

petrology. It is because if his vast knowledge and guidance that I’ve enjoyed the

journey to this point and have since learned that in geology one must “be explicit”

and ask questions. For his warm welcome into the Volcanology group and for

taking this project into a new and exciting direction, I would like to express my

thanks to John Stix, my co-supervisor. John’s ability to consider a problem from

all angles was an invaluable asset to this project and it has been my utmost

pleasure to work with him.

The data collection process is a long and complicated one- my many

thanks go to Lang Shi, for his 24-hour support and aid with the electron

Page 8: Constraining the nature of E- and N-type components in the Baffin

viii

microprobe at McGill, and to Nobu Shimizu and Brian Monteleone, for their

knowledge, help and patience with the ion microprobe during my two week stay

at the Woods Hole Oceanographic Institution.

Both the Igneous Petrology and the Volcanology groups at McGill have

been incredibly helpful in offering advice regarding this project. Thank you in

particular to Michael Patterson, Dejan Mildragovic and Yumi Kitayama in the

Igneous Petrology group for our countless geochemical discussions and help with

computer modeling. I would also like to thank Marc-Antoine Longpré and Jason

Coumans for their help with the ion microprobe and volatile data correction.

Finally, I would like to extend my most heartfelt thanks to the Department

of Earth & Planetary Sciences (EPS) at McGill- the EPSers welcomed me with

open arms and became my second family. In particular, thank you to Anne

Kosowski, Kristy Thornton and Angela DiNinno for answering my million

questions and for organizing all the Departmental events, without which, we

would all go crazy. Thank you to George Panagiotidis for his help with sample

preparation and to Brigitte Dionne for her patience and aid with poster work and

computer support.

Page 9: Constraining the nature of E- and N-type components in the Baffin

ix

Table of Contents

Abstract ................................................................................................................... ii

Résumé .................................................................................................................. iv

Preface .................................................................................................................... vi

Acknowledgements ............................................................................................... vii

Table of contents .................................................................................................... ix

List of figures ......................................................................................................... xi

List of tables .......................................................................................................... xii

List of appendices ................................................................................................ xiii

Section 1: General introduction………………...……………………………….1

Section 2: Introduction…………………………………………………………..7

Section 3: Geological setting……………………………………………………..8

Section 4: Methodology…………………………………….…………………..12

4.1 Major and minor elements…………………………………………...12

4.2 Volatile elements……………………………………………………..13

Section 5: Results……………………………………………………………….14

5.1 Petrography………………………………………………………….14

5.2 Olivine phenocrysts…………………………………………………..15

5.3 Pillow margin glass matrix…………………………………………..24

5.4 Melt inclusions……………………………………………………….25

Section 6: Discussion……………………………………………………………42

6.1 Comparison of melt inclusions and pillow margin glass matrix…….43

Page 10: Constraining the nature of E- and N-type components in the Baffin

x

6.2 Contamination……………………………………………………….51

6.3 The nature of mixing of E- and N-type components………………….57

Section 7: Conclusions………………………………………………………….63

Section 8: Contributions to knowledge and future work…………………….64

References……………………………………………………………………….67

Tables……………………………………………………………………………77

Appendices………………………………………….…………...…………..…127

Page 11: Constraining the nature of E- and N-type components in the Baffin

xi

List of figures

Figure 1. Map of North Atlantic Igneous Province (NAIP) and image of 10

Durban Island………………………………………………………..……………

Figure 2. Photomicrographs of olivine phenocrysts and melt inclusions………..17

Figure 3. Frequency distribution histogram of olivine aspect ratio……………...19

Figure 4. Frequency distribution histograms for olivine NiO concentration 22

and forsterite content and plot of olivine NiO vs. forsterite content………..…..

Figure 5. Olvine-melt inclusion traverses for FeO and MgO……………………27

Figure 6. Plot of Fe vs. Mg for E- and N-type melt inclusions…………………..29

Figure 7. Plot of melt inclusion Fe and Mg vs. host olivine forsterite content…..31

Figure 8. Plot of K/Ti vs. Mg for melt inclusions, pillow margin 34

glasses and whole rock compositions……………………………………………

Figure 9. Melt inclusion and pillow margin glass incompatible element 36

variation diagrams for K, Ti, Cl and F………………………………………….

Figure 10. Frequency distribution histograms for melt inclusion and 40

pillow margin glass volatile concentrations (CO2, Cl, F and S)……………….

Figure 11. Plot of melt inclusion K/Ti ratios grouped by outcrop……………….45

Figure 12. Plot of melt inclusion K/Ti ratios grouped by hand sample………….47

Figure 13. Plot of melt inclusion K/Ti ratios grouped by 49

individual host olivine phenocryst……………………………………………...

Figure 14. Plot of contamination model K/Ti ratios vs. Mg and Al……………..54

Figure 15. Plot of melt inclusion Cl/K vs. K/Ti………………………………….56

Figure 16. Plot of pillow margin glass matrix K/Ti ratios 59

against melt inclusion K/Ti ratios………………………………………………

Figure 17. Variation diagram for melt inclusion and pillow 61

margin glass CO2 vs. H2O, with modeled isobars……………………………...

Page 12: Constraining the nature of E- and N-type components in the Baffin

xii

List of tables

Table 1. Olivine phenocryst geochemistry ……………………………………...77

Table 2. Pillow margin matrix glass geochemistry………………………………91

Table 3 Melt inclusion geochemistry……………………………………….…...93

Table 4. Olivine-melt inclusion-olivine traverse ……………………….………115

Table 5. Pillow margin matrix glass volatile chemistry …………………..…....118

Table 6. Melt inclusion volatile chemistry ………………………………….….120

Table 7. Geochemical models………………………...………….…………......124

Page 13: Constraining the nature of E- and N-type components in the Baffin

xiii

List of appendices

Appendix 1. Supplementary methods information…………………………..…127

1.1 Geochemical modeling of crystal fractionation 127

and contamination………………………………………………

1.2 SIMS sample preparation……………………………………….129

1.3 Modeling crystallization depth estimation using 130

the SolEx program…………………………………………….

Appendix 2. Olivine volatile blanks …………………………………………..132

Appendix 3. P1326-2 glass standard composition …………..………………..134

Appendix 4. Electron microprobe detection limits ……………………………136

Appendix 5. Electron microprobe reproducibility……………………………..138

Page 14: Constraining the nature of E- and N-type components in the Baffin

1

Section 1: General introduction

The abundance of basaltic rocks worldwide, particularly along mid-ocean ridges,

first indicated to earth scientists that these lavas could represent primary melts of

the Earth’s mantle (e.g., Engel et al. 1965). Based on field observations of

peridotite inclusions in basalts and on experimental petrology, the mantle source

for mid-ocean ridge basalts (MORBs) is thought to be primarily peridotitic or

eclogitic in composition (Kushiro & Kuno 1963). Ocean basalts contain relatively

high magnesium and iron contents (6-8 wt % MgO and 5-8 wt % FeO), for low

silica contents (49-50 wt % SiO2), and so have undergone only a small extent of

crystal fractionation of olivine, pyroxene and plagioclase before eruption. The

relatively unfractionated nature of these melts, compared to other igneous rocks

such as gabbros, as well as the proximity of basaltic melts to their mantle source

at spreading ridges has motivated earth scientists to use basalts as probes of upper

mantle chemistry.

Due to their generally uniform major element composition worldwide,

basalts were initially thought to originate from an upper mantle that was

homogeneous in chemistry and mineralogy (Kushiro & Kuno 1963). However,

highly variable incompatible element concentrations (such as K, Na, Ba, Sr and

Ti) and compositional mixing trends in basalts along spreading ridges (Hart et al.

1973; White & Schilling 1973) have hinted that there is compositional and

isotopic heterogeneity in the mantle source, at least to a scale of 1000s of

kilometers.

Page 15: Constraining the nature of E- and N-type components in the Baffin

2

Globally, the origin of this mantle heterogeneity has been largely

attributed to several melting and crustal-generating events including before ~3.0

Ga and at ~2.8 Ga, ~1.8 Ga and ~0.7 Ga (Patchett et al. 1981). The large-scale

production of crust during these events partitioned the incompatible elements

(which prefer liquid to solid phases) preferentially into the crust and left the upper

mantle (and, consequently, the MORB-source) increasingly depleted in these

elements. Furthermore, the “enriched” oceanic crust that was produced eventually

subducted back into the mantle along with its cover of ocean sediments and at

depth was heated sufficiently to melt. This remelting depleted the subducted

crustal material in incompatible elements, and resulted in a complex “marble-

cake” or “plum-pudding” mantle structure, with regions of depleted, enriched and

moderately enriched compositions (Dupré & Allègre 1983; Allègre & Turcotte

1986; Phipps Morgan & Morgan 1999).

Variable melting of a “marble-cake” (or “plum-pudding”) mantle has

helped explain the highly variable incompatible element and isotopic contents

observed at some MORB locations, where the degree of melting is moderately

low, and the more homogeneous melts that are produced where spreading is fast

and large volumes of mantle are partially melted (for example, on the East Pacific

Rise; Allègre & Turcotte 1986). A numerical model using a three-component

heterogeneous mantle starting composition (enriched, pyroxenite and depleted

mantle) has also been used to argue that variable degrees of melting of the same

heterogeneous mantle, along with varying lithospheric thicknesses and mantle

flow rates, is successful in reproducing the variations in isotopic and incompatible

Page 16: Constraining the nature of E- and N-type components in the Baffin

3

element composition observed in both ocean island basalts, without the need for a

mantle plume (e.g., Hawai’i), and in MORBs (Ito & Mahoney 2003; Ito &

Mahoney 2005).

It is becoming increasingly clear that mantle convection has been

inefficient in homogenizing large-scale domains of the upper mantle (Hofmann

2003). Large-scale chemical heterogeneities are thought to persist only until they

are mechanically “thinned out” in the mantle to the centimeter-scale; once these

regions are sufficiently thin, chemical diffusion becomes important and

homogenization begins (Allègre & Turcotte 1986; Stixrude & Lithgow-Bertelloni

2012). However, chemically distinct regions do remain in the upper mantle which

have not “thinned out”; for example, there is a sharp geochemical transition

between two mantle regions of different isotopic composition in the Australian-

Antarctic Discordance (AAD) indicating that little mixing has occurred, despite a

source age of 1.5 Ga (Rehkämper & Hofmann 1997; Kempton et al. 2002;

Hofmann 2003). This implies that the upper mantle in this region has remained

unmixed and relatively unchanged in over a billion years- no small feat when the

mantle is thought to overturn every 100-200 My (Stixrude & Lithgow-Bertelloni

2012).

The scale to which these mantle heterogeneities are present remains

unconstrained. Geochemical studies at the outcrop scale have yielded meters-wide

isotopic heterogeneities (10-20 m scale lengths; Reisberg & Zindler 1986) and

meter-scale estimates have been made using geochemical studies of ultramafic

xenoliths and isotopic diffusion in single mineral grains (Zindler & Hart 1986).

Page 17: Constraining the nature of E- and N-type components in the Baffin

4

The discovery of these small-scale mantle heterogeneities has impacted the way

earth scientists model the geodynamic evolution of Earth’s mantle, resulting in a

present-day “mechanical mixture” mantle, rather than a “plum pudding” one (e.g.,

Ito & Mahoney 2003; Stixrude & Lithgow-Bertelloni 2012); in this former model,

the entire mantle is heterogeneous on all scales, from kilometers down to

centimeters.

Despite the development of increasingly intricate evolutionary models of

Earth’s mantle, there are still issues that arise when considering the scale of

mantle heterogeneity. Spatial resolution of deep mantle heterogeneity is poor and

limited to studies of seismic anisotropy, where seismic waves travel at different

velocities based on the direction in an anisotropic material. Deep mantle

anisotropic resolution is at best 10 km, although is more typically at the 200 km-

scale (Ritsema et al. 2007; Stixrude & Lithgow-Bertelloni 2012). Furthermore,

while these geophysical probes provide information on anisotropy, they do not

measure chemical composition; earth scientists must use experimental petrology

and knowledge of high-pressure phase transitions to correlate anisotropy with

compositional variability in the deep mantle (Stixrude & Lithgow-Bertelloni

2012).

While upper mantle compositional heterogeneity has been narrowed down

to 10’s of meters, the recent use of melt inclusions has been invaluable in

exploring even smaller-scale variability, down to a hand sample scale and even

grain scale. Melt inclusions are small blebs of magma trapped in crystals as they

form and are generally considered as “snapshots” into the chemical nature of the

Page 18: Constraining the nature of E- and N-type components in the Baffin

5

magma, with the surrounding crystal acting as a physical barrier between the melt

inclusion and the surrounding melt (although studies demonstrate that some melt

inclusions are susceptible to post-entrapment modification [Gaetani & Watson

2000; Danyushevsky et al., 2000; Danyushevsky et al. 2002]). When magma is

erupted underwater, the outer edges of the lava are flash frozen and the melt

inclusions found in the crystals along these rims are turned to glass. With luck,

there is little to no alteration of these pillow rims so that the melt inclusions

remain fresh. Olivine-hosted melt inclusions from the FAMOUS basalts, along

the Mid-Atlantic Ridge, first provided evidence of small, hand sample-scale

chemical heterogeneity, indicating that enriched and depleted mid-ocean ridge

basalts (E- and N-MORB, respectively) exist in very close proximity in the

mantle (Shimizu 1998). Soon, similar scale isotopic and trace element

heterogeneities were also found in ocean island basalt (OIB) settings (Saal et al.

1998; Sobolev et al. 2000), indicating that small-scale mantle heterogeneity is

common globally. There remains, however, little information as to the range of

compositional heterogeneity at different scales within the same lava suite.

The picritic (olivine-rich) pillow lavas at Baffin Island are both fresh and

contain many olivines bearing glassy melt inclusions. They are among the highest

MgO lavas known (up to 22 wt % MgO) and are thought to have a composition

that reflects little crystal fractionation since leaving their mantle source. It is for

these reasons that the Baffin Island picrites are excellent samples to gain insight

into the spatial resolution of mantle heterogeneity and why they have been central

to an ongoing debate in the geological community regarding the existence of

Page 19: Constraining the nature of E- and N-type components in the Baffin

6

high-MgO primary melts and the source of ancient isotopic signatures (Donaldson

& Brown 1977; Hart & Davis 1978; Clarke & O’Hara 1979; Francis 1985;

Robillard et al. 1992; Herzberg & O’Hara 2002; Stuart et al. 2003; Ellam &

Stuart 2004; Kent et al. 2004; Yaxley et al. 2004; Starkey et al. 2009; Dale et al.

2009).

The Baffin Island picrites contain the highest recorded terrestrial 3He/

4He

ratios (up to 49 times the atmospheric ratio; Stuart et al. 2003), suggesting that

these lavas could have originated from a mantle source that remained undegassed

relative to global MORB (mid-ocean ridge basalts) and OIB (ocean island

basalts). More recently, Jackson et al. (2010) revealed that the Baffin Island lavas

also have lead and neodymium isotopic ratios that are consistent with a primordial

mantle age, or 4.45-4.55 Ga. This implies the persistence of an ancient reservoir

that has remained distinct in the mantle for four and a half billion years and raises

many questions, not the least of which is, what is the geochemical nature of this

mantle source? Robillard et al. (1992) demonstrated that the Baffin Island lavas

have highly variable incompatible element concentrations, similar in range to N-

MORB and E-MORB and attributed this variability to small-scale chemical

heterogeneity in the source. Does this imply that the Earth’s primordial mantle

was also heterogeneous, similar to modern-day MORB? To what scale was this

heterogeneity present? The olivine-hosted melt inclusions from Baffin Island are

therefore central to our understanding of the nature of their mantle reservoir and

valuable insight can be gained by considering variations in melt inclusion

composition at different scales.

Page 20: Constraining the nature of E- and N-type components in the Baffin

7

Section 2: Introduction

The Baffin Bay Volcanic Province erupted approximately 58 My ago, during the

rifting apart of Greenland and Baffin Island that formed Davis Strait. The Baffin

lavas are among the most primitive, MgO-rich Phanerozoic basalts known

(Francis 1985), with up to ~22 weight percent MgO. Because the lower lavas

were erupted subaqueously, the outer margins of their pillows have been flash-

frozen as glass. Within the rims of these pillows are olivine phenocrysts

containing blebs of trapped melt, or melt inclusions, which were similarly frozen

as glass. These can be used to investigate mantle processes that occur during the

history of the magma.

The picritic lavas from the North Atlantic Igneous Province (NAIP) have

been studied extensively over the last forty years with regards to the nature of

their source magmas and the geochemical processes which formed these lavas

(Donaldson & Brown 1977; Hart & Davis 1978; Clarke & O’Hara 1979; Francis

1985; Robillard et al. 1992; Herzberg & O’Hara 2002; Stuart et al. 2003; Ellam &

Stuart 2004; Kent et al. 2004; Yaxley et al. 2004; Starkey et al. 2009; Dale et al.

2009). Robillard et al. (1992) first discovered that the Baffin lavas were mixtures

of two mantle components. Robillard et al. (1992) defined one end-member as

depleted in incompatible elements, or N-type, and the other as relatively enriched

in incompatible elements, or E-type. Both N- and E-type components are present

and intermixed throughout the Baffin Island lavas. While significant progress has

been made in our understanding of the formation of the Baffin Island picrites and

the heterogeneous nature of their mantle source, several key questions remain. To

Page 21: Constraining the nature of E- and N-type components in the Baffin

8

what extent are the two lava types, E- and N-type, mixed in the Baffin picrites? At

what scale is each type present, from the outcrop scale down to a single olivine

phenocryst? And what role, if any, has pre-eruptive contamination or post-

entrapment modification of melt inclusions played? We present in this paper the

results of a detailed study of the distribution of these two components at different

scales that shows that individual outcrops are dominantly E- or N-type, but both

magma types are present at the scale of tens of centimeters. We conclude that the

two magmas were mixed in a shallow reservoir shortly before eruption.

Section 3: Geological setting

The Baffin Bay volcanic province comprises a series of outcrops along the eastern

coast of Baffin Island from Cape Searle to Cape Dyer and on the western coast of

Greenland, between the Svartenhuk Peninsula and Disko Island (Fig. 1). The

Baffin Bay lavas are similar in age to lavas from East and West Greenland, the

Faeroe Islands, Northern Ireland and Western Scotland, collectively known as the

North Atlantic Tertiary Province (Clarke 1970). The North Atlantic Tertiary

Province is thought to be created by the upwelling of a mantle plume, associated

with the current Icelandic plume (Robillard et al. 1992); however, Gill et al.

(1995) have presented an alternative hypothesis in which Baffin Island and West

Greenland lavas were the products of a secondary plume not associated with

Iceland. Furthermore, some recent studies favour a source for the Baffin picrites

that is similar to North Atlantic mid-ocean ridge basalts (MORB), rather than a

plume (e.g. Stuart et al. 2003).

Page 22: Constraining the nature of E- and N-type components in the Baffin

9

Figure 1 a Tectonic reconstruction of North Atlantic Igneous Province (NAIP) at

~55 Ma, modified from Saunders et al. (1997). Study area is indicated. b Image of

Cape Searle, looking north. The stratigraphy is representative of the successions

sampled at Padloping Island, Durban Island and Aki Point. The transition from

the lower pillows and pillow breccias (bottom ~300m) and the upper subaerial

flows (top ~450m) is shown by a solid line. Photograph courtesy of Don Francis.

Page 23: Constraining the nature of E- and N-type components in the Baffin

10

a

b

Pillow lavas and breccias

Subaerial lava flows

Study

area

1000 km

N

Page 24: Constraining the nature of E- and N-type components in the Baffin

11

The Tertiary lavas on Baffin Island are comprised almost entirely of

picrites to picritic basalts, while their counterparts on Greenland grade up-section

from picrites to plagioclase-bearing basalts, with minor nepheline-normative

trachytes (Clarke 1970). The Baffin lavas either lie unconformably on a

Precambrian gneissic basement or conformably on poorly-consolidated

Palaeogene terrestrial sediments (Francis 1985). The Precambrian basement

typically has a mineral assemblage of quartz-two feldspars-biotite-garnet-

muscovite, often with accessory apatite, zircon and/or magnetite, while the

sediments are generally quartz-rich sandstones and shales, indicative of deltaic

deposition (Clarke & Upton 1971). Individual lava flows are typically 3.5 meters

in thickness but range in places up to 35 meters. The flows are essentially

horizontal, but are locally disrupted by faulting and slumping (Clarke & Upton

1971), and the lava sequence thins inland from their maximum thickness along

seaside cliffs, where their stratigraphy is best exposed (Clarke & Upton 1971).

The sequence sampled on Padloping Island for this study is approximately

750 m thick with the bottom 300 m largely comprised of pillow basalts with

minor subaqueous massive flows and pillow breccias, while the upper 450 m are

mainly comprised of thin, subaerial flows with red, oxidized and ropy flow tops

(Fig. 1; Francis 1985). This stratigraphic sequence is characteristic of Baffin Bay

lavas in general (Clarke & Upton 1971). The picrites in this study were sampled

from northeastern Padloping Island (Lat. 67º10’N, Long. 62 º 25’W) by D.

Francis in 1985 and 2004 and are labeled as “PdXX” and “PIXX”, respectively.

The samples from Padloping Island in this paper have been previously studied by

Francis (1985), Robillard et al. (1992), Kent et al. (1998; 2004) and Yaxley et al.

Page 25: Constraining the nature of E- and N-type components in the Baffin

12

(2004). Additional samples were collected by Francis in 2004 at Aki Point and

Durban Island, labeled “AkXX” and “DbXX”, respectively.

Section 4: Methodology

4.1 Major and minor elements

Polished thin sections with thicknesses of ~100 μm bearing glassy pillow

margins were used for petrography and major and minor element analysis by

electron microprobe. The major and minor elements in olivine phenocrysts, glass

margins and melt inclusions were analyzed using a JEOL 8900L scanning

electron microprobe at McGill University. The analyzing conditions for olivine

phenocrysts were 20 kV acceleration voltage, 30 nA beam current and a beam

diameter of 2 μm. Matrix glass and melt inclusion analyses were carried out with

a 15 kV acceleration voltage, 20 nA beam current and a 2 μm-diameter electron

beam. As sodium is a relatively volatile element, we monitored the intensity of the

Na signal for six minutes (longer than the total time per analysis) with the 2 μm-

diameter beam and confirmed that Na counts were constant and reliable under

these conditions. Peak counting times for olivine were 20s for Si, Mg, Mn, Fe and

Al, 50s for Ti and 60s for Ca and Ni. Peak count times for glass were 20s for Na,

Mg, Fe, K, Si, Al, Mg, P, Ti and Ca , 60s for Cr and 120s for Cl and S. Standards

were analyzed every 10-15 analyses to monitor analytical reproducibility.

Major and minor element concentrations in matrix glasses were calculated

as averages of 4-10 microprobe analyses, with outlier values (e.g. +/- 20% of any

major element) excluded. Melt inclusions were selected for microprobe analysis

Page 26: Constraining the nature of E- and N-type components in the Baffin

13

on the basis of size and quality using a petrographic microscope, and were at least

60 μm in diameter in order to exclude compositional zonation adjacent to the

olivine walls of the inclusion. The melt inclusions selected in thin section

contained no visible cracks or shrinkage bubbles (N.B. bubbles were later

identified in grain mounts).

4.2 Volatile elements

Five samples (three depleted, one enriched, and one with both depleted

and enriched melt inclusions) with the highest sulfur concentrations analyzed by

electron microprobe were selected for secondary ion mass spectrometer (SIMS)

analysis (see Appendix 1.2 for sample preparation). The melt inclusions were

analysed on a Cameca IMS 1280 secondary ion mass spectrometer (SIMS) at

Woods Hole Oceanographic Institution (WHOI) for 12

C, 16

O1H,

19F,

30S and

35Cl,

ratioed against the 30

Si reference mass. These secondary ions were produced by a

primary 133

Cs+ beam with a 1.2-1.5 nA current and a 10 μm diameter. An electron

beam was used to compensate for the positive charge induced on the sample

surface by the primary ion beam. Before analysis, a 30 x 30 μm sample surface

area was rastered, and a mechanical aperture placed at the secondary ion image

plane was then used to analyze a 20 x 20 μm area of the melt inclusion surface,

after four minutes of pre-sputtering. Count times were 10 seconds for all

secondary ions including the 30

Si reference mass. Data were collected in blocks of

ten cycles (in which each cycle has one set of analyses for all secondary ions).

Calibration curves were generated using nine standard glasses of basaltic to

basaltic andesitic composition, and an external basaltic glass standard was

Page 27: Constraining the nature of E- and N-type components in the Baffin

14

analyzed every 5-15 analyses to monitor analytical reproducibility (P1326-2,

Appendix 3).

In order to determine the background level of volatiles during SIMS

analysis, olivine phenocrysts from this study as well as olivine, spinel and

plagioclase phenocrysts being analyzed by other researchers during the same

period at WHOI were analyzed for their volatile contents. Averages (excluding

outliers) of the raw SIMS counts for each volatile element were created using the

full dataset in order to calculate representative background volatile levels. Raw

SIMS elemental counts were used for this purpose instead of the ratios because

spinel contains little Si; new elemental ratios were calculated using the average

SIMS counts for 12

C, 16

O1H,

19F,

30S and

35Cl and the average

30Si count. The

average background concentration of each volatile element was then determined

with these new average ratios using the calibration curves generated from

standards. The melt inclusion and pillow margin glass compositions were

corrected for background volatile levels by subtracting these average volatile

contents, and the error associated in all these steps was calculated.

Section 5: Results

5.1 Petrography

A total of twenty samples were used in this study, from sites on Padloping

Island (labelled “Pd” or “PI”), Durban Island (“Db”) and Aku Point (“Ak”). The

pillow lavas selected are well preserved and contain fresh glass, with only minor

alteration of olivine to orange palagonite along the outermost edges. The samples

Page 28: Constraining the nature of E- and N-type components in the Baffin

15

are dominated by picrites, with olivine phenocryst abundances ranging from

<10% up to ~40%. Olivine crystals commonly occur as clusters of grains (Fig.

2a). Plagioclase microlites are commonly present in the glassy matrix of the

pillow margins, constituting up to ~5 modal percent, but typically <1%. Although

spinel is present in the Baffin Island samples analyzed by Yaxley et al. (2004),

there is no spinel in the glassy matrix of the pillow margins used in this study.

The silicate melt inclusions analyzed in this study are exclusively from the glassy

pillow margins, generally the outermost centimeter, where the inclusions are also

glassy. Melt inclusions deeper within the pillow are devitrified and were not

analyzed as they have undergone post-entrapment crystallization. The melt

inclusions range in diameter from ~10 to 100 μm, with the majority ≤ 70 μm, and

are generally oblate spheroids. Olivine rims up to ~5µm are present around the

low-MgO melt inclusions but are typically absent in the majority of the melt

inclusions with higher MgO (Fig. 2e). Shrinkage bubbles are commonly present in

the larger melt inclusions (i.e., greater than 60 µm in diameter), and may vary

from <5% up to ~30% of the total volume of the melt inclusion. Plagioclase,

spinel, and daughter minerals are occasionally present in glass melt inclusions, but

such melt inclusions have been excluded from our dataset.

5.2 Olivine phenocrysts

Individual olivine phenocrysts are typically euhedral and there is a range

in shape from elongate to equant (Figs. 2, 3). The phenocryst aspect ratios have a

unimodal distribution, with most phenocrysts sub-equant in shape (i.e., an aspect

Page 29: Constraining the nature of E- and N-type components in the Baffin

16

Figure 2 a Olivine phenocrysts in clusters are indicated by white circles. b

Olivine phenocrysts occurring in a variety of crystal shapes within an individual

sample (PI-16). c,d Olivines hosting multiple melt inclusions. e A low-MgO (6.0

wt %) melt inclusion (PI12/1) with an olivine rim. f An 7.9 wt % MgO melt

inclusion (Ak11a/6) without an olivine rim. Scale bars of 100 µm are indicated.

Page 30: Constraining the nature of E- and N-type components in the Baffin

17

f

a b

c d

e f

100 µm 100 µm

100 µm 100 µm

100 µm 100 µm

Page 31: Constraining the nature of E- and N-type components in the Baffin

18

Figure 3 Histogram of the range in aspect ratios in olivine phenocrysts. Examples

of each crystal shape are shown.

Page 32: Constraining the nature of E- and N-type components in the Baffin

19

0

20

40

60

80

100

120

1:1 1:2 1:3 1:4 1:5 1:6 1:7 1:8 1:9

Fre

qu

ency

Olivine crystal aspect ratio

Equant Sub-equant Tabular Elongate

Page 33: Constraining the nature of E- and N-type components in the Baffin

20

ratio of 1:2; Fig. 3). For individual samples, the range of crystal shapes is more

restricted, with sub-equant and equant grains dominating in some samples and

tabular and elongate grains in others. Olivines with the average forsterite

composition in the suite (Fo87) range from sub-equant to elongate, with aspect

ratios extending to ~ 1:8. Although there is no clear correlation between the

presence of multiple melt inclusions and olivine crystal shape or forsterite

content, olivine phenocrysts containing low-MgO melt inclusions tend to be more

equant in shape, whereas olivines hosting melt inclusions with MgO contents

similar to those of the pillow margin glasses tend to be more elongate.

Olivine phenocrysts in the Baffin lavas range from < 100 µm to ~1.5 mm

in size, with an average phenocryst size of ~500 µm. They have a unimodal

forsterite distribution ranging from Fo83 to Fo89, with a mode about Fo87 (Fig. 4a)

and with two high-Fo olivines at Fo90 and Fo91. The forsterite content in

individual olivine phenocrysts is relatively constant with phenocrysts exhibiting

flat compositional profiles across the interiors with narrow normally zoned rims

(Francis 1985). The Ni content in the Baffin olivines also exhibits a prominent

mode at 0.35 wt %, but range from a low of 0.2 wt % NiO to a high of 0.45 wt %

NiO (Fig. 4b; Table 1). The Ni content in the olivines correlates positively with

the forsterite content (Fig. 4c).

The olivine rims that occur around the low-MgO melt inclusions (and very

few moderate- to higher-MgO melt inclusions) are identifiable in FeO profiles;

across Db15/13, for example, the Fe content increases from ~12 to ~13 wt % FeO

over a distance of ~10 µm and the Mg content decreases from 47 to 37 wt% MgO

Page 34: Constraining the nature of E- and N-type components in the Baffin

21

Figure 4 a Frequency distribution histogram for the forsterite content of host

olivine phenocrysts. b Frequency distribution histogram for host olivine Ni

content (as wt % NiO). c The NiO content in the Baffin host olivine phenocrysts

versus the forsterite content.

Page 35: Constraining the nature of E- and N-type components in the Baffin

22

0

20

40

60

80

100

120

140

80 82 84 86 88 90 92 94 98

Fre

qu

ency

Olivine forsterite content (% Fo)

a

0

20

40

60

80

100

120

140

160

0.00 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Fre

qu

ency

NiO (wt %)

b

Page 36: Constraining the nature of E- and N-type components in the Baffin

23

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

82 84 86 88 90 92 94

NiO

(w

t %

)

Olivine forsterite content (% Fo)

c

Page 37: Constraining the nature of E- and N-type components in the Baffin

24

over a distance of 20 µm (Fig. 5). For the majority of the melt inclusions,

however, this rim is not present.

5.3 Pillow margin glass matrix

The Mg content of the pillow margin glasses is relatively restricted,

varying between 8.5 and 9.5 wt % MgO, with the Fe content varying between 9.3

and 11.1 wt % total Fe (Fig. 6; Table 2). The concentration of K and Ti in the

Baffin pillow margin glasses range, respectively, from 0.07 to ~0.23 wt % K2O

and from 0.9 to 1.7 wt % TiO2. The ratio of potassium to titanium in the pillow

margin glasses and melt inclusions is used as an analogue for incompatible

element enrichment, because both are incompatible in olivine and K/Ti is

insensitive to crystal fractionation (Yaxley et al. 2004; Kent 2008), behaving

similarly to La/Sm during magmatic processes, such as crystal fractionation and

partial melting (Robillard et al. 1992). The ratio of K/Ti in the pillow margin

glasses varies from 0.08 (Pd13 and Pd56) to 0.30 (PI17; Fig. 8), despite the

restricted range in major element composition such as Mg. A homogeneous glass

standard, used to determine microprobe analytical reproducibility, has a maximum

range in K/Ti from 0.178 to 0.218. This indicates that internal variability in the

microprobe analyses can account for ~ 0.017 in the ranges of pillow margin glass

and melt inclusion K/Ti (standard VG-2; Appendix 5).

The majority of pillow margin glasses are volatile poor, with sulfur,

chlorine and carbon dioxide concentrations all below 100 ppm (Figs. 9, 10; Table

5). Fluorine concentrations are generally ~100 ppm, but reach up to ~170 ppm in

PI17/18. The pillow margin glasses have H2O contents less than the background

Page 38: Constraining the nature of E- and N-type components in the Baffin

25

volatile concentration of H2O (Table 5). Pillow margin glasses with the highest F

and Cl contents also have the highest K and Ti contents (Figs. 9, 10) and there is a

positive correlation between the F and the K contents (Fig. 9f).

5.4 Melt inclusions

The melt inclusion Mg contents range from 9 wt % MgO (8-12 cat %)

down to 3 wt % MgO (4 cat % Mg) in the low-MgO melt inclusions (Table 3),

and do not correlate with the forsterite content of the host olivines (Fig. 7a). The

Fe contents range from 8 to 11 wt % FeO* (6-8 cat %), with a strong peak at ~9

wt % FeO* (~7 cat %), and the Fe contents of E-type melt inclusions correlate

inversely with the forsterite content of the host olivines (Fig. 7b). The melt

inclusions found in the two high-Fo olivines (Fo > ~90) have approximately 8.7

wt % MgO (12 cat %), representing some of the most magnesian melt inclusions

in the Baffin suite, however, highly magnesian melt inclusions are also common

in olivines of ~Fo87, which is the average forsterite content (Fig. 7a). The Mg and

Fe contents of the melt inclusions are relatively constant across the centre of the

melt inclusions (~8.5 wt % MgO and ~9.5 wt % FeO in Db15/13; Fig. 5; Table 4),

but decrease towards the olivine boundary within a distance of ~15 µm in the

smaller melt inclusions (<60 µm diameter) and up to ~40 µm in the larger melt

inclusions (>100 µm diameter; Fig. 5). The Mg content decreases more than the

Fe content within this distance, down to ~6 wt % MgO, while the Fe content

decreases by ~ 0.5 wt % to ~9 wt % FeO (Fig. 5). The K/Ti ratio of the Baffin

melt inclusions ranges by more than an order of magnitude from 0.05 to 0.6 with a

Page 39: Constraining the nature of E- and N-type components in the Baffin

26

Figure 5 a Iron and b magnesium traverses across a melt inclusion (open

diamonds), including host olivine phenocryst (solid diamonds) for a large, 130

µm diameter melt inclusion (Db15/13). There is a gradient across the olivine-melt

inclusion interface indicated with vertical dashed lines. Analyses are given in

Table 4.

Page 40: Constraining the nature of E- and N-type components in the Baffin

27

6

7

8

9

10

11

12

13

14

0 50 100 150 200 250

FeO

(w

t %

)

Distance (µm)

Db15/13, Fo87.7 a

melt inclusion

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160 180 200 220 240 260

MgO

(w

t %

)

Distance (µm)

Db15/13, Fo87.7 b

melt inclusion

?

Page 41: Constraining the nature of E- and N-type components in the Baffin

28

Figure 6 Plots of Fe against Mg of N-type (solid diamonds) and E-type melt

inclusions (open diamonds), pillow margin matrix glasses (open circles), whole

rock analyses (open triangles) and olivine phenocrysts (solid squares): a The

variation in major element composition in the whole rocks, melt inclusions, and

pillow margin matrix glasses is controlled by the fractionation of olivine. b A

close-up of the melt inclusion and pillow margin glass data from a. While most

melt inclusions define a tight cluster at ~7 cat % Fe, a smaller population exhibit

decreasing Fe content with decreasing Mg. These are the melt inclusions which

have visible olivine rims, and may have experienced some re-equilibration. Whole

rock data are from Francis (1985) and Robillard et al. (1992).

Page 42: Constraining the nature of E- and N-type components in the Baffin

29

0

10

20

30

40

50

60

0 10 20 30 40 50 60

Fe

(ca

t %

)

Mg (cat %)

N-type melt inclusion

E-type melt inclusion

Whole rock

Pillow margin matrix

Olivine

a

2

4

6

8

10

12

2 4 6 8 10 12 14

Fe

(cat

%)

Mg (cat %)

N-type melt inclusion

E-type melt inclusion

Pillow margin matrix

b

Page 43: Constraining the nature of E- and N-type components in the Baffin

30

Figure 7 Plots of a Mg and b Fe in N-type (solid) and E-type (open) melt

inclusions against the forsterite content of the host olivine.

Page 44: Constraining the nature of E- and N-type components in the Baffin

31

0

2

4

6

8

10

12

14

82 84 86 88 90 92

Mg

(ca

t %

)

Host olivine forsterite content (% Fo)

N-type melt inclusion

E-type melt inclusion

a

Pillow matrix glass

Olivine rim

crystallization

0

2

4

6

8

10

82 84 86 88 90 92

Fe

(ca

t %

)

Host olivine forsterite content (% Fo)

N-type melt inclusion

E-type melt inclusion

b

Pillow matrix glass

Fe-loss

Page 45: Constraining the nature of E- and N-type components in the Baffin

32

population minimum at ~0.2. This value is taken as the boundary between “N-

type”, or depleted in incompatible elements, and “E-type”, or enriched in

incompatible elements, similar to the value used by Robillard et al. (1992).

Whereas both N- and E-type melt inclusions are found in olivine phenocrysts with

average forsterite contents (Fo87-Fo88), olivines hosting N-type melt inclusions

have Fo contents up to > Fo90, while olivines hosting E-type melt inclusions have

Fo contents as low as ~Fo83 (Fig. 7). Melt inclusions in lava pillow samples from

the same outcrop have a restricted range in K/Ti ratio, within ~0.1, over a range of

Mg contents, between ~6 to ~9 wt % MgO (8.5 to ~12 cat %; Fig. 11). Individual

samples (i.e., hand specimens) also have a restricted range in melt inclusion K/Ti

(Fig. 12). Melt inclusions within single olivine phenocrysts from all analyzed

samples except PI-17 typically have similar K/Ti ratios of N-type character which

vary by less than 0.05. By contrast, melt inclusions in sample PI17 are nearly

exclusively E-type with highly variable K/Ti ratios (from ~0.3 to ~0.7; Fig. 13).

There appears to be no correlation between the ratio of K/Ti and the distance of

the melt inclusion from the olivine crystal edge.

The volatile contents in the melt inclusions are similar to the pillow

margin matrix glasses, with most F contents below ~150 ppm, Cl below ~100

ppm, and H2O contents below the background volatile concentration (Fig. 10,

Table 6). Carbon dioxide concentrations, however, vary between <100 ppm up to

~2500 ppm and in a few multi-melt inclusions, CO2 varies by a factor of two or

more in single olivine phenocrysts. Sulfur contents are generally low at ~100

ppm, but reach between 300 and 800 ppm in several melt inclusions. Chlorine and

Page 46: Constraining the nature of E- and N-type components in the Baffin

33

Figure 8 Plot of K/Ti vs. Mg (cation percent) for E- and N-type melt inclusions

(open and solid diamonds, respectively), pillow margin matrix glasses (open

circles) and whole rocks (open triangles). Whole rock data are from Francis

(1985) and Robillard et al. (1992).

Page 47: Constraining the nature of E- and N-type components in the Baffin

34

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25 30 35 40

K/T

i

Mg (cat %)

N-type melt inclusion

E-type melt inclusion

Pillow margin matrix glass

Whole rock

Page 48: Constraining the nature of E- and N-type components in the Baffin

35

Figure 9 Variation diagrams for incompatible elements a K and Ti, b Ti and Cl, c

F and Ti d K and Cl, e F and Cl f K and F. N-type melt inclusions shown as solid

diamonds, E-type melt inclusions as open diamonds, N-type pillow margin

glasses as solid circles and E-type pillow margin glasses as open circles.

Detection limits for minor elements are given in Appendix 4.

Page 49: Constraining the nature of E- and N-type components in the Baffin

36

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

K (

cat

%)

Ti (cat %)

E-type melt inclusion

E-type pillow margin matrix glass

N-type melt inclusion

N-type pillow margin matrix glass

a

0

50

100

150

200

250

300

350

400

450

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Cl

(pp

m)

Ti (cat %)

N-type melt inclusion

N-type pillow margin matrix glass

E-type pillow margin matrix glass

E-type melt inclusion

b

Page 50: Constraining the nature of E- and N-type components in the Baffin

37

0

50

100

150

200

250

300

350

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

F (

pp

m)

Ti (cat %)

N-type melt inclusion

E-type melt inclusion

E-type pillow margin matrix glass

N-type pillow margin matrix glass

c

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 50 100 150 200 250 300 350 400 450

K (

cat

%)

Cl (ppm)

N-type melt inclusion

E-type melt inclusion

N-type pillow margin glass

E-type pillow margin glass

d

Page 51: Constraining the nature of E- and N-type components in the Baffin

38

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160 180

F (

pp

m)

Cl (ppm)

N-type melt inclusion

E-type melt inclusion

N-type pillow margin glass

E-type pillow margin glass

e

0

0.05

0.1

0.15

0.2

0.25

0.3

0 50 100 150 200 250 300

K (

cat

%)

F (ppm)

N-type melt inclusion

N-type pillow margin glass

E-type pillow margin glass

E-type melt inclusion

f

Page 52: Constraining the nature of E- and N-type components in the Baffin

39

Figure 10 Histograms of volatile concentrations in N-type melt inclusions (solid),

E-type melt inclusions (open), N-type pillow margin glasses (checkered) and E-

type pillow margin glasses (dotted) for a CO2 b F c S and d Cl.

Page 53: Constraining the nature of E- and N-type components in the Baffin

40

0

2

4

6

8

10

12

14

16

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600

Fre

qu

ency

CO2 (ppm)

E-type pillow margin glass

N-type pillow margin glass

E-type melt inclusion

N-type melt inclusion

a)

0

2

4

6

8

10

12

0 20 40 60 80 100 120 140 160 180 200

Fre

qu

ency

F (ppm)

E-type pillow margin glass

N-type pillow margin glass

E-type melt inclusion

N-type melt inclusion

b)

Page 54: Constraining the nature of E- and N-type components in the Baffin

41

0

2

4

6

8

10

12

14

16

0 100 200 300 400 500 600 700 800 900 1000

Fre

qu

ency

S (ppm)

E-type pillow margin glass

N-type pillow margin glass

E-type melt inclusions

N-type melt inclusions

c)

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

Fre

qu

ency

Cl (ppm)

E-type pillow margin glass

N-type pillow margin glass

E-type melt inclusions

N-type melt inclusions

d)

Page 55: Constraining the nature of E- and N-type components in the Baffin

42

fluorine contents are systematically higher in E-type melt inclusions than N-type

(Figs. 9, 10). There is no clear correlation, however, between melt inclusion CO2

or S contents and relative enrichment (Fig. 10). The ratio of Cl/K, used to evaluate

the role of assimilation of hydrothermally-altered oceanic crust (Michael &

Cornell 1998), varies between ~0.002 and 0.1 (with one outlier at ~0.18) in the

Baffin Island melt inclusions, but the majority of the melt inclusions have a

restricted Cl/K ratio of less than 0.06 (Fig. 14). Several E-type melt inclusions

have Cl/K ratios slightly higher than 0.06 (Fig. 14).

As with the pillow margin glasses, there is a positive correlation between

the K, Cl and Ti contents in the melt inclusions, in both the E-type and N-type

melt inclusions (Fig. 9a, b, d). The fluorine contents are better correlated with the

Cl contents in the N-type melt inclusions than the E-type (Fig. 9e). The fluorine

contents are also weakly correlated with the K contents in both the E- and N-type

melt inclusions (Fig. 9f).

Section 6: Discussion

As the analytical reproducibility of glass K/Ti ratios is within 0.017, the ranges in

melt inclusion and pillow margin glass K/Ti observed in the Baffin Island picrites

are not a result of analytical error, but rather represent true variability in the

samples themselves. The variation in melt inclusion K/Ti indicates that both

compositional end-members were present at different scales ranging from meter-

wide outcrops down to centimeter-scale hand specimens to millimeter-scale

olivine and implies a fine-scale mixing but not complete homogenization of the

Page 56: Constraining the nature of E- and N-type components in the Baffin

43

two magmatic components. Both N- and E-type melt inclusions are hosted in

olivines with flat compositional profiles (Francis 1985), suggesting that the two

types of melt inclusions were trapped in approximately the same magmatic

conditions, with the N-type melt inclusions hosted in the higher-Fo content

olivines and the E-type melt inclusions in the lower-Fo content olivines. The

overall low volatile contents in both N- and E-type melt inclusions, as well as the

adjacent pillow margin matrix glasses, indicates that the two magma types were

quite degassed at the time of melt inclusion entrapment.

6.1 Comparison of melt inclusions and pillow margin glasses

N-type melt inclusions are typically found in olivines in N-type pillow

margin glasses and E-type melt inclusions typically in olivines in E-type pillow

margin glasses (Fig. 15). For E-type glasses, melt inclusions show both higher

K/Ti and greater variability compared to pillow margin glasses. The similarity in

major element composition (Tables 2, 3) between the matrix glasses and melt

inclusions implies that there has not been significant olivine fractionation since

the entrapment of the melt inclusions. Francis (1985) has argued that the similar

composition of the melt inclusions and host glasses, along with the common

presence of plagioclase microlites, is an indication that the erupted liquids were

perched on the plagioclase saturation surface. This is best demonstrated in K/Ti-

Mg space in which a range of K/Ti values at almost constant Mg (Fig. 8)

represents the olivine-plagioclase cotectic defined by the arrival of individual

liquid compositions on the plagioclase saturation surface following olivine

Page 57: Constraining the nature of E- and N-type components in the Baffin

44

Figure 11 A plot of the distribution in K/Ti at an outcrop scale for outcrop 1

(samples Ak11a, Ak12), outcrop 2 (Ak2), outcrop 3 (Db13, Db14, Db15), outcrop

4 (PI02c, PI3c, PI06c, PI07c, PI09c, PI10c), outcrop 5 (PI12, PI13c) and outcrop

6 (PI14, PI14c, PI15c, PI16, PI17, PI17c, PI18c, PI19c, PI23c).

Page 58: Constraining the nature of E- and N-type components in the Baffin

45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

K/T

i

Outcrop No.

N-type

E-type

1 2 3 4 5 6

Page 59: Constraining the nature of E- and N-type components in the Baffin

46

Figure 12 Plot of the range in K/Ti in melt inclusions within different hand

samples.

Page 60: Constraining the nature of E- and N-type components in the Baffin

47

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7K

/Ti

E-type

N-type

Pd

13

Pd

19

PI0

2

PI0

6

PI0

7

PI0

9

PI1

0

PI1

2

PI1

3

PI1

4

PI1

5

PI1

6

PI1

7

PI1

8

PI2

3

Db

13

Db

14

Db

15

Ak

2

Ak

11

a

Ak

12

Samples

Page 61: Constraining the nature of E- and N-type components in the Baffin

48

Figure 13 Plot of K/Ti for multiple melt inclusions hosted within single olivine

phenocrysts. Dotted lines separate different samples.

Page 62: Constraining the nature of E- and N-type components in the Baffin

49

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pd

13

/2

Pd

13

/i1

8

Pd

19

/i6

PI1

4/1

9

PI1

6/4

PI1

6/5

PI1

7/5

PI1

7/6

PI1

7/7

PI1

7/8

PI1

7/9

PI1

7/1

0

PI1

7/1

4

PI1

7/i

9

PI1

7/i

13

PI1

7/i

20

Db

14

/7

Db

15

/5

Db

15

/7

Db

15

/9

Db

15

/i2

6

AK

2/1

1

AK

2/1

3

AK

11

a/3

AK

12

/5

AK

12

/14

AK

12

/i2

K/T

i Larger Incl

Largest Incl

Smal ler incl

Smal les t Incl

E-type

N-type

Page 63: Constraining the nature of E- and N-type components in the Baffin

50

crystallization. Crystal fractionation with or without plagioclase, however, cannot

explain the range of K/Ti values in this vertical trend while reproducing the major

element composition of the Baffin glasses. In particular, the aluminum content

increases with crystal fractionation, as not enough plagioclase crystalizes in the

model to sufficiently remove Al from the melt (i.e., 30% crystal fractionation

raises the K/Ti to 0.29 and Al to 30 wt% Al2O3; Table 7). This indicates that the

E-type melt inclusions have not merely evolved from the low-K/Ti, N-type melt

inclusions, but rather are sample a greater proportion of a distinct enriched E-type

component.

Danyushevsky et al. (2000; 2002) described a process of re-equilibration

in which melt inclusions lose iron to their host olivines and gain magnesium as

they cool in a process called “Fe-loss”. The primary experimental evidence for the

occurrence of Fe-loss is the presence of step-like FeO and MgO profiles across

olivine-melt inclusion boundaries, where, in as little as a few years, total

equilibration would occur in large olivine-hosted melt inclusions (e.g. >100 µm in

diameter), resulting in flat olivine and flat melt inclusion profiles and the absence

of Fe and Mg gradients across this boundary. Rather than step-like profiles, the

Baffin Island melt inclusions have 20-40 µm wide gradational zones adjacent to

their host olivine (Fig. 5). Melt inclusions which have experienced Fe-loss form a

trend of decreasing Fe with decreasing Mg (Fig. 6), at a constant host olivine Fo

content (Fig. 7b) and form the low-Mg edge of the data in K/Ti-Mg space (to ~3.5

cat %; Fig. 8). The spread from the MgO contents of the majority of melt

inclusions to the MgO contents of those that have undergone Fe-loss can be

explained by ~13% post-entrapment crystallization of olivine, and is interpreted to

Page 64: Constraining the nature of E- and N-type components in the Baffin

51

represent the failure of plagioclase to nucleate in the melt inclusions. This excess

crystallization of olivine would produce a ~5 μm olivine rim on a 100 μm-

diameter spherical melt inclusion, consistent with those observed using the

electron microprobe (Fig. 2e). Olivine phenocrysts containing melt inclusions

with low MgO contents and olivine rims tend to be more equant in shape than

olivines hosting melt inclusions with MgO contents similar to those of the pillow

margin glasses, suggesting that the low-MgO melt inclusions reflect slower

olivine growth rates than the more elongated olivines. These slower growth rates

may have promoted Fe-loss during the excess crystallization of olivine. The

majority of the glass melt inclusions have Mg contents similar to those of the

pillow margin matrix glasses, however, indicating that the Fe-loss process is not a

significant problem in the majority of the Baffin Island melt inclusions.

6.2 Contamination

As the Baffin Island lavas were erupted through gneissic basement rock, it

is possible that the difference between the N- and E-type lavas is a result of

contamination with continental crust, where higher K abundances in the crust

could have raised the K/Ti ratios to produce the high values and variability in the

E-type melt. Yaxley et al. (2004) argued that up to 30% assimilation of granitic

crust could explain the compositional variation in at least some of the Baffin

Island lavas. To test this, we modeled the addition of the same granitic

contaminant (Baffin Island sample 95T-511 from Thériault et al. 2001) used by

Yaxley et al. (2004) to an N-type whole rock starting composition in an attempt to

replicate the E-type melt inclusion K/Ti ratios (Table 7). Whereas Yaxley et al.

Page 65: Constraining the nature of E- and N-type components in the Baffin

52

(2004) performed simple two-component mixing calculations, we used both

MELTS (Asimow & Ghiorso 1998) and a thermodynamic crystal fractionation

model by Don Francis to simulate more realistic mixing conditions. We found that

as little as 10% assimilation of granite at 5% crystallization can reproduce the

K/Ti ratios of the least enriched E-type melt inclusions (i.e., K/Ti = 0.2). The

resulting Al contents, however, were unrealistically high (~ 20 cat % Al; Figure

14). This is likely a result of the fact that we modeled the end of crystal

fractionation at the onset of plagioclase crystallization (observed as microlites in

thin section) and thus not enough plagioclase had crystallized in the model to

sufficiently reduce the Al concentration. Since the assimilation of granite cannot

successfully reproduce the majority of K/Ti ratios in the E-type melt inclusions as

well as the major element compositions, contamination by granitic crust is not a

likely source for the E-type component.

The higher Cl contents of the E-type glasses suggest the possibility that

they have interacted with high-Cl fluids, such as seawater or brines. The Cl

contents in the E- and N-type melt inclusions, however, correlate positively with

the F contents (Fig. 9d), an incompatible element insensitive to seawater/brine

contamination. Another possibility is that contamination by hydrothermally-

altered oceanic crust produced the high chlorine-potassium ratios (Cl/K of 0.06-

0.08; Fig. 15) observed in the E-type melt inclusions (e.g. in PI17). The Cl/K

ratios of the E-type melt inclusions, however, are similar to those typical of E-

MORB (Cl/KE-MORB of 0.05-0.08; Michael & Cornell 1998). Using both MELTS

(Asimow & Ghiorso 1998) and our thermodynamic crystal fractionation model

(Don Francis), we tested the addition of a low-water (1 wt % H2O) and a higher-

Page 66: Constraining the nature of E- and N-type components in the Baffin

53

Figure 14 Plot of K/Ti vs Mg (a) and K/Ti vs Al (b) for a representative number

of contamination models. In the legend, “OC” is oceanic crust. See Appendix 1.1

for details regarding modeling method.

Page 67: Constraining the nature of E- and N-type components in the Baffin

54

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

K/T

i

Mg (cat %)

+ 1% granite + 10% granite + 10% OC (1%H2O)

+ 20% OC (1%H2O) + 10% OC (5% H2O) + 50% OC (5% H2O)

50 % crystallized 35 30

25

20

15

10

5 1

a

E-type

N-type

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

15 17 19 21 23 25 27 29 31

K/T

i

Al (cat %)

+ 1% granite + 10% granite + 10% OC (1% H2O)

+ 20% OC (1% H2O) + 10% OC (5% H2O) + 50% OC (5% H2O)

50 35 30

25

20

15

10

5

1 % crystallized

b

E-type

N-type

Page 68: Constraining the nature of E- and N-type components in the Baffin

55

Figure 15 Plot of Cl/K vs. K/Ti for all melt inclusions. The boundary between N-

and E-type melt inclusions is indicated with a vertical line and the upper limit of

mantle Cl/K ratios is indicated with a horizontal dashed line.

Page 69: Constraining the nature of E- and N-type components in the Baffin

56

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Cl/

K

K/Ti

Mantle

N-type E-type

Page 70: Constraining the nature of E- and N-type components in the Baffin

57

water (5 wt % H2O) hydrothermally-altered oceanic crust composition to an N-

type starting composition in an attempt to reproduce the Cl/K ratios as well as the

K/Ti ratios of the E-type melt inclusions (Table 7). While as little as 10%

contamination of a hydrothermally-altered oceanic crust (of either water contents)

can reproduce a K/Ti ratio of 0.2, the corresponding Cl/K ratio is within accepted

mantle limits (0.03). Since the potassium contents increase more rapidly than the

Cl contents with additional assimilation, further contamination results in

progressively lower Cl/K ratios, below the Cl/K ratios observed in E-type glasses.

Chlorine levels in the contaminant would have to be unrealistically high,

approaching 0.1 wt % Cl before the Cl/K ratio surpasses normal mantle values.

Contamination by hydrothermally-altered oceanic crust therefore cannot

simultaneously reproduce the K/Ti ratios and Cl/K ratios in the majority of the

Baffin glasses. Contamination by granitic crust or by hydrothermally-altered

oceanic crust cannot successfully explain both the high K/Ti ratios and the Cl/K

ratios of the majority of the E-type melt inclusions as well as their major element

chemistry (i.e., the aluminum contents). Thus, the high Cl and F contents and

K/Ti and Cl/K ratios in the E-type melt inclusions are not likely the result of

crustal or brine/seawater contamination, but rather are characteristic of a distinct

E-type compositional end-member originating in the mantle.

6.3 The nature of mixing of N- and E-type components

Although Kent et al. (2004) identified four high-Fo olivines hosting E-

type melt inclusions, the majority of E-type melt inclusions are found in slightly

less magnesian olivines (down to Fo83), indicating that the E-type component was

Page 71: Constraining the nature of E- and N-type components in the Baffin

58

Figure 16 Plot of pillow margin matrix K/Ti against the melt inclusion K/Ti ratios

from the same margins, with a 1:1 (dashed) line added for reference.

Page 72: Constraining the nature of E- and N-type components in the Baffin

59

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Pil

low

ma

rgin

gla

ss K

/Ti

Melt inclusion K/Ti

E-type

N-type

Page 73: Constraining the nature of E- and N-type components in the Baffin

60

Figure 17 Plot of the CO2 contents in the Baffin Island melt inclusions and pillow

margin glasses against the H2O contents. Since the H2O contents are lower than

background levels, the lowest water content the model would allow (~0.0001 wt

% H2O) was used to calculate the isobars and the CO2 contents essentially plot on

the Y-axis. a Plot of CO2 vs. H2O for melt inclusions and pillow margin glasses

(N-type pillow glasses are hidden by the E-type glasses, at [0, 0]). b Close-up of

a, below 1000 ppm CO2, where most melt inclusions and all the pillow margin

glasses occur.

Page 74: Constraining the nature of E- and N-type components in the Baffin

61

0

500

1000

1500

2000

2500

3000

0 0.05 0.1

CO

2 (

pp

m)

H2O (wt%)

N-type melt inclusion

E-type melt inclusion

N-type pillow margin glass

E-type pillow margin glass

a

2 kbars

1 kbar

500 bars

250 bars

0

100

200

300

400

500

600

700

800

900

1000

0 0.05 0.1

CO

2 (

pp

m)

H2O (wt%)

N-type melt inclusion

E-type melt inclusion

N-type pillow margin glass

E-type pillow margin glass

1 kbar

500 bars

250 bars

b

Page 75: Constraining the nature of E- and N-type components in the Baffin

62

likely low in MgO relative to the N-type magma. This E-type component appears

to be high in Cl and F contents, as both vary positively with the K/Ti ratios in the

E-type melt inclusions, but has similar CO2, H2O and S contents as the N-type

component. A majority of melt inclusions in the Baffin Island lavas are N-type,

suggesting that the N-type component is volumetrically dominant over the E-type

magma. The range in the level of enrichment in samples Pd19 and PI17 indicates

that the amount of E-type component was locally variable on the scale of a hand

specimen, and, in the case of PI17, on the scale of individual olivines. The greater

overall variability in melt inclusion K/Ti (up to ~0.6) compared to the K/Ti in

pillow margin glasses (from ~0.1-0.3; Fig. 16) implies a greater degree of

compositional heterogeneity during melt inclusion entrapment and only a partial

homogenization of the two magma components had occurred by the time of

eruption, as indicated by variable pillow glass K/Ti ratios. A relatively short time

interval with no significant crystal fractionation between melt inclusion

entrapment and eruption is required for the Baffin Island pillow glasses to retain a

composition similar to the melt inclusions.

The fact that many melt inclusions contain low volatile concentrations

similar to those of the host pillow margin glasses indicates that the melt inclusions

were trapped after both E- and N-type magmas were degassed. Water

concentrations in the melt inclusions cannot be accurately determined from our

SIMS results, but we can assume that the H2O contents in the pillow margin

glasses and melt inclusions are below background levels (e.g., below ~0.1 wt%

H2O). This could indicate either that the source for the Baffin lavas is lower in

water contents than the MORB-source (MORB water concentrations range from

Page 76: Constraining the nature of E- and N-type components in the Baffin

63

0.05-0.6 wt % H20; Michael 1995; Danyushevsky 2001), or that the melts that

produced these picrites degassed vigorously prior to melt inclusion entrapment.

Alternatively, the Baffin melt inclusions may have been trapped with higher

initial H2O concentrations, but have since undergone diffusive loss of H+, as H+ is

known to diffuse rapidly through olivine from melt inclusions (e.g. Demouchy &

Mackwell 2006; Chen et al. 2011; Gaetani et al. 2012).

Since the water contents in the melt inclusions and pillow margin glasses

are lower than the background volatile level during analysis, we cannot apply the

CO2-H2O SolEx barometric model by Witham et al. (2011) directly. However, as

this model is not very sensitive to changes in H2O, we can estimate that for the

range of CO2 contents observed in the melt inclusions and the very low water

contents (see Appendix 1.3), crystallization could have occurred over a range of

depths less than 4 km (< 1 kbar, Fig. 17). A shallow mixing model explains the

similarity in the compositions and volatile contents between the melt inclusions

and pillow glasses and is consistent with the regional extensional regime present

during the separation of Greenland and Baffin Island; this extensional

environment could have promoted shallow-level pooling of upwelling mantle

material, and allowed for the E- and N-type magmas to hybridize.

Section 7: Conclusions

Melt inclusions hosted in olivine from the Baffin Island picrites indicate the

presence of two distinct components: a low K/Ti, high Mg and relatively degassed

N-type end-member and a high K/Ti, low Mg and less degassed E-type end-

Page 77: Constraining the nature of E- and N-type components in the Baffin

64

member. The variation in K/Ti observed in the melt inclusions cannot be

successfully modeled by crystal fractionation of olivine and plagioclase, by

contamination by continental crust, nor by contamination by hydrothermally

altered oceanic crust. The positive correlation between F and Cl contents in the

melt inclusions renders interaction with seawater unlikely as a source for the E-

type component. We therefore conclude that the E-type and N-type components

reflect small-scale heterogeneities in the mantle source. Melt inclusions from the

same outcrop are dominantly either E- or N-type, with restricted K/Ti ratios;

however, both components are present in at least two single hand specimens and

within a single olivine phenocryst in one of them. The two components were thus

mixed on the scale of tens of centimetres (i.e., hand sample) and perhaps even on

the scale of millimetres. The similarity in major element composition and the

degassed nature of both the pillow margin glasses and melt inclusions indicates

the mixing of E- and N-type magmas and the entrapment of the melt inclusions

occurred in a shallow (less than 4 km deep) reservoir, immediately prior to

eruption. The shallow depth of mixing likely reflects the extensional environment

in which these lavas formed, during the rifting of Baffin Island and Greenland and

formation of Baffin Bay.

Section 8: Contributions to knowledge and future work

Research of the Baffin Island picrites has recently focused on their origins from a

primordial, undegassed mantle source (Stuart et al. 2003; Jackson et al. 2010) and

further work is needed to better characterize this ancient reservoir, to better

Page 78: Constraining the nature of E- and N-type components in the Baffin

65

understand how a geochemically distinct source in the mantle can remain

unmixed for billions of years. Before this can be done, the geochemistry of the

olivine-hosted melt inclusions at Baffin Island has to be better characterized.

Robillard et al. (1992) first recognized the two-component mixing (an enriched E-

type with a depleted N-type component) that has occurred to produce the array of

incompatible element compositions in the Baffin Island lavas. This study has built

upon this and other previous work, enhancing our understanding of the nature of

these two components and characterising the scale to which each component is

present.

E-type melt inclusions are generally found in olivines of lower forsterite

content than N-type melt inclusions and therefore the E-type component was

likely lower in Mg than the N-type. This study presents the first set of volatile

concentrations for the Baffin Island lavas and it is determined that, while both E-

and N-type glasses are low in volatile contents, the E-type melt inclusions and

pillow margin glasses contain slightly higher F and Cl contents. It is concluded

that, while both E- and N-type components were relatively degassed soon before

eruption and at the time of melt inclusion formation, the E-type end-member was

less degassed. Both E- and N-type components are present at the outcrop scale

and at the hand sample scale. In one case, both melt inclusions types are present in

a single olivine. It is therefore determined that the two compositional end-

members were present at the scale of centimeters and, in one sample, to the scale

of a single olivine phenocryst. This implies a fine-scale mixing of the two

components in the mantle reservoir. If the mantle source for the Baffin Island

Page 79: Constraining the nature of E- and N-type components in the Baffin

66

picrites is primordial, this further implies that the early Earth’s mantle was already

as heterogeneous as modern-day mid-ocean ridge basalts.

Future research could focus on obtaining new helium, lead and

neodymium data and determining if the N- and E-type components each have

distinct isotopic signatures. Valuable insight into the heterogeneous nature of this

primordial mantle reservoir would be gained if it could be determined whether

both compositional end-members are from this ancient reservoir or if one has

remained for billions of years, mixing later with a more modern mantle

component. The fine-scale mixing described in this study suggests that there is an

intimate link between the two components and it would further our understanding

of the Baffin Island source if this issue could be resolved.

Page 80: Constraining the nature of E- and N-type components in the Baffin

67

References

Allègre, C.J. & Turcotte, D.L. (1986) Implications of a two-component marble-

cake mantle. Nature, 323: 123-127.

Asimow, P.D. & Ghiorso, M.S. (1998) Algorithmic modifications extending

MELTS to calculate subsolidus phase relations. American Mineralogist, 83:

1127-1132.

Barnes, J.D. & Cisneros, M. (2012) Mineralogical control on the chlorine isotope

composition of altered oceanic crust. Chemical Geology, 326-327: 51-60.

Chen, Y., Provost, A., Schiano, P. & Cluzel, N. (2011) The rate of water loss from

olivine-hosted melt inclusions. Contributions to Mineralogy and Petrology,

162(3): 625-636.

Clarke, D.B. & O’Hara, M.J. (1979) Nickel, and the existence of high-MgO

liquids in nature. Earth and Planetary Science Letters, 44: 153-158.

Clarke, D.B. & Upton, B.G.J. (1971) Tertiary basalts of Baffin Island: field

relations and tectonic setting. Canadian Journal. of Earth Sciences, 8: 248-

258.

Page 81: Constraining the nature of E- and N-type components in the Baffin

68

Dale, C.W., Pearson, D.G., Starkey, N.A., Stuart, F.M., Ellam, R.M., Larsen,

L.M., Fitton, J.G. & Macpherson, C.G. (2009) Osmium isotopes in North

Atlantic picrites with extreme 3He/

4He ratios: implications for the nature of

high 3He/

4He mantle and the Os isotope composition of the convecting

mantle. Earth and Planetary Science Letters, 278(3-4): 267-277.

Danyushevsky, L.V. (2001) The effect of small amounts of H2O on crystallisation

of mid-ocean ridge and backarc basin magmas. Journal of Volcanology and

Geothermal Research, 110: 265-280.

Danyushevsky, L.V., Della-Pasqua, F.N. & Sokolov, S. (2000) Re-equilibration

of melt inclusions trapped by magnesian olivine phenocrysts from

subduction-related magmas: petrological implications. Contributions to

Mineralogy and Petrology, 138: 68-83.

Danyushevsky, L.V., Sokolov, S. & Falloon, T.J. (2002) Melt Inclusions in

Olivine Phenocrysts: Using Diffusive Re-equilibration to Determine the

Cooling History of a Crystal, with Implications for the Origin of Olivine-

phyric Volcanic Rocks. Journal of Petrology, 43(9): 1651-1671.

Demouchy, S. & Mackwell, S. (2006) Mechanisms of hydrogen incorporation and

diffusion in iron-bearing olivine. Physics and Chemistry of Minerals, 5(33):

347-355.

Page 82: Constraining the nature of E- and N-type components in the Baffin

69

Donaldson, C.H. (1976) An Experimental Investigation of Olivine Morphology.

Contributions to Mineralogy and Petrology, 57: 187-213.

Donaldson, C.H. & Brown, R.W. (1977) Refractory megacrysts and magnesium-

rich melt inclusions within spinel in oceanic tholeities- indicators of magma

mixing and parental magma composition. Earth and Planetary Science

Letters, 37: 81-89.

Dupré, B. & Allègre, C.J. (1983) Pb-Sr isotope variation in Indian Ocean basalts

and mixing phenomena. Nature, 303: 142-146.

Ellam, R.M. & Stuart, F.M. (2004) Coherent He-Nd-Sr isotope trends in high

3He/

4He basalts: implications for a common reservoir, mantle heterogeneity

and convection. Earth and Planetary Science Letters, 228: 511-523.

Engel, A.E.J., Engel, C.G. & Havens, R.G. (1965) Chemical Characteristics of

Oceanic Basalts and the Upper Mantle. Geological Society of America

Bulletin, 76: 719-734.

Francis, D. (1985) The Baffin Bay lavas and the value of picrites as analogues of

primary magmas. Contributions to Mineralogy and Petrology, 89: 144-155.

Gaetani, G.A. & Watson, E.B. (2000) Open system behavior of olivine-hosted

melt inclusions. Earth and Planetary Science Letters, 183: 27-41.

Page 83: Constraining the nature of E- and N-type components in the Baffin

70

Gaetani, G. A., O’Leary, J. A., Shimizu, N., Bucholz, C. E. & Newville, M.

(2012) Rapid reequilibration of H2O and oxygen fugacity in olivine-hosted

melt inclusions. Geology, 40(10): 915-918.

Gill, R.C.O., Holm, P.M. & Nielsen, T.F.D. (1995) Was a short-lived Baffin Bay

plume active prior to initiation of the present Icelandic plume? Clues from

the high-Mg picrites of West Greenland. Lithos, 34: 27-39.

Hart, S.R., Schilling, J.-G. & Powell, J.L. (1973) Basalts from Iceland and Along

the Reykjanes Ridge: Sr Isotope Geochemistry. Natural Physical Science,

246: 104-107.

Hart, S.R. & Davis, K.E. (1978) Nickel partitioning between olivine and silicate

melt. Earth and Planetary Science Letters, 40: 203-219.

Herzberg, C. & O’Hara, M.J. (2002) Plume-associated ultramafic magmas of

Phanerozoic age. Journal of Petrology, 43(10): 1857-1883.

Hofmann, A.W. (2003) Sampling Mantle Heterogeneity through Oceanic Basalts:

Isotopes and Trace Elements. Treatise on Geochemistry,2: 61–101.

Page 84: Constraining the nature of E- and N-type components in the Baffin

71

Ito, G. & Mahoney, J.J. (2003) Flow and melting of a heterogeneous mantle: 1.

Method and importance to the geochemistry of ocean island and mid-ocean

ridge basalts. Earth and Planetary Science Letters, 230: 29-46.

Ito, G. & Mahoney, J.J. (2005) Flow and melting of a heterogeneous mantle: 2.

Implications for a chemically nonlayered mantle. Earth and Planetary

Science Letters, 230: 47-63.

Jackson, M.G., Carlson, R.W., Kurz, M.D., Kempton, P.D., Francis, D. &

Blusztajn, J. (2010) Evidence for the survival of the oldest terrestrial mantle

reservoir. Nature, 466: 853-856.

Jamtveit, B., Brooker, R., Brooks, K., Lotte, M.L. & Pedersen, T. (2001) The

water content of olivines from the North Atlantic Volcanic Province. Earth

and Planetary Science Letters, 186: 401-415.

Kelley, K.A., Plank, T., Ludden, J. & Stuadigel, H. (2003) Composition of altered

oceanic crust at ODP Sites 801 and 1149. Geochemistry, Geophysics,

Geosystems, 4, 8910, doi: 10.1029/2002GC000435.

Kempton, P. D., Pearce, J. A., Barry, T. L., Fitton, J. G., Langmuir, C. H. &

Christie, D. M. (2002) Sr–Nd–Pb–Hf isotope results from ODP Leg 187:

evidence for mantle dynamics of the Australian-Antarctic Discordance and

Page 85: Constraining the nature of E- and N-type components in the Baffin

72

origin of the Indian MORB source. Geochemistry, Geophysics, Geosystems,

3, 1074, doi: 10.29/2002GC000320.

Kent, A.J.R., Stolper, E.M., Francis, D., Woodhead, J., Frei, R. & Eiler, J. (2004)

Mantle heterogeneity during the formation of the North Atlantic Igneous

Province: constraints from trace element and Sr-Nd-Os-O isotope

systematics of Baffin Island picrites. Geochemistry, Geophysics,

Geosystems, 5, Q11004, doi:10.1029/2004GC000743.

Kent, A.J.R (2008) Melt Inclusions in Basaltic and Related Volcanic Rocks.

Reviews in Mineralogy & Geochemistry, 69: 273-331.

Kushiro, I. & Kuno, H. (1963) Origin of Primary Basalt Magmas and

Classification of Basaltic Rocks. Journal of Petrology, 4(1): 75-89.

Michael, P. (1995) Regionally distinctive sources of depleted MORB: Evidence

from trace elements and H2O. Earth and Planetary Science Letters, 131:

301-320.

Michael, P.J. & Cornell, W.C. (1998) Influence of spreading rate and magma

supply on crystallization and assimilation beneath mid-ocean ridges:

Evidence from chlorine and major element chemistry of mid-ocean ridges.

Journal of Geophysical Research, 108(B8): 18,325-18,356.

Page 86: Constraining the nature of E- and N-type components in the Baffin

73

Nielsen, R.L, & Dungan, M.A. (1983) Low pressure mineral-melt equilibria in

natural anhydrous mafic systems. Contributions to Mineralogy and

Petrology, 84(4): 310-326.

Patchett, P.J., Kouvo, O., Hedge, C.E. & Tatsumoto, M. (1981) Evolution of

Continental Crust and Mantle Heterogeneity: Evidence from Hf Isotopes.

Contributions to Mineralogy and Petrology, 78: 279-297.

Phipps Morgan, J. & Morgan, W.J. (1999) Two-stage melting and the

geochemical evolution of the mantle: a recipe for mantle plum-pudding.

Earth and Planetary Science Letters, 170: 215-239.

Rehkämper, M. & Hofmann, A. W. (1997) Recycled ocean crust and sediment in

Indian Ocean MORB. Earth and Planetary Science Letters, 147: 93–106.

Reisberg, L. & Zindler, A. (1986) Extreme isotopic variations in the upper

mantle: evidence from Ronda. Earth and Planetary Science Letters, 81: 29-

45.

Ritsema, J, McNamara. A.K. & Bull, A.L. (2007) Tomographic filtering of

geodynamic models: implications for model interpretation and large-scale

mantle structure. Journal of Geophysical Research, 112, B01303,

doi:10.1029/2006JB004566

Page 87: Constraining the nature of E- and N-type components in the Baffin

74

Saal, A.E., Hart, S.R., Shimizu, N., Hauri, E.H. & Layne, G.D. (1998) Pb Isotopic

Variability in Melt Inclusions from Oceanic Island Basalts, Polynesia.

Science, 282: 1481-1484.

Saunders, A.D., Fitton, J.G., Kerr, A.C., Norry, M.J. & Kent, R.W. (1997) The

North Atlantic Igneous Province. In: Mahoney, J.J. & Coffin, M.F. (eds)

Large Igneous Provinces: Continental, Oceanic and Planetary Flood

Volcanism. Geophysical Monograph, American Geophysical Union, 100: 45-

93.

Shimizu, N. (1998) The geochemistry of olivine-hosted melt inclusions in a

FAMOUS basalt ALV519-4-1. Physics of the Earth and Planetary Interiors,

107: 183-201.

Sobolev, A.V., Hofmann, A.W. & Nikogosian, I. (2000) Recycled oceanic crust

observed in ‘ghost plagioclase’ within the source of Mauna Loa lavas.

Nature, 404: 986-990.

Starkey, N.A., Stuart, F.M., Ellam, R.M., Fitton, J.G., Basu, S. & Larsen, L.M.

(2009) Helium isotopes in early Iceland plume picrites: Constraints on the

composition of high 3He/

4He mantle. Earth and Planetary Science Letters,

277: 91-100.

Page 88: Constraining the nature of E- and N-type components in the Baffin

75

Stixrude, L. & Lithgow-Bertelloni, C. (2012) Geophysics of Chemical

Heterogeneity in the Mantle. Annual Review of Earth and Planetary

Sciences, 40: 569-595.

Stuart, F.M., Lass-Evans, S., Fitton, J.G. & Ellam, R.M. (2003) High 3He/

4He

ratios in picritic basalts from Baffin Island and the role of a mixed reservoir

in mantle plumes. Nature, 424: 57-59.

Thériault, R.J., St-Onge, M.R.& Scott, D.J. (2001) Nd isotopic and geochemical

signature of the Paleoproterozoic Trans-Hudson Orogen, southern Baffin

Island, Canada: implications for the evolution of eastern Laurentia.

Precambrian Research, 108:113–138.

White, W.M. & Schilling, J.-G. (1978) The nature and origin of geochemical

variation in Mid-Atlantic Ridge basalts from the Central North Atlantic.

Geochimica et Cosmochimica Acta, 42: 1501-1516.

Witham, F., Blundy, J., Kohn, S., Lesne, P., Dixon, J., Churakov, S. &

Botcharnikov, R. (2012) SolEx: A model for mixed COHSCl-volatile

solubilities and exsolved gas compositions in basalt. Computers &

Geosciences, 45: 87-97.

Yaxley, G.M., Kamenetsky, V.S., Kamenetsky, M., Norman, M.D & Francis, D.

(2004) Origins of compositional heterogeneity in olivine-hosted melt

Page 89: Constraining the nature of E- and N-type components in the Baffin

76

inclusions from the Baffin Island picrites. Contributions to Mineralogy and

Petrology, 148: 426-442.

Zindler, A.& Hart, S. (1986) Chemical geodynamics. Annual Review of Earth and

Planetary Sciences, 14: 493–571.

Page 90: Constraining the nature of E- and N-type components in the Baffin

77

Table 1 Olivine phenocryst geochemistry and geometry. Major and minor

elements analyzed by electron microprobe. Uncertainty was below 1% for major

elements, checked by analyzing standards. All Fe as FeO*. Concentrations are

averages of three to ten analyses.

Page 91: Constraining the nature of E- and N-type components in the Baffin

78

Oli

vin

e p

hen

ocr

yst

s

S

amp

le

Pd

13

/1

Pd

13

/2

Pd

13

/3

Pd

13

/4

Pd

13

/5

Pd

13

/6

Pd

13

/7

Pd

13

/8

Pd

13

/9

Pd

13

/10

Pd

13

/11

Pd

13

/i1

2

Pd

13

/i1

5

Pd

13

/i1

8

(wt

%)

SiO

2

39

.25

39

.07

39

.28

39

.28

38

.86

39

.02

39

.20

39

.53

39

.25

39

.51

39

.16

39

.90

39

.84

40

.63

TiO

2

0.0

0

0.0

1

0.0

1

0.0

0

0.0

0

0.0

1

0.0

0

0.0

2

0.0

1

0.0

2

0.0

0

0.0

0

0.0

1

0.0

0

Al 2

O3

0.0

6

0.0

6

0.0

7

0.0

5

0.0

4

0.0

7

0.0

5

0.1

1

0.0

9

0.0

7

0.0

4

0.0

5

0.0

5

0.0

6

FeO

*

11

.00

10

.98

11

.29

10

.99

10

.91

11

.92

11

.20

11

.27

11

.25

10

.93

10

.82

11

.11

11

.13

11

.13

Mn

O

0.1

7

0.1

8

0.1

8

0.1

6

0.1

7

0.1

9

0.1

7

0.1

7

0.1

7

0.1

7

0.1

7

0.1

8

0.1

8

0.1

7

MgO

4

7.5

5

47

.29

47

.35

47

.47

47

.35

46

.95

47

.43

47

.51

47

.33

47

.63

47

.60

47

.48

47

.27

47

.70

CaO

0

.33

0.3

3

0.3

2

0.3

3

0.3

3

0.3

2

0.3

2

0.3

3

0.3

2

0.3

2

0.3

1

0.3

2

0.3

2

0.3

3

NiO

0

.34

0.3

3

0.3

2

0.3

4

0.3

4

0.3

2

0.3

3

0.3

2

0.3

3

0.3

3

0.3

5

0.3

3

0.3

4

0.3

3

Cr 2

O3

0.0

7

0.0

8

0.0

6

0.0

6

0.0

6

0.0

6

0.0

4

0.0

7

0.0

8

0.0

7

0.0

5

0.0

0

0.0

0

0.0

0

To

tal

98

.77

98

.33

98

.88

98

.69

98

.05

98

.86

98

.73

99

.33

98

.82

99

.05

98

.49

99

.36

99

.12

10

0.3

5

Cat

ion

s p

rop

ort

ion

s (1

00

cat

ion

s)

Si

32

.34

32

.33

32

.36

32

.41

32

.23

32

.22

32

.33

32

.44

32

.37

32

.46

32

.33

32

.71

32

.75

33

.03

Ti

0.0

0

0.0

1

0.0

1

0.0

0

0.0

0

0.0

1

0.0

0

0.0

1

0.0

0

0.0

1

0.0

0

0.0

0

0.0

0

0.0

0

Al

0.0

6

0.0

6

0.0

6

0.0

5

0.0

4

0.0

6

0.0

4

0.1

1

0.0

8

0.0

6

0.0

4

0.0

4

0.0

5

0.0

6

Fe

7.5

8

7.6

0

7.7

8

7.5

8

7.5

7

8.2

3

7.7

3

7.7

4

7.7

6

7.5

1

7.4

7

7.6

2

7.6

5

7.5

6

Mn

1.0

5

1.1

1

1.1

0

1.0

3

1.0

6

1.1

6

1.0

6

1.0

4

1.0

4

1.0

5

1.0

5

1.0

9

1.1

1

1.0

4

Mg

58

.41

58

.34

58

.15

58

.38

58

.55

57

.78

58

.31

58

.12

58

.19

58

.35

58

.58

58

.04

57

.93

57

.80

Ca

0.2

9

0.2

9

0.2

8

0.2

9

0.2

9

0.2

9

0.2

9

0.2

9

0.2

9

0.2

8

0.2

7

0.2

8

0.2

8

0.2

9

Ni

0.2

2

0.2

2

0.2

1

0.2

2

0.2

2

0.2

1

0.2

2

0.2

1

0.2

2

0.2

2

0.2

3

0.2

2

0.2

2

0.2

2

Cr

0.0

4

0.0

5

0.0

4

0.0

4

0.0

4

0.0

4

0.0

2

0.0

4

0.0

5

0.0

4

0.0

3

0.0

0

0.0

0

0.0

0

Fo

con

ten

t (%

) 8

8.5

8

8.5

8

8.2

8

8.5

8

8.6

8

7.5

8

8.3

8

8.3

8

8.2

8

8.6

8

8.7

8

8.4

8

8.3

8

8.4

L

on

g a

xis

(x1

0-6

m)

31

8

50

0

95

0

45

0

14

57

41

1

61

9

21

0

23

0

38

9

10

62

S

ho

rt a

xis

(x1

0-6

m)

22

7

31

5

69

3

26

0

11

00

15

0

46

9

18

0

19

0

36

7

67

5

A

spec

t ra

tio

1

.4

1.6

1

.4

1.7

1

.3

2.7

1

.3

1.2

1

.2

1.1

1

.6

Page 92: Constraining the nature of E- and N-type components in the Baffin

79

Oli

vin

e p

hen

ocr

yst

s co

nti

nu

ed

S

amp

le

Pd

19

/1

Pd

19

/2

Pd

19

/3

Pd

19

/4

Pd

19

/5

Pd

19

/7

Pd

19

/8

Pd

19

/9

Pd

19

/13

Pd

19

/14

Pd

19

/i3

a P

d19

/i5

Pd

19

/i6

Pd

19

/i8

(wt

%)

SiO

2

40

.20

40

.08

40

.07

40

.12

39

.97

40

.33

39

.51

39

.42

38

.69

39

.47

40

.21

39

.84

39

.85

40

.11

TiO

2

0.0

0

0.0

0

0.0

0

0.0

0

0.0

1

0.0

0

0.0

0

0.0

0

0.0

2

0.0

1

0.0

0

0.0

0

0.0

0

0.0

1

Al 2

O3

0.0

9

0.0

7

0.0

4

0.0

5

0.0

6

0.0

5

0.0

5

0.0

7

0.0

8

0.0

4

0.0

4

0.0

5

0.0

6

0.0

6

FeO

*

11

.02

11

.06

11

.11

11

.28

11

.27

11

.46

14

.42

13

.59

14

.63

13

.68

11

.34

11

.42

12

.31

11

.97

Mn

O

0.1

6

0.1

6

0.1

6

0.1

7

0.1

9

0.1

9

0.2

2

0.2

1

0.2

2

0.2

1

0.1

7

0.1

6

0.1

9

0.1

8

MgO

4

7.9

9

47

.71

47

.93

47

.55

47

.56

47

.83

44

.84

45

.38

44

.52

45

.76

47

.31

47

.02

46

.70

46

.70

CaO

0

.33

0.3

3

0.3

3

0.3

5

0.3

4

0.3

4

0.3

5

0.3

3

0.3

5

0.3

4

0.3

3

0.3

3

0.3

4

0.3

6

NiO

0

.34

0.3

3

0.3

3

0.3

3

0.3

3

0.3

2

0.2

1

0.2

4

0.2

1

0.2

3

0.3

2

0.3

3

0.3

1

0.3

1

Cr 2

O3

0.0

3

0.0

4

0.0

5

0.0

3

0.0

0

0.0

0

0.0

0

0.0

0

To

tal

10

0.1

4

99

.73

99

.97

99

.84

99

.72

10

0.5

3

99

.63

99

.29

98

.77

99

.78

99

.72

99

.14

99

.75

99

.69

Cat

ion

s p

rop

ort

ion

s (1

00

cat

ion

s)

Si

32

.70

32

.76

32

.66

32

.77

32

.65

32

.70

32

.73

32

.67

32

.34

32

.53

32

.92

32

.82

32

.71

32

.93

Ti

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

1

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

Al

0.0

9

0.0

6

0.0

4

0.0

5

0.0

6

0.0

5

0.0

5

0.0

7

0.0

8

0.0

4

0.0

4

0.0

4

0.0

6

0.0

6

Fe

7.5

0

7.5

6

7.5

7

7.7

1

7.7

0

7.7

7

9.9

9

9.4

2

10

.22

9.4

3

7.7

7

7.8

7

8.4

5

8.2

2

Mn

1.0

1

0.9

7

0.9

8

1.0

7

1.1

5

1.1

7

1.4

0

1.2

9

1.3

9

1.3

1

1.0

3

1.0

1

1.1

5

1.0

9

Mg

58

.20

58

.13

58

.24

57

.90

57

.92

57

.81

55

.37

56

.07

55

.47

56

.21

57

.75

57

.74

57

.13

57

.17

Ca

0.2

8

0.2

9

0.2

8

0.3

0

0.2

9

0.3

0

0.3

1

0.3

0

0.3

1

0.3

0

0.2

9

0.2

9

0.3

0

0.3

2

Ni

0.2

3

0.2

2

0.2

2

0.2

1

0.2

2

0.2

1

0.1

4

0.1

6

0.1

4

0.1

5

0.2

1

0.2

2

0.2

0

0.2

1

Cr

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

2

0.0

2

0.0

3

0.0

2

0.0

0

0.0

0

0.0

0

0.0

0

Fo

con

ten

t (%

) 8

8.6

8

8.5

8

8.5

8

8.3

8

8.3

8

8.2

8

4.7

8

5.6

8

4.4

8

5.6

8

8.1

8

8.0

8

7.1

8

7.4

L

on

g a

xis

(x1

0-6

m)

11

88

35

6

16

11

18

96

57

6

56

8

28

2

41

4

44

6

30

0

64

0

S

ho

rt a

xis

(x1

0-6

m)

88

8

25

0

73

7

10

07

25

6

25

9

17

6

22

1

30

0

22

5

30

0

A

spec

t ra

tio

1

.3

1.4

2

.2

1.9

2

.3

2.2

1

.6

1.9

1

.5

1.3

2

.1

Page 93: Constraining the nature of E- and N-type components in the Baffin

80

Oli

vin

e p

hen

ocr

yst

s co

nti

nu

ed

S

amp

le

Pd

19

/i1

1

Pd

19

/i1

3

Pd

56

/1

Pd

56

/2

PI1

2/1

P

I12

/2

PI1

2/3

P

I12

/4

PI1

2/6

P

I12

/7

PI1

2/8

P

I12

/9

PI1

4/1

P

I14

/2

(wt

%)

SiO

2

40

.30

40

.88

39

.93

42

.26

39

.14

39

.03

39

.19

39

.40

39

.20

39

.24

39

.15

39

.35

40

.36

40

.47

TiO

2

0.0

0

0.0

0

0.0

1

0.3

5

0.0

1

0.0

1

0.0

2

0.0

0

0.0

0

0.0

1

0.0

1

0.0

1

0.0

1

0.0

1

Al 2

O3

0.0

5

0.0

3

0.0

8

2.8

9

0.0

5

0.0

3

0.0

3

0.0

5

0.0

6

0.0

3

0.0

3

0.0

4

0.0

7

0.0

6

FeO

*

11

.42

7.1

7

13

.99

12

.14

16

.31

15

.90

16

.36

14

.10

14

.08

15

.09

16

.18

15

.67

10

.97

10

.95

Mn

O

0.1

7

0.1

0

0.2

2

0.1

9

0.2

5

0.2

4

0.2

3

0.2

1

0.2

2

0.2

2

0.2

6

0.2

3

0.1

7

0.1

7

MgO

4

7.3

5

50

.38

45

.83

39

.12

43

.79

44

.05

44

.01

45

.74

45

.68

45

.09

43

.93

44

.66

48

.03

48

.06

CaO

0

.33

0.2

7

0.3

4

2.8

3

0.3

8

0.3

6

0.3

8

0.3

3

0.3

4

0.3

4

0.3

9

0.3

6

0.3

3

0.3

3

NiO

0

.33

0.4

3

0.2

5

0.2

6

0.1

8

0.2

1

0.1

8

0.2

5

0.2

5

0.2

2

0.1

9

0.2

1

0.3

3

0.3

4

Cr 2

O3

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

To

tal

99

.95

99

.26

10

0.6

5

10

0.0

4

10

0.1

2

99

.84

10

0.4

0

10

0.0

9

99

.82

10

0.2

3

10

0.1

3

10

0.5

3

10

0.2

8

10

0.3

9

Cat

ion

s p

rop

ort

ion

s (1

00

cat

ion

s)

Si

32

.92

33

.13

32

.66

35

.49

32

.47

32

.41

32

.44

32

.40

32

.31

32

.34

32

.43

32

.41

32

.77

32

.82

Ti

0.0

0

0.0

0

0.0

1

0.2

2

0.0

1

0.0

1

0.0

1

0.0

0

0.0

0

0.0

0

0.0

1

0.0

1

0.0

1

0.0

0

Al

0.0

5

0.0

3

0.0

7

2.8

6

0.0

5

0.0

3

0.0

3

0.0

5

0.0

6

0.0

3

0.0

3

0.0

4

0.0

7

0.0

6

Fe

7.8

0

4.8

6

9.5

7

8.5

3

11

.31

11

.04

11

.32

9.7

0

9.7

1

10

.40

11

.21

10

.79

7.4

5

7.4

3

Mn

1.0

5

0.6

0

1.3

4

1.2

1

1.5

6

1.5

2

1.4

4

1.3

3

1.3

4

1.3

6

1.6

0

1.4

6

1.0

6

1.0

7

Mg

57

.67

60

.86

55

.88

48

.97

54

.14

54

.53

54

.30

56

.07

56

.12

55

.41

54

.26

54

.84

58

.14

58

.11

Ca

0.2

9

0.2

4

0.3

0

2.5

4

0.3

4

0.3

2

0.3

3

0.2

9

0.3

0

0.3

0

0.3

4

0.3

1

0.2

8

0.2

9

Ni

0.2

2

0.2

8

0.1

6

0.1

7

0.1

2

0.1

4

0.1

2

0.1

6

0.1

6

0.1

5

0.1

3

0.1

4

0.2

2

0.2

2

Cr

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

Fo

con

ten

t (%

) 8

8.1

9

2.6

8

5.4

8

5.2

8

2.7

8

3.2

8

2.7

8

5.3

8

5.3

8

4.2

8

2.9

8

3.6

8

8.6

8

8.7

L

on

g a

xis

(x1

0-6

m)

59

0

15

20

66

3

13

3

23

7

12

3

63

3

27

8

12

6

17

1

16

9

10

0

11

00

Sh

ort

axis

(x1

0-6

m)

53

0

13

3

15

0

83

12

6

10

0

54

7

15

7

96

10

0

98

75

74

3

Asp

ect

rati

o

1

.1

11

.4

4.4

1

.6

1.9

1

.2

1.2

1

.8

1.3

1

.7

1.7

1

.3

1.5

Page 94: Constraining the nature of E- and N-type components in the Baffin

81

Oli

vin

e p

hen

ocr

yst

s co

nti

nu

ed

Sam

ple

P

I14

/4

PI1

4/5

P

I14

/6

PI1

4/7

P

I14

/8

PI1

4/9

P

I14

/10

PI1

4/1

1

PI1

4/1

2

PI1

4/1

3

PI1

4/1

4

PI1

4/1

5

PI1

4/1

6

PI1

4/1

7

(wt

%)

SiO

2

39

.66

39

.87

39

.79

39

.64

39

.76

39

.84

39

.53

40

.04

39

.87

39

.28

39

.32

39

.34

39

.44

39

.04

TiO

2

0.0

0

0.0

0

0.0

1

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

1

0.0

0

0.0

1

0.0

1

0.0

0

0.0

0

Al 2

O3

0.0

9

0.0

9

0.0

6

0.0

9

0.0

7

0.0

4

0.0

9

0.0

5

0.0

5

0.0

6

0.0

5

0.0

8

0.1

0

0.0

4

FeO

*

12

.20

11

.85

11

.34

11

.78

11

.43

12

.13

12

.00

11

.04

10

.82

12

.08

11

.29

12

.03

12

.56

11

.49

Mn

O

0.1

8

0.1

7

0.1

7

0.1

8

0.1

8

0.1

8

0.1

8

0.1

6

0.1

7

0.1

7

0.1

7

0.1

7

0.1

9

0.1

6

MgO

4

7.3

8

47

.40

47

.81

48

.09

47

.64

47

.30

46

.94

47

.95

48

.17

47

.38

48

.13

47

.19

46

.93

47

.92

CaO

0

.35

0.3

4

0.3

3

0.3

4

0.3

3

0.3

4

0.3

4

0.3

1

0.3

1

0.3

6

0.3

4

0.3

4

0.3

6

0.3

2

NiO

0

.30

0.3

2

0.3

4

0.3

2

0.3

2

0.3

1

0.3

2

0.3

4

0.3

5

0.3

1

0.3

3

0.3

2

0.3

0

0.3

2

Cr 2

O3

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

To

tal

10

0.1

7

10

0.0

5

99

.86

10

0.4

3

99

.73

10

0.1

4

99

.40

99

.89

99

.75

99

.64

99

.63

99

.48

99

.88

99

.30

Cat

ion

s p

rop

ort

ion

s (1

00

cat

ion

s)

Si

32

.36

32

.55

32

.47

32

.16

32

.48

32

.52

32

.50

32

.65

32

.50

32

.19

32

.10

32

.31

32

.30

32

.00

Ti

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

1

0.0

1

0.0

0

0.0

0

Al

0.0

8

0.0

9

0.0

6

0.0

8

0.0

6

0.0

4

0.0

9

0.0

5

0.0

5

0.0

6

0.0

5

0.0

8

0.0

9

0.0

4

Fe

8.3

2

8.0

9

7.7

4

7.9

9

7.8

1

8.2

8

8.2

5

7.5

3

7.3

7

8.2

8

7.7

1

8.2

6

8.6

0

7.8

8

Mn

1.1

0

1.0

7

1.0

7

1.1

0

1.1

2

1.0

9

1.1

2

1.0

1

1.0

4

1.0

6

1.0

5

1.0

7

1.2

0

1.0

1

Mg

57

.63

57

.69

58

.15

58

.16

58

.02

57

.56

57

.53

58

.27

58

.53

57

.89

58

.58

57

.77

57

.29

58

.57

Ca

0.3

1

0.2

9

0.2

9

0.2

9

0.2

9

0.3

0

0.3

0

0.2

7

0.2

7

0.3

2

0.2

9

0.3

0

0.3

1

0.2

8

Ni

0.2

0

0.2

1

0.2

2

0.2

1

0.2

1

0.2

0

0.2

1

0.2

2

0.2

3

0.2

0

0.2

1

0.2

1

0.2

0

0.2

1

Cr

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

Fo

con

ten

t (%

) 8

7.4

8

7.7

8

8.3

8

7.9

8

8.1

8

7.4

8

7.5

8

8.6

8

8.8

8

7.5

8

8.4

8

7.5

8

6.9

8

8.1

L

on

g a

xis

(x1

0-6

m)

32

1

27

1

36

8

26

3

35

8

23

6

40

0

79

3

18

14

26

1

14

31

29

2

23

3

52

6

Sh

ort

axis

(x1

0-6

m)

25

7

17

1

22

1

16

8

23

2

18

6

30

0

52

7

91

4

17

1

80

0

10

8

80

47

4

Asp

ect

rati

o

1.2

1

.6

1.7

1

.6

1.5

1

.3

1.3

1

.5

2.0

1

.5

1.8

2

.7

2.9

1

.1

Page 95: Constraining the nature of E- and N-type components in the Baffin

82

Oli

vin

e p

hen

ocr

yst

s co

nti

nu

ed

S

amp

le

PI1

4/1

8

PI1

4/1

9

PI1

6/1

P

I16

/2

PI1

6/3

P

I16

/4

PI1

6/5

P

I17

/1

PI1

7/2

P

I17

/3

PI1

7/4

P

I17

/5

PI1

7/6

P

I17

/7

(wt

%)

SiO

2

39

.59

39

.53

40

.11

40

.22

40

.60

40

.13

40

.15

40

.04

39

.84

38

.01

39

.94

39

.86

39

.84

40

.00

TiO

2

0.0

1

0.0

0

0.0

0

0.0

1

0.0

4

0.0

0

0.0

0

0.0

0

0.0

1

0.0

0

0.0

1

0.0

1

0.0

1

0.0

1

Al 2

O3

0.0

6

0.0

5

0.0

7

0.0

6

0.8

1

0.0

6

0.0

5

0.0

5

0.0

7

0.3

6

0.0

7

0.0

9

0.0

5

0.0

8

FeO

*

11

.59

11

.22

9.8

2

10

.99

11

.59

11

.50

11

.06

11

.86

12

.71

12

.81

12

.77

12

.72

12

.55

12

.67

Mn

O

0.1

7

0.1

7

0.1

5

0.1

8

0.1

8

0.1

7

0.1

8

0.1

8

0.2

0

0.2

0

0.2

0

0.2

0

0.1

8

0.1

9

MgO

4

7.9

3

48

.10

48

.52

47

.95

46

.22

47

.65

48

.02

47

.62

46

.81

44

.23

46

.72

47

.10

47

.32

46

.96

CaO

0

.33

0.3

3

0.3

0

0.3

2

0.7

4

0.3

3

0.3

3

0.3

3

0.3

4

0.3

8

0.3

4

0.3

3

0.3

4

0.3

3

NiO

0

.32

0.3

3

0.3

6

0.3

5

0.3

1

0.3

2

0.3

4

0.3

4

0.3

2

0.2

9

0.3

0

0.3

0

0.3

1

0.3

0

Cr 2

O3

0.0

0

0.0

0

To

tal

99

.98

99

.73

99

.33

10

0.0

7

10

0.4

8

10

0.1

6

10

0.1

3

10

0.4

2

10

0.3

0

96

.28

10

0.3

4

10

0.5

9

10

0.6

0

10

0.5

4

Cat

ion

s p

rop

ort

ion

s (1

00

cat

ion

s)

Si

32

.27

32

.25

32

.74

32

.72

33

.12

32

.69

32

.64

32

.56

32

.52

32

.43

32

.62

32

.43

32

.41

32

.58

Ti

0.0

0

0.0

0

0.0

0

0.0

0

0.0

3

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

1

0.0

0

Al

0.0

6

0.0

5

0.0

6

0.0

5

0.7

8

0.0

6

0.0

5

0.0

5

0.0

7

0.3

6

0.0

7

0.0

9

0.0

5

0.0

8

Fe

7.9

0

7.6

5

6.7

1

7.4

8

7.9

1

7.8

3

7.5

2

8.0

7

8.6

8

9.1

4

8.7

2

8.6

6

8.5

4

8.6

3

Mn

1.0

4

1.0

4

0.9

4

1.0

8

1.0

9

1.0

7

1.0

9

1.0

8

1.2

5

1.2

6

1.2

1

1.2

1

1.1

1

1.1

8

Mg

58

.24

58

.51

59

.05

58

.15

56

.22

57

.86

58

.19

57

.73

56

.97

56

.26

56

.88

57

.13

57

.39

57

.03

Ca

0.2

9

0.2

8

0.2

6

0.2

8

0.6

5

0.2

8

0.2

8

0.2

9

0.3

0

0.3

4

0.3

0

0.2

8

0.3

0

0.2

9

Ni

0.2

1

0.2

1

0.2

4

0.2

3

0.2

0

0.2

1

0.2

2

0.2

2

0.2

1

0.2

0

0.2

0

0.1

9

0.2

0

0.2

0

Cr

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

Fo

con

ten

t (%

) 8

8.1

8

8.4

8

9.8

8

8.6

8

7.7

8

8.1

8

8.6

8

7.7

8

6.8

8

6.0

8

6.7

8

6.8

8

7.0

8

6.9

L

on

g a

xis

(x1

0-6

m)

50

0

65

8

15

00

12

67

84

6

72

3

60

0

75

0

63

0

44

1

68

3

81

7

76

2

18

18

Sh

ort

axis

(x1

0-6

m)

36

4

50

0

50

0

82

2

38

5

38

5

43

3

45

0

40

0

22

9

30

8

60

0

40

5

60

0

Asp

ect

rati

o

1.4

1

.3

3.0

1

.5

2.2

1

.9

1.4

1

.7

1.6

1

.9

2.2

1

.4

1.9

3

.0

Page 96: Constraining the nature of E- and N-type components in the Baffin

83

Oli

vin

e p

hen

ocr

yst

s co

nti

nu

ed

S

amp

le

PI1

7/8

P

I17

/9

PI1

7/1

0

PI1

7/1

1

PI1

7/1

3

PI1

7/1

4

PI1

7/1

6

PI1

7/1

8

PI1

7/1

9

PI1

7/2

1

PI1

7/2

2

PI1

7/2

3

PI1

7/i

1

PI1

7/i

2

(wt

%)

SiO

2

40

.03

39

.97

39

.97

39

.84

39

.92

39

.70

39

.76

39

.81

39

.82

39

.81

39

.21

39

.89

39

.93

39

.85

TiO

2

0.0

1

0.0

1

0.0

0

0.0

1

0.0

0

0.0

0

0.0

1

0.0

1

0.0

1

0.0

1

0.0

2

0.0

1

0.0

1

0.0

0

Al 2

O3

0.0

7

0.0

8

0.0

7

0.0

4

0.0

7

0.0

3

0.0

7

0.0

4

0.0

9

0.0

6

0.0

4

0.0

5

0.0

6

0.0

4

FeO

*

12

.56

12

.56

12

.09

13

.03

11

.75

12

.69

12

.70

11

.80

12

.64

12

.53

15

.70

12

.42

12

.89

12

.67

Mn

O

0.1

8

0.1

9

0.1

7

0.2

0

0.1

8

0.2

0

0.2

0

0.1

8

0.2

0

0.2

0

0.2

5

0.1

9

0.1

8

0.1

9

MgO

4

6.9

6

47

.03

47

.08

46

.42

47

.32

46

.68

46

.51

47

.10

46

.55

46

.87

44

.38

46

.88

46

.05

45

.92

CaO

0

.33

0.3

3

0.3

2

0.3

4

0.3

2

0.3

3

0.3

4

0.3

3

0.3

3

0.3

4

0.3

0

0.3

3

0.3

3

0.3

4

NiO

0

.30

0.3

0

0.3

2

0.2

7

0.3

3

0.3

0

0.2

9

0.3

3

0.3

0

0.3

0

0.2

6

0.3

1

0.2

9

0.3

0

Cr 2

O3

0.0

0

0.0

0

To

tal

10

0.4

5

10

0.4

8

10

0.0

3

10

0.1

5

99

.88

99

.92

99

.89

99

.60

99

.95

10

0.1

1

10

0.1

6

10

0.0

8

99

.75

99

.31

Cat

ion

s p

rop

ort

ion

s (1

00

cat

ion

s)

Si

32

.66

32

.57

32

.69

32

.63

32

.63

32

.54

32

.61

32

.65

32

.63

32

.54

32

.41

32

.62

32

.89

32

.94

Ti

0.0

1

0.0

1

0.0

0

0.0

0

0.0

0

0.0

0

0.0

1

0.0

0

0.0

1

0.0

0

0.0

1

0.0

0

0.0

0

0.0

0

Al

0.0

7

0.0

8

0.0

7

0.0

4

0.0

7

0.0

3

0.0

7

0.0

4

0.0

8

0.0

5

0.0

4

0.0

5

0.0

6

0.0

4

Fe

8.5

7

8.5

6

8.2

7

8.9

2

8.0

3

8.7

0

8.7

1

8.0

9

8.6

7

8.5

6

10

.85

8.5

0

8.8

8

8.7

6

Mn

1.1

0

1.1

7

1.0

8

1.2

5

1.1

1

1.2

1

1.2

6

1.1

2

1.2

5

1.2

4

1.5

4

1.1

9

1.1

5

1.1

8

Mg

57

.11

57

.13

57

.40

56

.68

57

.67

57

.04

56

.85

57

.59

56

.87

57

.11

54

.70

57

.15

56

.54

56

.59

Ca

0.2

9

0.2

9

0.2

8

0.3

0

0.2

8

0.2

9

0.3

0

0.2

9

0.2

9

0.3

0

0.2

7

0.2

9

0.2

9

0.3

0

Ni

0.2

0

0.2

0

0.2

1

0.1

8

0.2

1

0.2

0

0.1

9

0.2

2

0.2

0

0.2

0

0.1

7

0.2

0

0.1

9

0.2

0

Cr

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

Fo

con

ten

t (%

) 8

6.9

8

7.0

8

7.4

8

6.4

8

7.8

8

6.8

8

6.7

8

7.7

8

6.8

8

7.0

8

3.4

8

7.1

8

6.4

8

6.6

L

on

g a

xis

(x1

0-6

m)

10

09

30

00

80

0

28

4

92

5

21

85

69

2

46

2

15

00

13

50

34

5

18

24

44

0

Sh

ort

axis

(x1

0-6

m)

46

4

45

0

53

3

18

4

64

2

44

6

50

8

26

2

20

0

17

8

27

3

48

6

13

0

Asp

ect

rati

o

2.2

6

.7

1.5

1

.5

1.4

4

.9

1.4

1

.8

7.5

7

.6

1.3

3

.8

3

.4

Page 97: Constraining the nature of E- and N-type components in the Baffin

84

Oli

vin

e p

hen

ocr

yst

s co

nti

nu

ed

Sam

ple

P

I17

/i5

PI1

7/i

8

PI1

7/i

9

PI1

7/i

10

PI1

7/i

13

PI1

7/i

14

PI1

7/i

18

PI1

7/i

19

PI1

7/i

20

Db

13

/1

Db

13

/2

Db

13

/3

Db

13

/4

Db

13

/5

(wt

%)

SiO

2

39

.94

40

.03

39

.93

39

.55

40

.08

39

.90

39

.92

39

.83

39

.87

40

.30

40

.24

40

.65

40

.32

40

.33

TiO

2

0.0

1

0.0

1

0.0

0

0.0

1

0.0

1

0.0

0

0.0

1

0.0

1

0.0

2

0.0

1

0.0

1

0.0

0

0.0

1

0.0

1

Al 2

O3

0.0

5

0.0

4

0.0

7

0.0

7

0.0

5

0.0

6

0.0

5

0.0

3

0.1

0

0.0

7

0.0

7

0.0

6

0.0

6

0.0

7

FeO

*

12

.75

12

.49

12

.63

11

.33

12

.39

12

.04

12

.25

12

.58

13

.03

13

.02

12

.79

11

.56

11

.71

11

.59

Mn

O

0.1

8

0.1

8

0.1

9

0.1

7

0.1

8

0.1

8

0.1

7

0.1

9

0.1

9

0.2

1

0.1

9

0.1

8

0.1

9

0.1

8

MgO

4

6.0

3

46

.33

46

.08

47

.01

46

.34

46

.50

46

.54

46

.46

45

.80

46

.22

47

.00

48

.21

47

.55

47

.77

CaO

0

.33

0.3

3

0.3

2

0.3

3

0.3

2

0.3

2

0.3

3

0.3

3

0.4

2

0.3

8

0.3

5

0.3

3

0.3

4

0.3

4

NiO

0

.30

0.3

0

0.3

0

0.3

3

0.3

0

0.3

2

0.3

0

0.3

0

0.2

9

0.2

9

0.3

0

0.3

2

0.3

2

0.3

4

Cr 2

O3

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

T

ota

l 9

9.5

9

99

.71

99

.51

98

.81

99

.67

99

.32

99

.58

99

.74

99

.71

10

0.5

0

10

0.9

5

10

1.3

1

10

0.4

9

10

0.6

3

Cat

ion

s p

rop

ort

ion

s (1

00

cat

ion

s)

Si

32

.94

32

.94

32

.92

32

.65

32

.98

32

.89

32

.85

32

.74

32

.88

32

.93

32

.67

32

.72

32

.76

32

.70

Ti

0.0

0

0.0

1

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

1

0.0

1

0.0

1

0.0

0

0.0

0

0.0

0

0.0

0

Al

0.0

5

0.0

4

0.0

7

0.0

7

0.0

5

0.0

6

0.0

5

0.0

3

0.0

9

0.0

7

0.0

7

0.0

6

0.0

6

0.0

7

Fe

8.7

9

8.6

0

8.7

1

7.8

2

8.5

3

8.3

0

8.4

3

8.6

5

8.9

8

8.9

0

8.6

8

7.7

8

7.9

5

7.8

6

Mn

1.1

4

1.0

9

1.1

7

1.0

9

1.0

9

1.1

2

1.0

8

1.1

5

1.1

8

1.2

8

1.1

9

1.0

8

1.1

4

1.1

0

Mg

56

.58

56

.84

56

.65

57

.85

56

.86

57

.14

57

.09

56

.93

56

.29

56

.30

56

.89

57

.86

57

.58

57

.75

Ca

0.2

9

0.2

9

0.2

8

0.2

9

0.2

9

0.2

8

0.2

9

0.2

9

0.3

7

0.3

3

0.3

1

0.2

9

0.3

0

0.3

0

Ni

0.2

0

0.2

0

0.2

0

0.2

2

0.2

0

0.2

1

0.2

0

0.2

0

0.1

9

0.1

9

0.1

9

0.2

1

0.2

1

0.2

2

Cr

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

Fo

con

ten

t (%

) 8

6.6

8

6.9

8

6.7

8

8.1

8

7.0

8

7.3

8

7.1

8

6.8

8

6.2

8

6.4

8

6.8

8

8.1

8

7.9

8

8.0

L

on

g a

xis

(x1

0-6

m)

61

0

61

0

61

0

11

5

19

4

27

9

45

6

56

9

Sh

ort

axis

(x1

0-6

m)

53

0

25

0

25

0

73

11

9

23

8

15

0

33

1

Asp

ect

rati

o

1.2

2

.4

2.4

1

.6

1.6

1

.2

3.0

1

.7

Page 98: Constraining the nature of E- and N-type components in the Baffin

85

Oli

vin

e p

hen

ocr

yst

s co

nti

nu

ed

S

amp

le

Db

13

/6

Db

13

/7

Db

13

/8

Db

14

/1

Db

14

/3

Db

14

/4

Db

14

/5

Db

14

/6

Db

14

/7

Db

14

/9

Db

14

/10

Db

14

/12

Db

14

/13

Db

14

/14

(wt

%)

SiO

2

40

.13

40

.14

40

.70

40

.23

40

.03

40

.00

40

.22

40

.07

39

.51

40

.04

40

.14

40

.02

39

.99

39

.98

TiO

2

0.0

1

0.0

0

0.0

0

0.0

1

0.0

1

0.0

1

0.0

1

0.0

1

0.0

1

0.0

0

0.0

1

0.0

0

0.0

1

0.0

1

Al 2

O3

0.0

5

0.0

4

0.0

9

0.0

6

0.0

7

0.0

9

0.0

7

0.0

7

0.1

4

0.0

8

0.0

5

0.0

4

0.0

7

0.0

7

FeO

*

12

.39

12

.07

8.6

5

11

.84

11

.96

12

.14

11

.82

12

.19

12

.06

12

.21

12

.07

12

.55

12

.15

12

.19

Mn

O

0.1

9

0.1

9

0.1

4

0.1

8

0.1

9

0.1

9

0.1

8

0.1

9

0.1

9

0.1

8

0.1

9

0.0

0

0.1

9

0.1

8

MgO

4

6.9

4

47

.03

49

.78

47

.26

47

.08

46

.58

47

.32

47

.34

46

.82

47

.37

47

.43

47

.10

47

.39

47

.29

CaO

0

.34

0.3

4

0.3

0

0.3

4

0.3

4

0.3

4

0.3

4

0.3

4

0.3

4

0.3

5

0.3

3

0.0

1

0.3

4

0.3

4

NiO

0

.30

0.3

1

0.4

3

0.3

2

0.3

2

0.3

3

0.3

2

0.3

1

0.3

1

0.3

1

0.3

1

0.3

8

0.3

3

0.3

1

Cr 2

O3

To

tal

10

0.3

6

10

0.1

3

10

0.0

9

10

0.2

3

99

.99

99

.67

10

0.2

9

10

0.5

4

99

.37

10

0.5

6

10

0.5

1

10

0.1

0

10

0.4

7

10

0.3

7

Cat

ion

s p

rop

ort

ion

s (1

00

cat

ion

s)

Si

32

.74

32

.77

32

.83

32

.80

32

.71

32

.86

32

.77

32

.57

32

.49

32

.56

32

.63

33

.04

32

.52

32

.58

Ti

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

1

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

1

Al

0.0

5

0.0

4

0.0

9

0.0

5

0.0

7

0.0

9

0.0

7

0.0

7

0.1

3

0.0

8

0.0

4

0.0

4

0.0

7

0.0

6

Fe

8.4

5

8.2

4

5.8

4

8.0

8

8.1

8

8.3

4

8.0

6

8.2

9

8.2

9

8.3

1

8.2

0

8.6

7

8.2

6

8.3

1

Mn

1.1

7

1.2

0

0.8

3

1.1

4

1.2

0

1.1

6

1.1

3

1.1

9

1.1

9

1.1

2

1.1

4

0.0

2

1.1

8

1.1

0

Mg

57

.09

57

.23

59

.87

57

.43

57

.35

57

.03

57

.47

57

.37

57

.39

57

.42

57

.48

57

.97

57

.45

57

.44

Ca

0.3

0

0.3

0

0.2

6

0.2

9

0.3

0

0.3

0

0.3

0

0.3

0

0.3

0

0.3

1

0.2

9

0.0

1

0.3

0

0.3

0

Ni

0.2

0

0.2

1

0.2

8

0.2

1

0.2

1

0.2

2

0.2

1

0.2

0

0.2

1

0.2

1

0.2

0

0.2

5

0.2

2

0.2

1

Cr

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

Fo

con

ten

t (%

) 8

7.1

8

7.4

9

1.1

8

7.7

8

7.5

8

7.2

8

7.7

8

7.4

8

7.4

8

7.4

8

7.5

8

7.0

8

7.4

8

7.4

L

on

g a

xis

(x1

0-6

m)

75

7

76

2

34

5

42

1

15

00

no

in

cl

63

3

76

5

12

67

47

6

11

71

45

6

32

4

40

0

Sh

ort

axis

(x1

0-6

m)

48

6

43

1

26

2

37

9

53

3

38

3

48

2

40

0

44

1

61

4

18

7.5

2

27

35

8

Asp

ect

rati

o

1.6

1

.8

1.3

1

.1

2.8

1.7

1

.6

3.2

1

.1

1.9

2

.4

1.4

1

.1

Page 99: Constraining the nature of E- and N-type components in the Baffin

86

Oli

vin

e p

hen

ocr

yst

s co

nti

nu

ed

S

amp

le

Db

14

/15

Db

15

/1

Db

15

/2

Db

15

/3

Db

15

/4

Db

15

/5

Db

15

/6

Db

15

/7

Db

15

/8

Db

15

/9

Db

15

/10

Db

15

/11

Db

15

/12

Db

15

/13

(wt

%)

SiO

2

39

.83

40

.00

40

.74

40

.77

40

.31

40

.34

40

.16

40

.16

39

.95

40

.29

40

.16

39

.89

39

.97

40

.42

TiO

2

0.0

1

0.0

1

0.0

1

0.0

0

0.0

1

0.0

1

0.0

1

0.0

0

0.0

0

0.0

0

0.0

1

0.0

1

0.0

1

0.0

0

Al 2

O3

0.1

0

0.1

1

0.0

8

0.1

2

0.0

7

0.0

8

0.0

8

0.0

6

0.0

9

0.0

3

0.0

8

0.0

7

0.0

6

0.0

7

FeO

*

12

.16

12

.10

12

.79

11

.87

12

.40

11

.96

12

.54

12

.32

12

.56

12

.14

12

.03

12

.32

12

.46

11

.87

Mn

O

0.1

8

0.1

9

0.2

0

0.1

9

0.1

8

0.1

9

0.2

0

0.2

0

0.2

0

0.2

0

0.2

0

0.1

8

0.2

0

0.1

9

MgO

4

6.9

1

46

.19

46

.31

47

.22

46

.68

47

.52

46

.98

46

.95

46

.77

47

.21

46

.96

46

.92

46

.82

47

.55

CaO

0

.35

0.3

4

0.3

7

0.3

3

0.3

4

0.3

4

0.3

3

0.3

4

0.3

3

0.3

4

0.3

4

0.3

3

0.3

5

0.3

3

NiO

0

.31

0.3

2

0.2

8

0.3

2

0.3

0

0.3

2

0.3

1

0.3

1

0.3

1

0.3

1

0.3

1

0.3

1

0.3

0

0.3

2

Cr 2

O3

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

To

tal

99

.85

99

.27

10

0.7

7

10

0.8

3

10

0.2

9

10

0.7

5

10

0.6

2

10

0.3

4

10

0.2

1

10

0.5

2

10

0.0

8

10

0.0

3

10

0.1

7

10

0.7

5

Cat

ion

s p

rop

ort

ion

s (1

00

cat

ion

s)

Si

32

.64

33

.01

33

.20

33

.07

32

.95

32

.71

32

.68

32

.75

32

.64

32

.77

32

.80

32

.64

32

.66

32

.76

Ti

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

1

0.0

0

Al

0.0

9

0.1

0

0.0

7

0.1

1

0.0

6

0.0

8

0.0

8

0.0

6

0.0

8

0.0

3

0.0

8

0.0

7

0.0

6

0.0

6

Fe

8.3

3

8.3

5

8.7

2

8.0

5

8.4

7

8.1

1

8.5

4

8.4

0

8.5

8

8.2

6

8.2

1

8.4

3

8.5

2

8.0

4

Mn

1.1

0

1.1

9

1.2

4

1.1

8

1.1

3

1.1

5

1.2

2

1.2

2

1.2

2

1.2

0

1.2

4

1.1

4

1.2

2

1.1

8

Mg

57

.31

56

.82

56

.26

57

.10

56

.88

57

.45

56

.99

57

.07

56

.98

57

.24

57

.17

57

.23

57

.04

57

.46

Ca

0.3

1

0.3

0

0.3

2

0.2

9

0.3

0

0.2

9

0.2

9

0.3

0

0.2

9

0.2

9

0.2

9

0.2

9

0.3

1

0.2

9

Ni

0.2

1

0.2

1

0.1

8

0.2

1

0.2

0

0.2

1

0.2

0

0.2

0

0.2

1

0.2

0

0.2

0

0.2

1

0.2

0

0.2

1

Cr

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

Fo

con

ten

t (%

) 8

7.3

8

7.2

8

6.6

8

7.6

8

7.0

8

7.6

8

7.0

8

7.2

8

6.9

8

7.4

8

7.4

8

7.2

8

7.0

8

7.7

L

on

g a

xis

(x1

0-6

m)

54

7

50

0

12

9

58

3

38

3

74

1

39

5

71

9

41

0

59

1

75

0

91

3

28

6

20

50

Sh

ort

axis

(x1

0-6

m)

16

0

14

6

93

36

7

20

0

32

4

20

5

26

9

21

9

34

5

70

0

66

3

14

6

10

00

Asp

ect

rati

o

3.4

3

.4

1.4

1

.6

1.9

2

.3

1.9

2

.7

1.9

1

.7

1.1

1

.4

2.0

2

.1

Page 100: Constraining the nature of E- and N-type components in the Baffin

87

Oli

vin

e p

hen

ocr

yst

s co

nti

nu

ed

S

amp

le

Db

15

/i7

Db

15

/i10

Db

15

/i12

Db

15

/i14

Db

15

/i18

Db

15

/i26

Ak2

/1

Ak2

/2

Ak2

/3

Ak2

/4

Ak2

/6

Ak2

/7

Ak2

/8

Ak2

/9

(wt

%)

SiO

2

39

.95

40

.04

40

.22

40

.17

40

.09

40

.17

39

.81

40

.14

39

.88

39

.75

40

.07

39

.96

40

.00

39

.85

TiO

2

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

1

0.0

1

0.0

1

0.0

0

0.0

1

0.0

0

0.0

0

0.0

1

0.0

0

Al 2

O3

0.0

6

0.0

6

0.0

5

0.0

4

0.0

4

0.0

7

0.1

0

0.0

5

0.0

8

0.0

8

0.0

7

0.0

9

0.0

6

0.0

7

FeO

*

12

.56

12

.27

12

.24

12

.18

12

.16

12

.53

12

.22

12

.07

12

.20

12

.00

12

.04

12

.18

12

.49

12

.15

Mn

O

0.2

2

0.1

9

0.2

0

0.1

8

0.1

7

0.2

0

0.2

0

0.1

8

0.1

9

0.1

9

0.1

8

0.1

9

0.2

0

0.1

9

MgO

4

6.1

0

46

.86

46

.77

47

.21

46

.39

46

.18

46

.53

47

.11

46

.94

46

.91

46

.89

47

.11

46

.90

46

.98

CaO

0

.32

0.3

3

0.3

3

0.3

3

0.3

3

0.3

5

0.3

5

0.3

4

0.3

4

0.3

4

0.3

3

0.3

4

0.3

6

0.3

4

NiO

0

.30

0.3

0

0.3

1

0.3

1

0.3

1

0.2

9

0.3

2

0.3

1

0.3

1

0.3

1

0.3

1

0.3

1

0.2

9

0.3

2

Cr 2

O3

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

To

tal

99

.51

10

0.0

5

10

0.1

1

10

0.4

2

99

.50

99

.78

99

.54

10

0.1

9

99

.95

99

.59

99

.88

10

0.1

8

10

0.3

1

99

.89

Cat

ion

s p

rop

ort

ion

s (1

00

cat

ion

s)

Si

32

.89

32

.76

32

.88

32

.71

33

.04

33

.02

32

.72

32

.77

32

.63

32

.62

32

.82

32

.62

32

.64

32

.61

Ti

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

1

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

1

0.0

0

Al

0.0

5

0.0

5

0.0

4

0.0

4

0.0

4

0.0

6

0.1

0

0.0

4

0.0

8

0.0

7

0.0

6

0.0

9

0.0

6

0.0

7

Fe

8.6

5

8.3

9

8.3

7

8.2

9

8.3

8

8.6

2

8.4

0

8.2

4

8.3

5

8.2

4

8.2

5

8.3

1

8.5

3

8.3

1

Mn

1.3

5

1.1

5

1.2

2

1.1

4

1.0

6

1.2

1

1.2

4

1.1

0

1.1

7

1.1

7

1.1

3

1.1

5

1.2

1

1.1

9

Mg

56

.58

57

.15

56

.99

57

.32

56

.98

56

.59

57

.02

57

.34

57

.27

57

.39

57

.25

57

.33

57

.05

57

.32

Ca

0.2

8

0.2

9

0.2

9

0.2

9

0.2

9

0.3

1

0.3

1

0.2

9

0.3

0

0.3

0

0.2

9

0.3

0

0.3

2

0.3

0

Ni

0.2

0

0.2

0

0.2

0

0.2

0

0.2

1

0.1

9

0.2

1

0.2

0

0.2

0

0.2

0

0.2

0

0.2

1

0.1

9

0.2

1

Cr

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

Fo

con

ten

t (%

) 8

6.7

8

7.2

8

7.2

8

7.4

8

7.2

8

6.8

8

7.2

8

7.4

8

7.3

8

7.4

8

7.4

8

7.3

8

7.0

8

7.3

L

on

g a

xis

(x1

0-6

m)

45

0

43

0

57

0

57

0

27

0

15

0

36

2

51

7

23

8

10

92

34

7

59

5

15

0

10

00

Sh

ort

axis

(x1

0-6

m)

40

0

35

0

49

0

30

0

22

0

11

0

24

3

23

3

14

6

43

8

26

0

31

9

93

20

9

Asp

ect

rati

o

1.1

1

.2

1.2

1

.9

1.2

1

.4

1.5

2

.2

1.6

2

.5

1.3

1

.9

1.6

4

.8

Page 101: Constraining the nature of E- and N-type components in the Baffin

88

Oli

vin

e p

hen

ocr

yst

s co

nti

nu

ed

S

amp

le

Ak2

/10

Ak2

/11

Ak2

/12

Ak2

/13

Ak2

/14

Ak1

1a/

3

Ak1

1a/

4

Ak1

1a/

5

Ak1

1a/

6

Ak1

2/1

A

k1

2/2

A

k1

2/3

A

k1

2/4

A

k1

2/5

(wt

%)

SiO

2

40

.12

39

.99

39

.87

39

.86

40

.03

39

.63

39

.79

39

.67

39

.62

40

.11

39

.96

39

.99

39

.93

39

.87

TiO

2

0.0

0

0.0

1

0.0

1

0.0

0

0.0

1

0.0

0

0.0

0

0.0

0

0.0

1

0.0

0

0.0

0

0.0

0

0.0

0

0.0

1

Al 2

O3

0.0

9

0.0

4

0.0

7

0.0

5

0.0

4

0.0

7

0.0

4

0.0

5

0.1

0

0.1

0

0.0

5

0.0

6

0.0

5

0.0

5

FeO

*

11

.97

12

.16

11

.87

11

.95

12

.02

12

.20

12

.18

11

.99

12

.10

12

.08

12

.11

12

.08

12

.16

12

.23

Mn

O

0.1

8

0.1

8

0.1

8

0.1

8

0.1

9

0.1

8

0.1

8

0.1

9

0.1

8

0.1

7

0.1

9

0.1

9

0.1

9

0.1

8

MgO

4

7.3

9

47

.26

47

.35

47

.13

47

.17

47

.27

47

.15

47

.55

47

.11

47

.09

47

.20

47

.24

46

.91

46

.92

CaO

0

.34

0.3

4

0.3

3

0.3

3

0.3

4

0.3

4

0.3

5

0.3

3

0.3

4

0.3

5

0.3

4

0.3

4

0.3

4

0.3

5

NiO

0

.32

0.3

1

0.3

1

0.3

2

0.3

2

0.3

1

0.3

2

0.3

2

0.3

1

0.3

2

0.3

1

0.3

1

0.3

1

0.3

0

Cr 2

O3

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

To

tal

10

0.4

1

10

0.2

8

99

.99

99

.83

10

0.1

2

10

0.0

1

10

0.0

2

10

0.1

0

99

.77

10

0.2

2

10

0.1

7

10

0.2

2

99

.88

99

.90

Cat

ion

s p

rop

ort

ion

s (1

00

cat

ion

s)

Si

32

.64

32

.60

32

.56

32

.63

32

.66

32

.40

32

.53

32

.34

32

.45

32

.76

32

.60

32

.62

32

.69

32

.65

Ti

0.0

0

0.0

0

0.0

0

0.0

0

0.0

1

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

Al

0.0

9

0.0

3

0.0

7

0.0

5

0.0

4

0.0

7

0.0

4

0.0

5

0.0

9

0.1

0

0.0

5

0.0

6

0.0

5

0.0

5

Fe

8.1

5

8.2

9

8.1

1

8.1

8

8.2

0

8.3

4

8.3

3

8.1

7

8.2

9

8.2

5

8.2

6

8.2

4

8.3

2

8.3

8

Mn

1.1

4

1.1

2

1.1

1

1.1

3

1.2

0

1.0

9

1.1

4

1.1

6

1.1

3

1.0

6

1.1

8

1.1

5

1.2

0

1.1

4

Mg

57

.48

57

.45

57

.65

57

.51

57

.39

57

.60

57

.46

57

.79

57

.53

57

.33

57

.41

57

.44

57

.25

57

.28

Ca

0.3

0

0.3

0

0.2

9

0.2

9

0.2

9

0.2

9

0.3

0

0.2

9

0.2

9

0.3

0

0.3

0

0.3

0

0.3

0

0.3

0

Ni

0.2

1

0.2

0

0.2

0

0.2

1

0.2

1

0.2

1

0.2

1

0.2

1

0.2

1

0.2

1

0.2

0

0.2

1

0.2

0

0.2

0

Cr

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

Fo

con

ten

t (%

) 8

7.6

8

7.4

8

7.7

8

7.5

8

7.5

8

7.4

8

7.3

8

7.6

8

7.4

8

7.4

8

7.4

8

7.5

8

7.3

8

7.2

L

on

g a

xis

(x1

0-6

m)

27

0

40

5

59

3

50

0

14

60

40

0

28

7

65

7

38

8

10

00

33

0

40

9

51

2

10

00

Sh

ort

axis

(x1

0-6

m)

14

3

26

7

32

1

23

2

63

0

18

9

16

9

32

9

16

5

20

5

20

5

12

6

22

4

65

0

Asp

ect

rati

o

1.9

1

.5

1.8

2

.2

2.3

2

.1

1.7

2

.0

2.4

4

.9

1.6

3

.2

2.3

1

.5

Page 102: Constraining the nature of E- and N-type components in the Baffin

89

Oli

vin

e p

hen

ocr

yst

s co

nti

nu

ed

S

amp

le

Ak1

2/6

A

k1

2/7

A

k1

2/8

A

k1

2/9

A

k1

2/1

0

Ak1

2/1

1

Ak1

2/1

2

Ak1

2/1

3

Ak1

2/1

4

Ak1

2/1

5

Ak1

2/1

6

Ak1

2/i

2

Ak1

2/i

4

Ak1

2/i

6

(wt

%)

SiO

2

39

.92

39

.66

39

.77

39

.70

39

.78

39

.75

39

.74

39

.85

39

.52

39

.77

39

.63

40

.11

40

.04

40

.04

TiO

2

0.0

1

0.0

1

0.0

1

0.0

1

0.0

1

0.0

0

0.0

1

0.0

0

0.0

0

0.0

0

0.0

0

0.0

1

0.0

0

0.0

1

Al 2

O3

0.0

9

0.0

8

0.0

7

0.0

6

0.0

5

0.1

2

0.1

1

0.0

6

0.0

9

0.0

8

0.0

8

0.0

3

0.0

7

0.0

6

FeO

*

12

.06

12

.11

12

.14

12

.20

12

.22

12

.05

12

.14

11

.98

12

.33

11

.96

12

.19

12

.11

12

.04

12

.16

Mn

O

0.1

9

0.1

8

0.1

9

0.1

8

0.1

7

0.1

9

0.1

8

0.1

8

0.2

0

0.1

8

0.1

7

0.1

9

0.1

9

0.1

8

MgO

4

7.0

9

47

.14

47

.17

47

.20

46

.94

47

.09

47

.13

47

.32

46

.81

47

.14

47

.13

46

.64

47

.07

46

.56

CaO

0

.35

0.3

3

0.3

4

0.3

5

0.3

4

0.3

3

0.3

3

0.3

3

0.3

5

0.3

4

0.3

5

0.3

3

0.3

4

0.3

4

NiO

0

.31

0.3

1

0.3

1

0.3

1

0.3

1

0.3

1

0.3

2

0.3

2

0.3

1

0.3

2

0.3

2

0.3

1

0.3

1

0.3

1

Cr 2

O3

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

To

tal

10

0.0

1

99

.82

10

0.0

0

10

0.0

1

99

.83

99

.84

99

.97

10

0.0

4

99

.61

99

.78

99

.87

99

.73

10

0.0

7

99

.66

Cat

ion

s p

rop

ort

ion

s (1

00

cat

ion

s)

Si

32

.63

32

.47

32

.49

32

.46

32

.62

32

.53

32

.50

32

.54

32

.42

32

.57

32

.46

32

.92

32

.71

32

.90

Ti

0.0

1

0.0

0

0.0

1

0.0

1

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

1

Al

0.0

9

0.0

8

0.0

6

0.0

6

0.0

5

0.1

1

0.1

0

0.0

6

0.0

9

0.0

8

0.0

7

0.0

3

0.0

7

0.0

6

Fe

8.2

4

8.2

9

8.2

9

8.3

4

8.3

8

8.2

5

8.3

0

8.1

8

8.4

6

8.1

9

8.3

5

8.3

1

8.2

3

8.3

6

Mn

1.1

7

1.1

4

1.1

8

1.1

0

1.0

7

1.1

7

1.1

4

1.1

1

1.2

6

1.1

1

1.0

6

1.1

7

1.1

6

1.1

3

Mg

57

.37

57

.53

57

.46

57

.53

57

.37

57

.45

57

.45

57

.61

57

.25

57

.55

57

.54

57

.06

57

.33

57

.04

Ca

0.3

1

0.2

9

0.3

0

0.3

0

0.3

0

0.2

9

0.2

9

0.2

9

0.3

1

0.3

0

0.3

0

0.2

9

0.3

0

0.3

0

Ni

0.2

0

0.2

0

0.2

0

0.2

1

0.2

1

0.2

0

0.2

1

0.2

1

0.2

0

0.2

1

0.2

1

0.2

1

0.2

0

0.2

0

Cr

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

Fo

con

ten

t (%

) 8

7.4

8

7.4

8

7.4

8

7.3

8

7.3

8

7.4

8

7.4

8

7.6

8

7.1

8

7.5

8

7.3

8

7.3

8

7.5

8

7.2

L

on

g a

xis

(x1

0-6

m)

38

2

52

4

11

00

21

5

18

3

24

8

28

5

37

5

20

9

26

9

25

0

68

0

64

0

S

ho

rt a

xis

(x1

0-6

m)

16

2

32

4

34

0

15

3

11

9

10

4

15

6

38

0

10

6

19

3

19

8

19

0

12

0

A

spec

t ra

tio

2

.4

1.6

3

.2

1.4

1

.5

2.4

1

.8

1.0

2

.0

1.4

1

.3

3.6

5

.3

Page 103: Constraining the nature of E- and N-type components in the Baffin

90

Oli

vin

e p

hen

ocr

yst

s co

nti

nu

ed

Sam

ple

A

k1

2/i

7

Ak1

2/i

9

Ak1

2/i

11

Ak1

2/i

16

Ak1

2/i

24

(wt

%)

S

iO2

40

.15

40

.29

40

.29

39

.98

39

.60

TiO

2

0.0

0

0.0

0

0.0

1

0.0

1

0.0

0

Al 2

O3

0.1

0

0.0

5

0.0

8

0.0

9

0.0

1

FeO

*

12

.02

12

.23

12

.14

11

.91

11

.98

Mn

O

0.1

9

0.1

9

0.1

7

0.1

8

0.1

9

MgO

4

6.4

8

46

.54

46

.97

46

.88

46

.35

CaO

0

.33

0.3

4

0.3

4

0.3

4

0.3

3

NiO

0

.31

0.3

0

0.3

0

0.3

1

0.3

1

Cr 2

O3

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

To

tal

99

.57

99

.95

10

0.2

9

99

.70

98

.78

Cat

ion

s p

rop

ort

ion

s (1

00

cat

ion

s)

S

i 3

3.0

1

33

.02

32

.89

32

.79

32

.79

Ti

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

Al

0.1

0

0.0

5

0.0

7

0.0

9

0.0

1

Fe

8.2

7

8.3

8

8.2

9

8.1

7

8.2

9

Mn

1.1

7

1.2

0

1.0

7

1.1

1

1.1

8

Mg

56

.97

56

.85

57

.17

57

.33

57

.21

Ca

0.2

9

0.3

0

0.3

0

0.3

0

0.3

0

Ni

0.2

0

0.2

0

0.2

0

0.2

1

0.2

1

Cr

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

Fo

con

ten

t (%

) 8

7.3

8

7.2

8

7.3

8

7.5

8

7.3

Lo

ng a

xis

(x1

0-6

m)

18

0

48

0

S

ho

rt a

xis

(x1

0-6

m)

13

0

37

0

A

spec

t ra

tio

1.4

1.3

Page 104: Constraining the nature of E- and N-type components in the Baffin

91

Table 2 Pillow margin matrix glass geochemistry. Major and minor elements

analyzed by electron microprobe. Uncertainty was below 1% for major elements,

checked by analyzing standards. All Fe as FeO*. Concentrations are averages of

at least five analyses.

Page 105: Constraining the nature of E- and N-type components in the Baffin

92

Pil

low

mar

gin

mat

rix g

lass

Sam

ple

P

d13

Pd

19

v1

Pd

19

v2

Pd

56

PI1

6

PI1

7v1

PI1

7v2

PI1

7i

Db

13

Db

14

Db

15

Db

15

i A

k2

A

k1

1a

Ak1

2

Ak1

2i

Typ

e

N

N

N

N

N

E

E

E

N

N

N

N

N

N

N

N

(wt

%)

SiO

2

48

.41

48

.68

48

.42

49

.21

48

.61

48

.46

49

.12

49

.35

49

.50

49

.02

49

.64

49

.02

49

.23

49

.23

49

.28

48

.53

MgO

8.4

9

9.0

2

9.2

7

9.3

7

9.0

3

9.3

8

8.4

9

8.4

3

8.6

9

8.7

3

8.7

4

8.7

0

9.2

6

9.2

3

9.1

1

9.0

2

Mn

O

0

.26

0.1

7

0.1

6

0.2

2

0.1

7

0.2

0

0.1

8

0.1

5

0.1

7

0.1

7

0.1

7

0.1

8

0.1

6

0.1

6

0.1

5

0.1

6

CaO

17

.54

13

.58

13

.39

15

.29

13

.45

13

.06

13

.18

13

.29

13

.67

13

.59

13

.67

13

.61

13

.39

13

.47

13

.52

13

.43

FeO

*

10

.09

9.5

5

9.4

4

10

.11

9.4

5

11

.15

9.6

8

9.7

5

9.9

1

9.8

2

9.7

7

9.7

2

9.3

4

9.4

4

9.4

5

9.3

0

Al 2

O3

11

.44

15

.04

15

.12

11

.93

15

.03

12

.84

14

.45

14

.71

14

.76

14

.72

14

.71

14

.89

15

.57

15

.61

15

.58

15

.82

TiO

2

1

.24

1.1

1

1.0

9

1.6

6

1.0

6

1.4

6

1.1

9

1.3

6

1.2

1

1.1

8

1.1

5

1.2

1

0.9

4

0.9

4

0.9

7

1.0

4

Na 2

O

1

.52

2.5

3

2.3

8

2.5

7

2.5

9

2.7

6

2.5

9

1.9

5

1.8

4

2.4

8

1.8

5

1.9

4

1.7

4

1.7

6

1.7

7

1.8

5

K2O

0.0

6

0.0

8

0.0

7

0.0

8

0.0

8

0.1

8

0.2

1

0.2

3

0.1

0

0.0

8

0.1

0

0.1

0

0.0

9

0.0

9

0.0

9

0.0

9

P2O

5

0.0

3

0.1

0

0.1

1

0.2

9

0.0

9

0.1

3

0.1

1

0.1

0

0.1

0

0.2

1

0.1

1

0.1

0

0.1

8

C

r 2O

3

0.0

7

0.0

5

0.0

4

0.0

6

0.0

5

0.0

6

0.0

4

To

tal

9

9.2

2

99

.86

99

.45

10

0.7

2

99

.57

99

.62

99

.20

99

.30

99

.97

99

.91

10

0.0

8

99

.42

99

.91

10

0.1

0

10

0.2

0

99

.32

Cl

(pp

m)

10

75

47

38

70

17

20

20

45

S (

pp

m)

0

6

47

35

14

63

69

81

80

Cat

ion

s p

rop

ort

ion

s (1

00

cat

ion

s)

S

i 4

4.9

5

44

.41

44

.37

44

.61

44

.43

44

.39

45

.22

45

.73

45

.51

44

.83

45

.59

45

.23

45

.15

45

.05

45

.12

44

.74

Mg

11

.75

12

.27

12

.66

12

.66

12

.30

12

.81

11

.65

11

.65

11

.91

11

.91

11

.97

11

.97

12

.67

12

.60

12

.44

12

.40

Mn

1.8

1

1.1

9

1.1

2

1.5

2

1.2

0

1.3

7

1.2

2

1.0

8

1.1

8

1.1

7

1.1

8

1.2

4

1.1

1

1.1

4

1.0

7

1.0

9

Ca

17

.45

13

.28

13

.15

14

.86

13

.17

12

.82

12

.99

13

.19

13

.47

13

.32

13

.45

13

.45

13

.16

13

.21

13

.26

13

.27

Fe

7.8

3

7.2

8

7.2

3

7.6

6

7.2

3

8.5

4

7.4

5

7.5

5

7.6

2

7.5

1

7.5

0

7.5

0

7.1

6

7.2

3

7.2

4

7.1

7

Al

12

.52

16

.17

16

.33

12

.75

16

.19

13

.86

15

.68

16

.06

15

.99

15

.87

15

.93

16

.19

16

.83

16

.83

16

.82

17

.19

Ti

0.8

7

0.7

7

0.7

5

1.1

3

0.7

3

1.0

0

0.8

2

0.9

5

0.8

4

0.8

1

0.8

0

0.8

4

0.6

5

0.6

4

0.6

7

0.7

2

Na

2.7

4

4.4

7

4.2

2

4.5

1

4.5

9

4.9

0

4.6

3

3.5

1

3.2

9

4.4

0

3.3

0

3.4

7

3.0

9

3.1

2

3.1

4

3.3

1

K

0.0

7

0.0

9

0.0

8

0.0

9

0.0

9

0.2

1

0.2

5

0.2

7

0.1

1

0.1

0

0.1

1

0.1

2

0.1

1

0.1

0

0.1

0

0.1

1

P

0.0

2

0.0

7

0.0

8

0.2

2

0.0

7

0.1

0

0.0

9

0.0

0

0.0

8

0.0

8

0.1

6

0.0

0

0.0

8

0.0

8

0.1

4

0.0

0

Cr

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

5

0.0

0

0.0

0

0.0

4

0.0

3

0.0

4

0.0

4

0.0

4

0.0

3

K/T

i

0.0

8

0.1

2

0.1

1

0.0

8

0.1

2

0.2

1

0.3

0

0.2

9

0.1

3

0.1

2

0.1

4

0.1

4

0.1

7

0.1

6

0.1

6

0.1

5

Page 106: Constraining the nature of E- and N-type components in the Baffin

93

Table 3 Melt inclusion geochemistry. Major and minor elements analyzed by

electron microprobe. Uncertainty was below 1% for major elements, checked by

analyzing standards. All Fe as FeO*.

Page 107: Constraining the nature of E- and N-type components in the Baffin

94

Mel

t in

clu

sion

s

S

amp

le

Pd

13

/1

Pd

13

/2.1

P

d13

/2.2

P

d13

/3

Pd

13

/4

Pd

13

/6

Pd

13

/7.1

P

d13

/8

Pd

13

/10

Pd

13

/i1

2

Pd

13

/i1

5

Pd

13

/i1

8.1

P

d13

/i1

8.2

P

d19

/1

Typ

e

N

N

N

N

N

E

N

N

N

N

N

N

N

N

(wt

%)

SiO

2

51

.69

52

.06

50

.94

50

.74

51

.56

51

.57

51

.30

50

.93

51

.04

51

.48

49

.92

50

.03

50

.05

49

.36

MgO

2.5

6

2.6

5

2.9

2

3.6

4

3.0

6

4.9

6

3.5

7

2.9

6

3.7

5

4.1

1

4.2

1

4.1

2

3.2

9

7.2

7

Mn

O

0

.12

0.1

4

0.1

9

0.1

1

0.1

3

0.1

1

0.1

2

0.1

1

0.1

1

0.1

2

0.1

3

0.1

8

0.1

4

0.1

8

CaO

16

.93

16

.56

16

.95

16

.52

16

.01

15

.57

16

.52

16

.71

16

.32

16

.00

15

.79

16

.11

16

.21

14

.26

FeO

*

5.5

2

5.8

7

6.1

4

7.3

9

6.7

6

6.6

5

7.1

4

6.8

9

7.5

1

7.3

3

7.0

9

7.9

2

6.9

4

9.5

4

Al 2

O3

19

.09

19

.63

18

.62

18

.12

18

.82

17

.93

18

.05

18

.55

18

.03

17

.94

17

.80

17

.29

17

.93

15

.95

TiO

2

1

.21

1.4

0

1.2

2

1.3

7

1.3

5

1.0

0

1.3

2

1.2

9

1.2

9

1.5

3

1.2

3

1.3

9

1.2

8

1.1

6

Na 2

O

2

.17

2.2

7

1.9

8

1.9

6

2.2

3

2.2

4

1.9

4

2.0

1

1.9

9

2.1

0

1.9

3

1.9

7

2.0

2

2.8

6

K2O

0.1

4

0.1

1

0.1

1

0.1

5

0.1

1

0.1

2

0.1

1

0.1

2

0.1

2

0.1

1

0.1

4

0.1

1

0.1

3

0.0

7

P2O

5

0.1

4

0.1

3

0.1

1

0.1

4

0.1

1

0.1

5

0.1

1

0.1

3

0.1

2

0.0

7

Cr 2

O3

0.0

6

0.0

4

0.0

9

0.0

7

T

ota

l

99

.71

10

0.9

8

99

.34

10

0.2

1

10

0.2

9

10

0.3

7

10

0.2

1

99

.83

10

0.3

8

10

0.7

9

98

.31

99

.30

98

.15

10

0.7

1

Cl

(pp

m)

10

0

50

80

70

50

40

50

40

20

29

21

23

12

S

(pp

m)

45

3

30

0

22

0

36

16

0

52

72

28

8

11

2

77

10

2

38

5

10

2

C

atio

ns

pro

po

rtio

ns

(100

cat

ion

s)

S

i 4

8.2

8

47

.97

47

.64

47

.25

47

.89

47

.51

47

.75

47

.66

47

.44

47

.53

47

.16

46

.86

47

.49

44

.81

Mg

3.5

6

3.6

4

4.0

7

5.0

6

4.2

4

6.8

2

4.9

6

4.1

2

5.2

0

5.6

6

5.9

2

5.7

5

4.6

5

9.8

4

Mn

0.8

4

0.9

4

1.3

1

0.7

9

0.8

9

0.7

6

0.8

1

0.8

1

0.8

0

0.8

6

0.9

4

1.2

5

1.0

3

1.2

3

Ca

16

.95

16

.35

16

.99

16

.48

15

.93

15

.36

16

.48

16

.75

16

.25

15

.82

15

.98

16

.17

16

.48

13

.87

Fe

4.3

1

4.5

2

4.8

0

5.7

6

5.2

6

5.1

2

5.5

6

5.3

9

5.8

3

5.6

6

5.6

0

6.2

1

5.5

0

7.2

4

Al

21

.02

21

.31

20

.53

19

.88

20

.61

19

.47

19

.80

20

.46

19

.75

19

.52

19

.82

19

.08

20

.05

17

.06

Ti

0.8

5

0.9

7

0.8

6

0.9

6

0.9

4

0.6

9

0.9

2

0.9

1

0.9

0

1.0

6

0.8

7

0.9

8

0.9

2

0.7

9

Na

3.9

2

4.0

5

3.5

9

3.5

4

4.0

2

4.0

0

3.5

0

3.6

4

3.5

9

3.7

7

3.5

3

3.5

7

3.7

2

5.0

3

K

0.1

7

0.1

3

0.1

4

0.1

8

0.1

2

0.1

4

0.1

3

0.1

5

0.1

4

0.1

3

0.1

7

0.1

3

0.1

5

0.0

8

P

0.1

1

0.1

0

0.0

9

0.1

1

0.0

9

0.1

2

0.0

9

0.1

0

0.0

9

0.0

0

0.0

0

0.0

0

0.0

0

0.0

5

Cr

0.0

5

0.0

3

0.0

7

0.0

5

K

/Ti

0

.19

0.1

4

0.1

6

0.1

9

0.1

3

0.2

1

0.1

4

0.1

6

0.1

6

0.1

2

0.1

9

0.1

3

0.1

7

0.1

0

Cl/

K

0.0

6

0.0

4

0.0

6

0.0

4

0.0

4

0.0

3

0.0

4

0.0

3

0.0

1

0.0

2

0.0

1

0.0

2

0.0

1

0.0

0

Page 108: Constraining the nature of E- and N-type components in the Baffin

95

Mel

t in

clu

sion

s co

nti

nu

ed

S

amp

le

Pd

19

/2

Pd

19

/4

Pd

19

/5

Pd

19

/7

Pd

19

/8

Pd

19

/9

Pd

19

/13

Pd

19

/i3

a

Pd

19

/i6

.1

Pd

19

/i6

.2

Pd

19

/i1

1

Pd

56

/1

Pd

56

/2

PI1

2/1

P

I12

/2

Typ

e

N

N

N

N

E

E

E

N

N

N

N

N

N

E

E

(wt

%)

S

iO2

49

.12

49

.12

49

.71

49

.55

51

.02

51

.28

50

.87

49

.94

50

.95

50

.42

50

.88

49

.84

49

.40

48

.45

47

.82

MgO

5.9

0

6.4

6

4.9

6

4.7

7

2.9

1

3.2

0

2.8

1

3.3

9

3.0

2

3.1

1

4.0

0

6.1

3

7.5

2

5.9

8

7.5

2

Mn

O

0

.16

0.1

9

0.1

8

0.1

4

0.1

4

0.0

9

0.1

6

0.1

5

0.1

8

0.1

7

0.0

8

0.1

8

0.1

6

0.1

5

0.1

9

CaO

15

.04

14

.90

15

.78

15

.68

15

.73

15

.84

15

.34

16

.53

16

.43

16

.85

17

.14

13

.93

13

.29

14

.21

13

.40

FeO

*

8.6

3

8.9

5

9.3

4

8.0

9

8.5

7

8.2

1

8.8

7

7.6

7

7.4

4

7.8

1

6.1

7

10

.49

10

.19

11

.06

10

.82

Al 2

O3

16

.29

16

.11

16

.80

16

.92

17

.13

17

.57

17

.56

17

.20

17

.24

17

.46

18

.25

14

.84

14

.75

14

.45

15

.12

TiO

2

1

.23

1.1

4

1.2

5

1.2

6

1.4

8

1.1

9

1.2

0

1.5

7

1.2

0

1.1

0

1.3

1

1.5

8

1.5

5

1.6

1

1.2

9

Na 2

O

2

.28

2.2

5

2.5

3

2.3

4

2.2

0

1.8

3

2.4

7

1.9

5

2.1

5

2.1

1

2.1

7

3.2

9

3.2

6

1.9

5

1.9

7

K2O

0.0

7

0.0

9

0.0

8

0.0

8

0.1

9

0.2

2

0.2

2

0.1

2

0.0

8

0.1

1

0.1

4

0.1

7

0.1

7

0.2

2

0.2

0

P2O

5

0.1

1

0.1

1

0.0

5

0.1

6

0.1

6

0.1

3

0.1

6

0.1

5

0.1

5

0.1

3

0.1

2

Cr 2

O3

0.0

8

0.0

6

0.0

3

0.0

6

0.0

4

0.0

3

To

tal

9

8.8

4

99

.33

10

0.6

6

98

.98

99

.67

99

.84

99

.92

98

.63

98

.82

99

.23

10

0.2

4

10

0.6

0

10

0.4

4

98

.29

98

.54

Cl

(pp

m)

13

0

12

0

14

0

64

15

23

1

20

0

20

0

S (

pp

m)

27

6

88

9

78

9

11

2

9

15

1

1

16

0

19

6

Cat

ion

s p

rop

ort

ion

s (1

00

cat

ion

s)

Si

45

.82

45

.45

45

.63

46

.35

47

.95

48

.32

47

.57

47

.27

48

.01

47

.33

47

.16

45

.55

44

.99

45

.97

44

.77

Mg

8.2

1

8.9

1

6.7

8

6.6

5

4.0

8

4.4

9

3.9

2

4.7

9

4.2

5

4.3

5

5.5

2

8.3

6

10

.22

8.4

6

10

.50

Mn

1.1

5

1.3

4

1.2

4

0.9

6

1.0

1

0.6

6

1.1

3

1.1

0

1.2

8

1.1

9

0.5

8

1.2

2

1.1

1

1.1

1

1.3

1

Ca

15

.03

14

.78

15

.51

15

.72

15

.84

15

.99

15

.37

16

.76

16

.59

16

.95

17

.02

13

.64

12

.96

14

.45

13

.44

Fe

6.7

3

6.9

3

7.1

7

6.3

3

6.7

3

6.4

7

6.9

3

6.0

7

5.8

6

6.1

3

4.7

9

8.0

2

7.7

6

8.7

7

8.4

7

Al

17

.90

17

.57

18

.17

18

.65

18

.98

19

.51

19

.36

19

.18

19

.15

19

.32

19

.94

15

.98

15

.83

16

.15

16

.69

Ti

0.8

7

0.7

9

0.8

6

0.8

9

1.0

4

0.8

4

0.8

4

1.1

2

0.8

5

0.7

8

0.9

1

1.0

8

1.0

6

1.1

5

0.9

1

Na

4.1

2

4.0

4

4.5

0

4.2

4

4.0

1

3.3

4

4.4

8

3.5

7

3.9

2

3.8

4

3.9

1

5.8

4

5.7

6

3.5

8

3.5

7

K

0.0

9

0.1

0

0.0

9

0.0

9

0.2

3

0.2

7

0.2

6

0.1

4

0.0

9

0.1

3

0.1

6

0.2

0

0.1

9

0.2

6

0.2

4

P

0.0

8

0.0

9

0.0

4

0.1

2

0.1

3

0.1

1

0.1

2

0.0

0

0.0

0

0.0

0

0.0

0

0.1

2

0.1

1

0.1

0

0.1

0

Cr

0.0

6

0.0

5

0.0

2

0.0

5

K/T

i

0.1

0

0.1

3

0.1

1

0.1

0

0.2

2

0.3

2

0.3

1

0.1

2

0.1

1

0.1

6

0.1

8

0.1

8

0.1

8

0.2

3

0.2

6

Cl/

K

0.0

0

0.0

0

0.0

0

0.0

0

0.0

6

0.0

4

0.0

5

0.0

5

0.0

2

0.0

2

0.0

0

0.0

0

0.0

0

0.0

8

0.0

8

Page 109: Constraining the nature of E- and N-type components in the Baffin

96

Mel

t in

clu

sion

s co

nti

nu

ed

S

amp

le

PI1

2/3

P

I12

/4

PI1

2/6

P

I12

/7

PI1

2/8

P

I12

/9

PI1

4/1

P

I14

/2

PI1

4/4

P

I14

/5

PI1

4/6

P

I14

/7

PI1

4/8

P

I14

/9

PI1

4/1

1

Typ

e

E

E

E

E

E

E

N

N

N

N

N

N

N

N

N

(wt

%)

S

iO2

48

.73

48

.26

48

.61

48

.38

49

.52

48

.64

48

.82

49

.25

48

.57

48

.50

48

.72

48

.49

48

.43

48

.34

49

.24

MgO

6.3

0

6.5

6

6.0

3

5.5

4

5.6

4

6.1

7

6.9

0

6.8

3

6.7

5

8.0

3

8.3

6

8.3

9

8.6

8

8.5

0

8.7

3

Mn

O

0

.20

0.1

8

0.1

8

0.2

1

0.2

0

0.2

1

0.1

5

0.1

6

0.1

5

0.1

7

0.1

4

0.1

0

0.1

4

0.1

5

0.1

6

CaO

13

.78

14

.10

14

.66

14

.39

14

.44

14

.15

14

.35

14

.76

14

.64

14

.25

14

.10

14

.06

14

.08

13

.87

13

.41

FeO

*

11

.30

9.6

5

10

.28

11

.07

11

.03

10

.62

8.6

6

9.0

4

9.2

5

10

.00

8.6

2

9.0

2

8.8

3

9.4

4

8.2

2

Al 2

O3

14

.27

15

.81

15

.69

15

.80

14

.26

15

.51

16

.07

16

.16

16

.20

15

.34

15

.68

15

.71

15

.57

15

.28

15

.52

TiO

2

1

.57

1.2

8

1.3

1

1.2

4

1.6

0

1.3

6

1.1

6

1.2

0

1.1

0

1.1

9

1.1

6

1.1

6

1.1

2

1.1

8

1.0

4

Na 2

O

2

.05

2.0

0

1.9

1

1.9

9

2.0

7

1.9

8

2.8

7

2.7

9

1.8

7

1.7

4

1.8

0

1.8

0

1.8

3

1.7

6

1.9

4

K2O

0.2

1

0.2

1

0.1

8

0.2

0

0.2

1

0.1

9

0.0

8

0.0

6

0.1

0

0.0

9

0.1

0

0.1

1

0.1

2

0.0

9

0.1

1

P2O

5

0.1

4

0.1

6

0.1

4

0.1

5

0.1

4

0.1

5

0.1

1

0.0

8

0.1

2

0.1

0

0.1

3

0.0

9

0.1

0

0.0

9

0.1

2

Cr 2

O3

0.0

6

0.0

4

0.0

6

0.0

8

0.0

5

0.0

6

0.0

8

0.0

7

0.0

6

0.0

5

0.0

7

0.0

7

0.0

8

To

tal

9

8.6

4

98

.35

99

.29

99

.19

99

.20

99

.12

99

.16

10

0.3

3

98

.86

99

.51

98

.99

99

.01

99

.01

98

.78

98

.62

Cl

(pp

m)

20

0

17

0

40

0

15

0

19

0

18

5

10

35

20

10

10

20

10

S (

pp

m)

10

0

31

2

82

4

50

8

13

6

31

8

13

6

66

48

0

13

6

19

2

66

23

2

Cat

ion

s p

rop

ort

ion

s (1

00

cat

ion

s)

Si

45

.89

45

.32

45

.52

45

.35

46

.48

45

.47

45

.04

44

.96

45

.41

44

.93

45

.26

45

.12

44

.90

45

.00

45

.69

Mg

8.8

4

9.1

8

8.4

1

7.7

4

7.8

9

8.5

9

9.4

9

9.2

9

9.4

1

11

.09

11

.58

11

.63

12

.00

11

.79

12

.08

Mn

1.4

1

1.3

0

1.2

6

1.4

8

1.4

3

1.4

9

1.0

3

1.1

3

1.0

3

1.1

8

1.0

1

0.7

2

0.9

6

1.0

8

1.1

0

Ca

13

.90

14

.18

14

.71

14

.46

14

.52

14

.17

14

.19

14

.44

14

.67

14

.15

14

.03

14

.01

13

.99

13

.83

13

.33

Fe

8.9

0

7.5

8

8.0

5

8.6

8

8.6

6

8.3

0

6.6

8

6.9

0

7.2

4

7.7

5

6.7

0

7.0

2

6.8

5

7.3

5

6.3

8

Al

15

.84

17

.50

17

.32

17

.46

15

.77

17

.09

17

.47

17

.39

17

.85

16

.75

17

.17

17

.23

17

.01

16

.77

16

.98

Ti

1.1

1

0.9

0

0.9

2

0.8

7

1.1

3

0.9

6

0.8

0

0.8

3

0.7

7

0.8

3

0.8

1

0.8

1

0.7

8

0.8

2

0.7

2

Na

3.7

4

3.6

4

3.4

7

3.6

1

3.7

7

3.5

8

5.1

3

4.9

4

3.4

0

3.1

3

3.2

5

3.2

5

3.2

8

3.1

7

3.5

0

K

0.2

5

0.2

6

0.2

2

0.2

4

0.2

5

0.2

2

0.0

9

0.0

6

0.1

2

0.1

1

0.1

1

0.1

3

0.1

4

0.1

1

0.1

3

P

0.1

1

0.1

3

0.1

1

0.1

2

0.1

1

0.1

2

0.0

8

0.0

6

0.0

9

0.0

8

0.1

0

0.0

7

0.0

8

0.0

7

0.0

9

Cr

K

/Ti

0

.22

0.2

8

0.2

4

0.2

8

0.2

2

0.2

3

0.1

1

0.0

8

0.1

6

0.1

3

0.1

4

0.1

6

0.1

8

0.1

3

0.1

8

Cl/

K

0.0

8

0.0

7

0.1

8

0.0

6

0.0

8

0.0

8

0.0

0

0.0

0

0.0

1

0.0

3

0.0

2

0.0

1

0.0

1

0.0

2

0.0

1

Page 110: Constraining the nature of E- and N-type components in the Baffin

97

Mel

t in

clu

sion

s co

nti

nu

ed

Sam

ple

P

I14

/13

PI1

4/1

4

PI1

4/1

5

PI1

4/1

6

PI1

4/1

7

PI1

4/1

8

PI1

4/1

9.1

P

I14

/19.2

P

I16

/1

PI1

6/2

P

I16

/3

PI1

6/4

.1

PI1

6/4

.2

PI1

6/5

.1

Typ

e

N

N

N

N

N

N

N

N

N

N

N

N

N

N

(wt

%)

SiO

2

48

.98

48

.63

48

.90

48

.40

48

.38

49

.10

49

.09

49

.69

49

.02

49

.33

49

.29

49

.84

49

.01

49

.77

MgO

6.3

2

7.9

0

7.3

6

8.7

9

8.1

9

6.5

7

5.3

5

5.1

1

9.2

5

8.1

4

7.8

0

6.5

0

7.0

7

7.4

7

Mn

O

0

.15

0.1

3

0.1

5

0.1

6

0.1

0

0.1

6

0.1

6

0.1

5

0.1

6

0.1

8

0.1

9

0.1

7

0.1

9

0.1

6

CaO

15

.04

14

.12

14

.42

13

.57

14

.24

14

.41

15

.32

15

.54

13

.14

14

.06

14

.11

14

.20

14

.33

14

.15

FeO

*

9.0

0

9.1

7

8.7

2

9.6

6

9.9

1

9.6

8

8.0

7

7.9

9

9.5

9

9.6

7

9.7

4

9.2

8

9.6

9

9.9

9

Al 2

O3

15

.88

15

.62

16

.15

15

.12

15

.46

15

.91

16

.94

17

.10

15

.24

15

.31

15

.48

16

.34

15

.76

15

.95

TiO

2

1

.10

1.2

9

1.1

3

1.2

1

1.1

9

1.2

1

1.2

4

1.2

1

1.0

3

1.0

9

1.1

4

1.1

7

1.2

3

1.0

9

Na 2

O

1

.77

1.8

5

1.8

2

1.7

9

1.7

6

1.8

5

1.8

5

1.9

1

2.7

5

2.7

8

2.7

3

3.1

7

2.7

8

3.1

3

K2O

0.0

9

0.1

0

0.1

0

0.0

9

0.0

9

0.1

0

0.1

0

0.1

0

0.0

7

0.0

6

0.0

7

0.0

9

0.0

8

0.0

7

P2O

5

0.1

1

0.0

9

0.1

0

0.0

9

0.1

3

0.1

0

0.1

2

0.1

0

0.1

1

0.1

0

0.0

6

0.0

8

0.1

0

0.0

9

Cr 2

O3

0.0

6

0.0

6

0.0

7

0.0

6

0.0

7

0.0

4

0.0

9

0.0

6

To

tal

9

8.5

3

98

.96

98

.92

98

.93

99

.54

99

.15

98

.39

98

.98

10

0.3

5

10

0.5

5

10

0.6

0

10

0.8

5

10

0.2

3

10

1.8

7

Cl

(pp

m)

30

25

43

50

20

50

50

40

S (

pp

m)

15

2

30

35

8

69

60

18

0

96

Cat

ion

s p

rop

ort

ion

s (1

00

cat

ion

s)

S

i 4

6.0

4

45

.28

45

.54

44

.94

44

.93

45

.85

46

.24

46

.55

44

.43

44

.70

44

.76

45

.19

44

.76

44

.64

Mg

8.8

6

10

.97

10

.22

12

.16

11

.35

9.1

4

7.5

1

7.1

3

12

.50

10

.99

10

.56

8.7

9

9.6

3

9.9

8

Mn

1.0

8

0.9

4

1.0

5

1.1

2

0.7

2

1.1

2

1.1

4

1.0

6

1.0

8

1.2

1

1.2

9

1.1

8

1.2

9

1.1

0

Ca

15

.15

14

.09

14

.40

13

.50

14

.17

14

.42

15

.46

15

.60

12

.76

13

.65

13

.73

13

.80

14

.03

13

.60

Fe

7.0

7

7.1

4

6.7

9

7.5

0

7.7

0

7.5

6

6.3

6

6.2

6

7.2

7

7.3

3

7.3

9

7.0

4

7.4

0

7.4

9

Al

17

.59

17

.14

17

.73

16

.54

16

.92

17

.51

18

.80

18

.89

16

.27

16

.35

16

.57

17

.46

16

.96

16

.86

Ti

0.7

8

0.9

0

0.7

9

0.8

4

0.8

3

0.8

5

0.8

8

0.8

5

0.7

1

0.7

4

0.7

8

0.8

0

0.8

4

0.7

4

Na

3.2

3

3.3

3

3.2

9

3.2

2

3.1

7

3.3

6

3.3

9

3.4

7

4.8

3

4.8

9

4.8

0

5.5

7

4.9

3

5.4

4

K

0.1

0

0.1

2

0.1

2

0.1

0

0.1

1

0.1

2

0.1

2

0.1

1

0.0

8

0.0

7

0.0

8

0.1

0

0.0

9

0.0

8

P

0.0

8

0.0

7

0.0

8

0.0

7

0.1

0

0.0

8

0.1

0

0.0

8

0.0

8

0.0

8

0.0

5

0.0

6

0.0

8

0.0

7

Cr

K/T

i

0.1

3

0.1

3

0.1

5

0.1

2

0.1

3

0.1

4

0.1

4

0.1

3

0.1

1

0.1

0

0.1

0

0.1

3

0.1

1

0.1

2

Cl/

K

0.0

3

0.0

2

0.0

4

0.0

5

0.0

2

0.0

4

0.0

4

0.0

4

0.0

0

0.0

0

0.0

0

0.0

0

Page 111: Constraining the nature of E- and N-type components in the Baffin

98

Mel

t in

clu

sion

s co

nti

nu

ed

Sam

ple

P

I16

/5.2

P

I17

/3

PI1

7/5

.1

PI1

7/5

.2

PI1

7/6

.1

PI1

7/6

.2

PI1

7/7

.1

PI1

7/7

.2

PI1

7/8

.1

PI1

7/8

.2

PI1

7/9

.1

PI1

7/9

.2

PI1

7/1

0.1

P

I17

/10.2

Typ

e

N

E

E

E

E

E

E

E

E

E

E

E

E

E

(wt

%)

SiO

2

49

.76

49

.34

49

.77

49

.26

49

.35

49

.11

48

.92

48

.95

49

.18

49

.65

49

.32

48

.82

50

.93

50

.49

MgO

8.9

7

7.1

4

8.3

8

8.0

2

8.4

4

8.4

0

8.5

8

8.1

6

8.3

6

7.0

5

8.0

3

7.4

3

7.9

9

7.7

4

Mn

O

0

.17

0.1

4

0.1

7

0.1

4

0.1

9

0.1

4

0.1

8

0.1

3

0.1

7

0.1

4

0.1

8

0.1

9

0.1

4

0.1

7

CaO

14

.67

13

.86

13

.21

12

.35

13

.15

13

.19

13

.04

13

.01

13

.06

13

.39

13

.46

13

.57

12

.42

13

.60

FeO

*

8.6

0

9.7

4

9.7

7

9.0

5

9.6

3

8.7

5

9.8

0

9.0

0

9.3

7

8.7

7

9.8

5

9.4

3

8.0

1

8.4

1

Al 2

O3

15

.57

14

.71

15

.08

15

.64

14

.84

15

.93

14

.89

16

.15

14

.98

16

.56

14

.80

15

.64

15

.88

15

.88

TiO

2

1

.11

1.1

9

1.2

8

1.3

4

1.2

7

1.1

1

1.2

1

1.1

0

1.1

2

1.0

1

1.2

1

1.0

3

1.1

4

1.1

2

Na 2

O

2

.74

3.3

7

3.5

8

3.8

7

3.4

4

3.3

9

3.4

0

3.4

2

3.4

2

3.8

1

3.3

4

3.3

0

3.0

4

2.6

3

K2O

0.0

4

0.2

0

0.2

2

0.4

1

0.2

1

0.1

9

0.2

3

0.1

9

0.2

0

0.2

0

0.1

9

0.1

9

0.4

1

0.2

2

P2O

5

0.1

1

0.1

1

0.1

1

0.1

4

0.1

1

0.1

0

0.1

1

0.1

0

0.1

4

0.1

2

0.1

5

0.1

0

0.1

5

0.1

4

Cr 2

O3

To

tal

1

01.7

3

99

.79

10

1.5

5

10

0.2

3

10

0.6

3

10

0.3

0

10

0.3

6

10

0.1

9

10

0.0

0

10

0.7

1

10

0.5

2

99

.69

10

0.1

2

10

0.3

8

Cl

(pp

m)

S (

pp

m)

Cat

ion

s p

rop

ort

ion

s (1

00

cat

ion

s)

S

i 4

4.4

5

45

.20

44

.48

44

.52

44

.47

44

.38

44

.20

44

.35

44

.60

44

.75

44

.64

44

.52

46

.27

45

.92

Mg

11

.94

9.7

6

11

.16

10

.81

11

.33

11

.31

11

.55

11

.02

11

.30

9.4

7

10

.83

10

.10

10

.82

10

.49

Mn

1.1

4

0.9

8

1.1

3

0.9

2

1.2

8

0.9

8

1.2

5

0.8

9

1.1

7

0.9

6

1.2

1

1.3

0

0.9

9

1.1

5

Ca

14

.04

13

.61

12

.65

11

.96

12

.70

12

.77

12

.62

12

.63

12

.69

12

.93

13

.06

13

.25

12

.09

13

.25

Fe

6.4

2

7.4

6

7.3

1

6.8

4

7.2

6

6.6

2

7.4

0

6.8

2

7.1

1

6.6

1

7.4

5

7.1

9

6.0

9

6.3

9

Al

16

.40

15

.88

15

.88

16

.66

15

.76

16

.96

15

.85

17

.24

16

.01

17

.59

15

.79

16

.80

17

.01

17

.02

Ti

0.7

5

0.8

2

0.8

6

0.9

1

0.8

6

0.7

5

0.8

2

0.7

5

0.7

6

0.6

9

0.8

2

0.7

1

0.7

8

0.7

7

Na

4.7

4

5.9

8

6.2

1

6.7

9

6.0

1

5.9

3

5.9

6

6.0

0

6.0

2

6.6

6

5.8

7

5.8

3

5.3

6

4.6

4

K

0.0

4

0.2

3

0.2

5

0.4

7

0.2

4

0.2

2

0.2

6

0.2

2

0.2

3

0.2

3

0.2

1

0.2

2

0.4

8

0.2

5

P

0.0

8

0.0

8

0.0

8

0.1

1

0.0

9

0.0

7

0.0

8

0.0

8

0.1

0

0.0

9

0.1

2

0.0

8

0.1

2

0.1

1

Cr

K/T

i

0.0

5

0.2

8

0.2

9

0.5

2

0.2

8

0.2

9

0.3

2

0.2

9

0.3

1

0.3

4

0.2

6

0.3

1

0.6

1

0.3

3

Cl/

K

Page 112: Constraining the nature of E- and N-type components in the Baffin

99

Mel

t in

clu

sion

s co

nti

nu

ed

Sam

ple

P

I17

/10.3

P

I17

/11

PI1

7/1

3

PI1

7/1

4.1

P

I17

/14.2

P

I17

/14.3

P

I17

/14.4

P

I17

/16

PI1

7/1

7

PI1

7/1

8

PI1

7/1

9

PI1

7/2

2

PI1

7/2

3

PI1

7/i

1

Typ

e

E

E

E

E

E

E

E

E

E

E

E

E

E

E

(wt

%)

SiO

2

51

.51

49

.83

50

.90

49

.65

49

.23

49

.65

49

.01

49

.59

49

.64

49

.83

50

.04

48

.63

50

.18

49

.23

MgO

7.9

9

8.1

3

7.5

7

8.4

3

8.4

7

8.5

3

8.1

2

8.6

2

7.7

1

7.2

9

7.1

4

7.5

3

6.2

5

8.2

7

Mn

O

0

.17

0.1

4

0.1

5

0.1

4

0.1

6

0.1

3

0.1

8

0.1

6

0.1

3

0.2

0

0.2

0

0.2

0

0.1

2

0.1

7

CaO

12

.34

13

.56

14

.32

13

.03

13

.32

13

.28

12

.81

13

.35

14

.06

13

.90

13

.89

13

.53

13

.95

13

.94

FeO

*

8.1

2

8.9

7

8.8

4

9.2

2

9.1

4

9.7

8

9.6

1

9.5

9

8.3

2

9.8

8

9.6

6

9.6

6

8.2

2

9.6

5

Al 2

O3

16

.15

15

.22

16

.17

15

.73

15

.60

14

.86

14

.68

14

.53

16

.15

14

.66

14

.81

14

.46

16

.48

15

.94

TiO

2

1

.10

1.1

1

0.9

9

1.2

0

1.1

3

1.1

8

1.2

2

1.1

7

1.0

8

1.2

5

1.1

9

1.1

5

1.1

9

1.1

2

Na 2

O

3

.13

2.5

2

2.3

7

2.6

9

2.6

3

2.5

3

2.2

9

2.5

2

2.5

5

2.5

9

2.6

7

2.3

4

2.6

6

1.8

7

K2O

0.3

8

0.1

9

0.1

3

0.2

8

0.1

6

0.1

7

0.2

0

0.2

0

0.1

7

0.1

8

0.1

7

0.1

9

0.1

8

0.1

5

P2O

5

0.1

0

0.0

7

0.1

0

0.1

9

0.1

1

0.1

2

0.0

9

0.1

5

0.1

4

0.1

4

0.1

3

0.0

9

0.1

0

C

r 2O

3

0.0

4

To

tal

1

00.9

9

99

.74

10

1.5

4

10

0.5

4

99

.94

10

0.2

2

98

.21

99

.86

99

.94

99

.90

99

.90

97

.78

99

.33

10

0.4

7

Cl

(pp

m)

25

S (

pp

m)

26

8

Cat

ion

s p

rop

ort

ion

s (1

00

cat

ion

s)

S

i 4

6.3

2

45

.73

45

.98

45

.11

44

.92

45

.40

45

.71

45

.40

45

.43

45

.75

45

.92

45

.56

46

.44

45

.05

Mg

10

.72

11

.13

10

.20

11

.41

11

.52

11

.63

11

.29

11

.76

10

.51

9.9

7

9.7

7

10

.51

8.6

3

11

.28

Mn

1.1

4

0.9

4

1.0

3

0.9

4

1.1

0

0.8

7

1.2

6

1.1

1

0.9

3

1.3

8

1.3

5

1.4

4

0.8

7

1.1

6

Ca

11

.89

13

.33

13

.86

12

.68

13

.02

13

.01

12

.80

13

.09

13

.78

13

.67

13

.66

13

.59

13

.83

13

.67

Fe

6.1

1

6.8

8

6.6

8

7.0

0

6.9

7

7.4

8

7.4

9

7.3

4

6.3

7

7.5

9

7.4

1

7.5

7

6.3

6

7.3

9

Al

17

.12

16

.46

17

.21

16

.84

16

.77

16

.02

16

.14

15

.68

17

.42

15

.86

16

.02

15

.97

17

.97

17

.19

Ti

0.7

5

0.7

7

0.6

8

0.8

2

0.7

7

0.8

1

0.8

5

0.8

0

0.7

4

0.8

7

0.8

2

0.8

1

0.8

3

0.7

7

Na

5.4

5

4.4

8

4.1

5

4.7

3

4.6

6

4.4

9

4.1

4

4.4

7

4.5

3

4.6

0

4.7

4

4.2

5

4.7

8

3.3

2

K

0.4

4

0.2

2

0.1

5

0.3

2

0.1

9

0.2

0

0.2

4

0.2

4

0.1

9

0.2

1

0.2

0

0.2

3

0.2

1

0.1

7

P

0.0

8

0.0

6

0.0

8

0.1

4

0.0

9

0.0

9

0.0

7

0.1

1

0.1

1

0.1

1

0.1

0

0.0

7

0.0

8

0.0

0

Cr

0.0

3

K/T

i

0.5

9

0.2

9

0.2

2

0.3

9

0.2

4

0.2

5

0.2

8

0.3

0

0.2

6

0.2

5

0.2

5

0.2

8

0.2

5

0.2

2

Cl/

K

Page 113: Constraining the nature of E- and N-type components in the Baffin

100

Mel

t in

clu

sion

s co

nti

nu

ed

Sam

ple

P

I17

/i2

PI1

7/i

5

PI1

7/i

9.1

P

I17

/i9

.2

PI1

7/i

13

.1

PI1

7/i

13

.2

PI1

7/i

14

PI1

7/i

18

a P

I17

/i19

PI1

7/i

20

.1

PI1

7/i

20

.2

Db

13

/1

Db

13

/3

Db

13

/5.1

Typ

e

E

E

E

N

E

E

E

E

E

E

E

N

N

N

(wt

%)

SiO

2

49

.07

49

.54

49

.09

50

.31

49

.06

49

.54

51

.20

50

.18

49

.93

49

.58

49

.20

49

.29

49

.47

49

.02

MgO

6.2

3

5.6

0

7.4

9

8.0

0

7.3

5

7.5

8

4.6

2

6.7

4

5.5

6

6.1

3

5.8

2

8.4

9

7.7

9

7.1

1

Mn

O

0

.17

0.1

6

0.1

8

0.1

0

0.2

1

0.1

9

0.1

1

0.1

9

0.1

6

0.1

3

0.1

9

0.2

0

0.1

9

0.1

1

CaO

14

.71

15

.08

14

.07

13

.96

14

.18

13

.97

14

.98

14

.76

14

.86

14

.75

14

.71

13

.70

14

.65

14

.86

FeO

*

9.1

2

8.7

7

9.6

7

8.9

8

9.9

1

10

.30

7.7

9

8.6

0

9.0

3

8.9

3

9.3

9

10

.05

9.0

1

8.6

7

Al 2

O3

15

.87

16

.82

15

.49

15

.96

14

.70

14

.50

17

.16

16

.18

16

.91

16

.59

16

.39

14

.68

15

.97

15

.98

TiO

2

1

.26

1.2

3

0.9

9

1.1

0

1.3

8

1.3

2

1.1

3

1.2

6

1.4

0

1.1

4

1.1

6

1.1

6

1.1

0

1.2

3

Na 2

O

1

.85

1.8

9

1.8

9

1.9

6

1.8

4

1.8

2

2.3

6

1.9

7

2.0

5

1.9

7

1.9

0

1.8

6

1.6

9

1.8

0

K2O

0.1

8

0.2

0

0.1

2

0.1

1

0.2

1

0.2

3

0.1

4

0.1

7

0.2

4

0.1

9

0.2

0

0.1

1

0.0

9

0.0

9

P2O

5

0.0

9

0.0

7

0.1

1

Cr 2

O3

0.0

5

0.0

7

0.0

6

0.0

3

0.0

2

0.0

6

0.0

5

0.0

5

0.0

4

0.0

6

0.0

5

T

ota

l

98

.56

99

.40

99

.17

10

0.6

7

98

.88

99

.53

99

.69

10

0.1

8

10

0.2

5

99

.52

99

.09

99

.68

10

0.0

8

99

.07

Cl

(pp

m)

54

36

28

16

15

9

79

27

51

82

60

64

S

(pp

m)

14

5

85

41

2

43

7

24

0

56

51

5

38

8

19

0

16

0

16

3

C

atio

ns

pro

po

rtio

ns

(100

cat

ion

s)

S

i 4

6.0

6

46

.20

45

.62

46

.12

45

.73

45

.98

47

.71

46

.16

46

.17

46

.15

45

.97

45

.41

45

.45

45

.78

Mg

8.7

2

7.7

8

10

.38

10

.94

10

.21

10

.48

6.4

1

9.2

5

7.6

6

8.5

1

8.1

1

11

.67

10

.67

9.9

1

Mn

1.2

4

1.1

2

1.2

7

0.7

2

1.4

7

1.3

3

0.7

8

1.3

1

1.1

1

0.9

2

1.3

2

1.4

0

1.3

1

0.7

6

Ca

14

.79

15

.06

14

.01

13

.71

14

.16

13

.89

14

.95

14

.55

14

.72

14

.71

14

.73

13

.52

14

.42

14

.87

Fe

7.1

6

6.8

4

7.5

1

6.8

8

7.7

2

8.0

0

6.0

7

6.6

1

6.9

8

6.9

5

7.3

3

7.7

5

6.9

2

6.7

8

Al

17

.56

18

.49

16

.96

17

.25

16

.14

15

.86

18

.85

17

.54

18

.43

18

.20

18

.05

15

.94

17

.29

17

.59

Ti

0.8

9

0.8

6

0.6

9

0.7

6

0.9

7

0.9

2

0.7

9

0.8

7

0.9

7

0.8

0

0.8

2

0.8

0

0.7

6

0.8

6

Na

3.3

7

3.4

1

3.4

1

3.4

8

3.3

3

3.2

8

4.2

7

3.5

1

3.6

7

3.5

5

3.4

4

3.3

2

3.0

1

3.2

6

K

0.2

2

0.2

4

0.1

4

0.1

3

0.2

5

0.2

7

0.1

7

0.2

0

0.2

8

0.2

3

0.2

4

0.1

3

0.1

0

0.1

0

P

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

7

0.0

6

0.0

9

Cr

0.0

4

0.0

5

0.0

4

0.0

2

0.0

2

0.0

5

0.0

3

0.0

3

0.0

3

0.0

4

0.0

4

K

/Ti

0

.24

0.2

8

0.2

0

0.1

7

0.2

5

0.2

9

0.2

1

0.2

3

0.2

9

0.2

9

0.3

0

0.1

6

0.1

4

0.1

2

Cl/

K

Page 114: Constraining the nature of E- and N-type components in the Baffin

101

Mel

t in

clu

sion

s co

nti

nu

ed

Sam

ple

D

b1

3/6

D

b1

3/7

D

b1

3/8

.2

Db

14

/1

Db

14

/3

Db

14

/5.2

D

b1

4/6

D

b1

4/7

.1

Db

14

/7.2

D

b1

4/9

D

b1

4/1

0.2

D

b1

4/1

2

Db

14

/13

Db

14

/14

Typ

e

N

N

N

N

N

N

N

N

N

N

N

N

N

N

(wt

%)

SiO

2

49

.35

48

.98

50

.14

49

.16

48

.77

48

.56

49

.44

48

.55

49

.37

49

.14

48

.28

48

.36

47

.93

49

.10

MgO

8.6

0

7.7

3

8.6

2

7.6

1

7.4

5

8.4

7

8.6

0

8.1

2

8.4

9

6.3

2

8.1

0

8.7

1

8.6

2

8.1

6

Mn

O

0

.12

0.1

9

0.1

3

0.1

6

0.1

8

0.1

6

0.1

5

0.1

6

0.1

7

0.1

1

0.1

8

0.1

5

0.1

2

0.1

6

CaO

13

.90

14

.36

14

.45

14

.47

14

.89

14

.05

13

.67

14

.53

13

.88

15

.18

14

.06

13

.72

13

.67

13

.79

FeO

*

10

.18

10

.25

6.2

9

8.9

0

9.0

5

9.2

2

9.7

7

9.0

3

9.7

6

9.1

6

9.7

7

9.4

7

9.1

3

9.1

9

Al 2

O3

14

.91

14

.61

16

.70

16

.10

16

.07

15

.86

14

.99

16

.03

14

.96

16

.30

15

.82

15

.97

15

.99

16

.11

TiO

2

1

.13

1.3

5

1.1

8

1.0

8

1.0

6

1.0

9

1.2

1

1.1

6

1.2

6

1.1

6

1.2

0

1.0

9

1.1

0

1.0

5

Na 2

O

1

.82

1.7

7

1.9

2

2.3

7

2.3

1

2.4

0

2.5

9

2.3

8

2.3

3

2.3

6

2.0

9

2.5

1

2.3

8

2.4

2

K2O

0.1

0

0.0

8

0.1

0

0.0

6

0.0

6

0.0

6

0.0

7

0.0

7

0.0

8

0.0

5

0.0

9

0.0

7

0.0

9

0.0

4

P2O

5

0.0

9

0.1

0

0.1

0

0.1

3

0.0

7

0.1

2

0.1

2

0.1

1

0.1

3

0.1

0

0.1

3

0.0

8

0.0

7

0.1

0

Cr 2

O3

To

tal

1

00.2

2

99

.43

99

.83

10

0.0

5

99

.91

99

.99

10

0.6

1

10

0.1

3

10

0.4

2

99

.90

99

.71

10

0.1

1

99

.09

10

0.1

2

Cl

(pp

m)

S (

pp

m)

Cat

ion

s p

rop

ort

ion

s (1

00

cat

ion

s)

S

i 4

5.4

1

45

.45

45

.92

45

.00

44

.69

44

.35

44

.95

44

.34

45

.02

45

.44

44

.38

44

.08

44

.20

44

.84

Mg

11

.80

10

.70

11

.77

10

.38

10

.18

11

.53

11

.66

11

.05

11

.55

8.7

1

11

.10

11

.84

11

.85

11

.11

Mn

0.8

6

1.3

5

0.8

9

1.1

2

1.2

6

1.1

0

1.0

1

1.0

7

1.1

8

0.7

7

1.2

7

1.0

0

0.8

6

1.0

7

Ca

13

.71

14

.28

14

.17

14

.19

14

.62

13

.75

13

.32

14

.22

13

.56

15

.04

13

.85

13

.40

13

.51

13

.50

Fe

7.8

4

7.9

5

4.8

2

6.8

1

6.9

3

7.0

4

7.4

3

6.9

0

7.4

4

7.0

8

7.5

1

7.2

2

7.0

4

7.0

1

Al

16

.17

15

.98

18

.03

17

.37

17

.36

17

.07

16

.07

17

.26

16

.08

17

.77

17

.14

17

.16

17

.38

17

.34

Ti

0.7

8

0.9

4

0.8

1

0.7

4

0.7

3

0.7

5

0.8

3

0.7

9

0.8

6

0.8

1

0.8

3

0.7

4

0.7

7

0.7

2

Na

3.2

5

3.1

8

3.4

1

4.2

1

4.1

0

4.2

4

4.5

6

4.2

1

4.1

1

4.2

4

3.7

3

4.4

3

4.2

5

4.2

9

K

0.1

2

0.0

9

0.1

1

0.0

7

0.0

7

0.0

7

0.0

8

0.0

8

0.0

9

0.0

6

0.1

0

0.0

8

0.1

0

0.0

5

P

0.0

7

0.0

8

0.0

8

0.1

0

0.0

5

0.0

9

0.0

9

0.0

9

0.1

0

0.0

8

0.1

0

0.0

6

0.0

5

0.0

7

Cr

K/T

i

0.1

5

0.1

0

0.1

4

0.1

0

0.1

0

0.1

0

0.1

0

0.1

0

0.1

1

0.0

8

0.1

2

0.1

0

0.1

3

0.0

7

Cl/

K

Page 115: Constraining the nature of E- and N-type components in the Baffin

102

Mel

t in

clu

sion

s co

nti

nu

ed

Sam

ple

D

b1

4/1

5

Db

15

/1

Db

15

/2

Db

15

/3

Db

15

/4

Db

15

/5.1

D

b1

5/5

.2

Db

15

/5.3

D

b1

5/6

D

b1

5/7

.1

Db

15

/7.2

D

b1

5/8

D

b1

5/9

.1

Db

15

/9.2

Typ

e

N

N

N

N

N

N

N

N

N

N

N

N

N

N

(wt

%)

SiO

2

49

.27

49

.59

48

.74

48

.77

48

.73

49

.19

48

.92

48

.97

48

.80

49

.04

48

.78

49

.15

48

.45

48

.50

MgO

6.8

3

5.4

5

5.2

1

7.1

4

6.5

0

5.8

7

4.8

2

5.6

1

6.3

8

6.5

0

6.4

5

6.6

5

7.8

9

7.8

9

Mn

O

0

.13

0.1

8

0.2

1

0.1

1

0.1

7

0.1

7

0.1

9

0.1

4

0.1

4

0.1

4

0.1

4

0.1

9

0.1

4

0.1

8

CaO

14

.54

15

.13

15

.42

14

.86

15

.01

15

.43

15

.65

15

.34

14

.95

15

.03

15

.14

14

.84

14

.40

14

.36

FeO

*

8.7

5

9.6

1

9.3

4

8.9

9

9.4

9

9.1

9

9.1

1

8.8

7

9.5

0

9.3

9

9.0

6

10

.23

9.3

9

9.4

1

Al 2

O3

16

.71

15

.75

16

.41

15

.89

16

.09

16

.58

16

.97

16

.17

16

.14

16

.04

15

.86

15

.13

15

.61

15

.74

TiO

2

1

.13

1.3

0

1.1

8

1.3

0

1.1

9

1.1

8

1.2

0

1.1

8

1.2

5

1.0

8

1.2

8

1.3

2

1.2

0

1.1

2

Na 2

O

2

.39

2.0

2

1.8

1

1.8

4

1.7

5

1.8

4

1.9

5

1.8

2

1.8

2

1.8

5

1.7

8

1.9

0

1.7

4

1.8

1

K2O

0.0

8

0.1

1

0.1

0

0.0

8

0.0

9

0.1

0

0.0

9

0.0

9

0.0

8

0.0

9

0.0

8

0.0

8

0.0

8

0.0

7

P2O

5

0.0

8

0.1

0

0.1

2

0.1

0

0.1

1

0.1

2

0.1

1

0.1

0

0.0

8

0.0

7

0.1

1

0.0

9

0.0

7

0.1

0

Cr 2

O3

0.0

7

0.0

8

0.0

5

0.0

6

0.0

7

0.0

8

0.0

6

0.0

7

0.0

4

0.1

3

0.0

7

0.0

6

0.0

7

To

tal

9

9.9

1

99

.33

98

.67

99

.17

99

.22

99

.79

99

.23

98

.39

99

.25

99

.30

98

.85

99

.65

99

.09

99

.31

Cl

(pp

m)

65

70

20

40

40

10

40

40

40

50

35

20

50

S (

pp

m)

58

19

6

16

2

15

8

21

0

60

4

17

6

21

6

14

4

17

2

18

20

2

16

8

Cat

ion

s p

rop

ort

ion

s (1

00

cat

ion

s)

S

i 4

5.3

4

46

.36

45

.82

45

.50

45

.48

45

.68

45

.82

46

.25

45

.61

45

.73

45

.80

45

.65

45

.11

44

.91

Mg

9.3

7

7.6

0

7.3

0

9.9

3

9.0

4

8.1

2

6.7

3

7.8

9

8.8

9

9.0

3

9.0

3

9.2

1

10

.95

10

.89

Mn

0.9

0

1.2

4

1.4

8

0.8

1

1.1

8

1.2

1

1.3

1

0.9

7

1.0

0

0.9

9

0.9

7

1.3

5

0.9

8

1.2

8

Ca

14

.34

15

.15

15

.53

14

.85

15

.01

15

.35

15

.70

15

.52

14

.97

15

.02

15

.23

14

.77

14

.37

14

.25

Fe

6.7

3

7.5

2

7.3

4

7.0

2

7.4

1

7.1

4

7.1

3

7.0

0

7.4

2

7.3

2

7.1

2

7.9

5

7.3

2

7.2

9

Al

18

.12

17

.35

18

.18

17

.47

17

.70

18

.14

18

.73

18

.00

17

.77

17

.63

17

.54

16

.57

17

.13

17

.18

Ti

0.7

9

0.9

1

0.8

3

0.9

1

0.8

3

0.8

3

0.8

4

0.8

4

0.8

8

0.7

6

0.9

0

0.9

2

0.8

4

0.7

8

Na

4.2

6

3.6

6

3.3

0

3.3

3

3.1

7

3.3

2

3.5

4

3.3

3

3.2

9

3.3

5

3.2

3

3.4

2

3.1

5

3.2

5

K

0.1

0

0.1

3

0.1

2

0.1

0

0.1

0

0.1

2

0.1

0

0.1

1

0.1

0

0.1

1

0.0

9

0.0

9

0.0

9

0.0

9

P

0.0

6

0.0

8

0.0

9

0.0

8

0.0

8

0.0

9

0.0

9

0.0

8

0.0

6

0.0

6

0.0

9

0.0

7

0.0

6

0.0

8

Cr

0.0

5

0.0

6

0.0

4

0.0

5

0.0

5

0.0

6

0.0

4

0.0

5

0.0

3

0.1

0

0.0

5

0.0

4

0.0

5

K/T

i

0.1

2

0.1

4

0.1

4

0.1

1

0.1

2

0.1

4

0.1

2

0.1

3

0.1

1

0.1

4

0.1

0

0.1

0

0.1

1

0.1

1

Cl/

K

0

.05

0.0

6

0.0

2

0.0

4

0.0

3

0.0

1

0.0

4

0.0

4

0.0

4

0.0

5

0.0

4

0.0

2

0.0

6

Page 116: Constraining the nature of E- and N-type components in the Baffin

103

Mel

t in

clu

sion

s co

nti

nu

ed

Sam

ple

D

b1

5/1

0

Db

15

/11

Db

15

/12

Db

15

/13

Db

15

/i7

Db

15

/i10

Db

15

/i12

Db

15

/i18

D

b1

5/i

26

.1

Ak2

/1

Ak2

/2

Ak2

/3

Ak2

/4.1

A

k2

/4.2

Typ

e

N

N

N

N

N

N

N

N

N

N

N

N

N

N

(wt

%)

SiO

2

48

.76

48

.83

48

.61

48

.69

50

.59

48

.33

49

.54

49

.38

47

.80

48

.28

48

.36

48

.41

48

.17

48

.30

MgO

8.1

4

6.9

7

7.3

6

8.2

4

3.9

5

4.7

3

4.8

8

7.6

3

7.3

3

8.6

2

9.1

6

8.5

9

9.3

8

9.2

2

Mn

O

0

.20

0.1

8

0.1

5

0.1

5

0.1

7

0.2

1

0.1

9

0.1

6

0.1

0

0.1

7

0.1

4

0.1

6

0.1

7

0.2

4

CaO

14

.01

14

.57

14

.41

13

.80

16

.17

15

.49

15

.69

14

.52

14

.42

13

.74

13

.09

13

.83

13

.37

13

.26

FeO

*

10

.05

9.9

8

10

.03

9.4

9

8.1

3

8.9

8

8.8

0

9.2

0

9.3

0

9.3

5

9.7

4

9.8

4

9.3

3

9.7

8

Al 2

O3

14

.87

15

.08

15

.09

15

.26

17

.62

16

.79

17

.07

16

.05

15

.88

16

.06

15

.55

15

.91

15

.67

15

.45

TiO

2

1

.24

1.2

0

1.2

7

1.2

0

1.0

1

1.2

2

1.2

0

0.8

9

1.1

6

0.9

8

1.0

4

0.9

6

0.9

9

0.8

5

Na 2

O

1

.83

1.8

5

1.8

2

1.8

6

2.2

0

1.9

6

1.9

3

1.7

5

1.8

6

1.8

0

1.7

3

1.8

1

1.8

0

1.7

6

K2O

0.0

8

0.0

9

0.0

8

0.1

0

0.1

2

0.1

0

0.1

1

0.1

0

0.1

0

0.0

9

0.0

9

0.1

0

0.0

9

0.0

9

P2O

5

0.1

0

0.0

9

0.1

1

0.0

9

0.0

6

0.0

5

0.0

5

0.0

7

0.0

4

Cr 2

O3

0.0

6

0.0

6

0.0

7

0.0

7

0.0

4

0.0

5

0.0

8

0.0

3

0.0

7

0.0

7

0.1

0

0.0

5

0.0

5

0.0

3

To

tal

9

9.3

5

98

.91

99

.02

98

.97

10

0.1

7

97

.94

99

.53

99

.74

98

.03

99

.29

99

.09

99

.71

99

.12

99

.04

Cl

(pp

m)

20

20

30

3

50

30

23

30

23

40

20

0

30

10

S (

pp

m)

3

40

50

68

80

1

23

0

83

11

2

71

23

6

12

0

84

83

68

Cat

ion

s p

rop

ort

ion

s (1

00

cat

ion

s)

S

i 4

5.1

3

45

.63

45

.41

45

.27

46

.93

45

.72

46

.18

45

.58

45

.10

44

.59

44

.82

44

.57

44

.41

44

.45

Mg

11

.23

9.7

1

10

.25

11

.42

5.4

6

6.6

8

6.7

8

10

.50

10

.31

11

.87

12

.65

11

.78

12

.89

12

.65

Mn

1.4

3

1.2

8

1.0

8

1.0

8

1.1

7

1.5

0

1.3

1

1.1

5

0.6

9

1.1

7

1.0

1

1.1

2

1.1

9

1.6

7

Ca

13

.90

14

.59

14

.43

13

.75

16

.07

15

.70

15

.67

14

.36

14

.57

13

.59

13

.00

13

.64

13

.21

13

.08

Fe

7.7

8

7.8

0

7.8

4

7.3

8

6.3

1

7.1

0

6.8

6

7.1

0

7.3

4

7.2

2

7.5

5

7.5

8

7.2

0

7.5

2

Al

16

.22

16

.61

16

.61

16

.73

19

.26

18

.72

18

.75

17

.46

17

.66

17

.48

16

.99

17

.26

17

.03

16

.76

Ti

0.8

6

0.8

5

0.8

9

0.8

4

0.7

0

0.8

7

0.8

4

0.6

2

0.8

2

0.6

8

0.7

3

0.6

6

0.6

9

0.5

9

Na

3.2

9

3.3

5

3.3

0

3.3

5

3.9

5

3.5

9

3.4

8

3.1

3

3.4

0

3.2

2

3.1

1

3.2

3

3.2

2

3.1

4

K

0.1

0

0.1

1

0.1

0

0.1

2

0.1

4

0.1

2

0.1

3

0.1

1

0.1

2

0.1

1

0.1

1

0.1

1

0.1

1

0.1

0

P

0.0

8

0.0

7

0.0

9

0.0

7

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

4

0.0

4

0.0

4

0.0

6

0.0

3

Cr

0.0

4

0.0

5

0.0

5

0.0

5

0.0

3

0.0

4

0.0

6

0.0

2

0.0

5

0.0

5

0.0

8

0.0

3

0.0

4

0.0

2

K/T

i

0.1

1

0.1

3

0.1

1

0.1

4

0.2

0

0.1

4

0.1

5

0.1

8

0.1

5

0.1

6

0.1

5

0.1

7

0.1

6

0.1

7

Cl/

K

0.0

2

0.0

2

0.0

3

0.0

0

0.0

4

0.0

3

0.0

2

0.0

3

0.0

2

0.0

4

0.0

2

0.0

0

0.0

3

0.0

1

Page 117: Constraining the nature of E- and N-type components in the Baffin

104

Mel

t in

clu

sion

s co

nti

nu

ed

Sam

ple

A

k2

/6

Ak2

/7

Ak2

/8

Ak2

/9

Ak2

/10

Ak2

/11

.1

Ak2

/11

.2

Ak2

/12

Ak2

/13

.1

Ak2

/13

.2

Ak2

/14

AK

11

a/3

.1

AK

11

a/3

.2

AK

11

a/4

Typ

e

N

N

N

N

N

N

N

N

N

N

N

N

N

N

(wt

%)

SiO

2

48

.29

49

.13

48

.43

49

.73

48

.51

49

.19

49

.48

49

.13

49

.16

49

.24

49

.14

47

.88

48

.00

48

.73

MgO

8.7

9

7.6

6

6.8

3

4.9

8

6.5

7

6.2

5

6.3

9

5.0

3

4.6

1

4.6

1

5.0

8

7.8

9

8.0

3

6.3

7

Mn

O

0

.17

0.2

3

0.1

5

0.1

5

0.1

5

0.1

9

0.1

8

0.1

4

0.1

3

0.1

6

0.1

5

0.1

5

0.1

5

0.2

1

CaO

13

.75

14

.01

14

.91

14

.64

14

.66

14

.92

14

.88

15

.55

15

.62

15

.52

15

.49

14

.21

14

.17

14

.90

FeO

*

9.5

8

8.9

4

9.5

9

8.4

6

9.3

1

9.2

6

9.5

3

8.8

0

8.3

9

8.6

9

9.0

2

9.4

0

9.3

5

9.5

3

Al 2

O3

15

.64

16

.07

16

.12

17

.68

16

.13

16

.82

16

.94

17

.22

17

.64

17

.33

17

.17

15

.90

15

.81

16

.43

TiO

2

0

.93

0.8

9

0.9

9

1.0

1

0.9

2

1.1

0

0.9

5

1.0

8

1.0

7

1.0

6

1.0

4

0.8

5

0.8

9

1.1

7

Na 2

O

1

.66

1.8

2

1.6

8

2.0

7

1.7

8

1.8

0

1.8

4

1.8

2

1.8

7

1.8

3

1.8

2

1.7

1

1.7

5

1.8

6

K2O

0.1

0

0.0

8

0.0

9

0.1

0

0.0

8

0.1

0

0.0

9

0.0

9

0.1

0

0.1

1

0.0

9

0.1

0

0.0

9

0.1

0

P2O

5

0.1

0

0.0

8

0.0

8

0.0

6

0.1

1

0.0

8

0.0

6

0.0

6

0.1

0

0.0

9

0.0

6

0.0

9

0.0

8

0.0

8

Cr 2

O3

0.0

8

0.0

6

0.0

5

0.0

5

0.0

9

0.0

7

0.1

0

0.0

5

0.0

4

0.0

8

0.0

5

0.0

7

0.0

8

0.0

5

To

tal

9

9.1

6

99

.02

98

.96

99

.11

98

.51

99

.83

10

0.4

9

99

.04

98

.82

98

.79

99

.16

98

.41

98

.59

99

.45

Cl

(pp

m)

70

0

35

0

20

20

30

25

60

30

30

0

0

10

S (

pp

m)

23

6

19

6

16

8

76

4

85

2

25

6

25

2

24

0

37

2

24

8

19

6

76

0

74

8

92

Cat

ion

s p

rop

ort

ion

s (1

00

cat

ion

s)

S

i 4

4.7

2

45

.47

45

.30

46

.55

45

.66

45

.55

45

.52

46

.11

46

.28

46

.35

46

.07

44

.86

44

.87

45

.20

Mg

12

.14

10

.56

9.5

2

6.9

5

9.2

2

8.6

3

8.7

6

7.0

4

6.4

7

6.4

7

7.0

9

11

.01

11

.19

8.8

1

Mn

1.1

8

1.5

8

1.0

4

1.0

8

1.0

4

1.3

2

1.2

6

1.0

2

0.9

5

1.1

7

1.0

5

1.0

5

1.0

5

1.4

9

Ca

13

.64

13

.89

14

.94

14

.68

14

.78

14

.80

14

.66

15

.64

15

.75

15

.66

15

.56

14

.27

14

.19

14

.81

Fe

7.4

2

6.9

2

7.5

0

6.6

2

7.3

3

7.1

7

7.3

4

6.9

0

6.6

1

6.8

4

7.0

7

7.3

7

7.3

1

7.4

0

Al

17

.07

17

.53

17

.77

19

.50

17

.90

18

.35

18

.37

19

.05

19

.57

19

.23

18

.97

17

.56

17

.42

17

.96

Ti

0.6

5

0.6

2

0.6

9

0.7

1

0.6

5

0.7

6

0.6

6

0.7

7

0.7

6

0.7

5

0.7

3

0.6

0

0.6

3

0.8

2

Na

2.9

8

3.2

7

3.0

5

3.7

5

3.2

5

3.2

3

3.2

8

3.3

2

3.4

1

3.3

3

3.3

0

3.1

0

3.1

8

3.3

4

K

0.1

2

0.1

0

0.1

1

0.1

2

0.0

9

0.1

2

0.1

1

0.1

1

0.1

1

0.1

3

0.1

1

0.1

1

0.1

0

0.1

2

P

0.0

8

0.0

6

0.0

6

0.0

5

0.0

9

0.0

6

0.0

4

0.0

5

0.0

8

0.0

7

0.0

5

0.0

7

0.0

6

0.0

6

Cr

0.0

6

0.0

4

0.0

4

0.0

3

0.0

7

0.0

5

0.0

7

0.0

4

0.0

3

0.0

6

0.0

4

0.0

5

0.0

6

0.0

3

K/T

i

0.1

8

0.1

6

0.1

5

0.1

6

0.1

4

0.1

6

0.1

6

0.1

4

0.1

5

0.1

7

0.1

5

0.1

9

0.1

6

0.1

4

Cl/

K

0.0

6

0.0

0

0.0

3

0.0

0

0.0

2

0.0

2

0.0

3

0.0

2

0.0

5

0.0

2

0.0

3

0.0

0

0.0

0

0.0

1

Page 118: Constraining the nature of E- and N-type components in the Baffin

105

Mel

t in

clu

sion

s co

nti

nu

ed

Sam

ple

A

K1

1a/

5

AK

11

a/6

A

K1

2/1

A

K1

2/2

A

K1

2/3

A

K1

2/4

A

K1

2/5

.1

AK

12

/5.2

A

K1

2/5

.3

AK

12

/6

AK

12

/7

AK

12

/8

AK

12

/9

AK

12

/10

Typ

e

N

N

N

N

N

N

N

N

N

N

N

N

N

N

(wt

%)

SiO

2

48

.62

48

.17

47

.90

48

.60

48

.42

48

.23

47

.92

48

.50

47

.92

48

.37

48

.31

48

.44

48

.19

48

.37

MgO

7.4

2

7.6

0

7.0

2

6.4

3

7.9

2

7.5

8

7.6

5

7.6

7

7.5

1

8.4

9

8.7

9

8.6

7

8.5

5

8.5

7

Mn

O

0

.18

0.2

0

0.1

5

0.1

5

0.1

5

0.1

8

0.1

6

0.1

8

0.2

0

0.1

9

0.1

3

0.1

6

0.1

3

0.1

5

CaO

14

.56

14

.53

15

.06

15

.31

14

.52

14

.65

14

.75

14

.45

14

.96

14

.22

14

.01

14

.04

13

.92

13

.79

FeO

*

9.0

6

9.4

0

9.7

1

9.1

3

9.3

3

10

.12

9.7

8

9.6

7

9.7

8

9.3

9

9.0

4

9.1

9

9.3

4

9.3

6

Al 2

O3

16

.40

16

.16

15

.93

16

.33

15

.89

15

.55

15

.72

15

.86

15

.84

15

.82

16

.05

15

.94

15

.83

15

.78

TiO

2

0

.95

1.0

6

1.0

2

1.0

1

1.0

0

1.0

2

1.1

1

0.9

6

1.0

8

0.9

6

0.9

0

1.1

2

1.0

9

1.0

2

Na 2

O

1

.77

1.7

3

1.6

3

1.6

8

1.6

1

1.6

1

1.6

0

1.7

0

1.5

9

1.7

0

1.7

5

1.8

0

1.7

8

1.7

1

K2O

0.1

1

0.1

0

0.1

0

0.0

7

0.0

7

0.0

9

0.0

9

0.1

0

0.0

8

0.0

9

0.0

8

0.0

9

0.1

1

0.0

9

P2O

5

0.0

5

0.0

7

0.0

7

0.0

9

0.0

5

0.0

5

0.0

8

0.0

9

0.0

8

0.0

9

0.0

9

0.0

9

0.0

6

0.0

3

Cr 2

O3

0.0

9

0.0

6

0.0

8

0.0

7

0.0

7

0.0

7

0.0

6

0.0

9

0.0

7

0.0

6

0.0

5

0.0

6

0.0

7

0.0

5

To

tal

9

9.2

5

99

.15

98

.78

98

.92

99

.09

99

.16

98

.98

99

.32

99

.15

99

.57

99

.25

99

.71

99

.28

98

.97

Cl

(pp

m)

0

25

20

30

10

0

0

20

20

17

0

0

40

10

S (

pp

m)

22

4

25

2

38

4

15

4

25

8

16

25

6

20

4

18

4

73

9

22

0

40

8

75

2

20

0

Cat

ion

s p

rop

ort

ion

s (1

00

cat

ion

s)

S

i 4

5.0

6

44

.69

44

.91

45

.52

45

.07

44

.90

44

.71

44

.99

44

.56

44

.62

44

.70

44

.59

44

.70

44

.90

Mg

10

.25

10

.51

9.8

2

8.9

8

10

.99

10

.52

10

.65

10

.61

10

.40

11

.68

12

.13

11

.90

11

.82

11

.86

Mn

1.2

8

1.3

8

1.0

6

1.0

4

1.0

2

1.2

4

1.1

5

1.2

8

1.3

8

1.3

0

0.8

8

1.1

4

0.9

4

1.0

6

Ca

14

.46

14

.44

15

.13

15

.36

14

.48

14

.61

14

.75

14

.36

14

.91

14

.05

13

.89

13

.85

13

.84

13

.72

Fe

7.0

2

7.2

9

7.6

1

7.1

5

7.2

7

7.8

8

7.6

3

7.5

0

7.6

1

7.2

5

6.9

9

7.0

8

7.2

5

7.2

6

Al

17

.92

17

.67

17

.60

18

.02

17

.43

17

.07

17

.28

17

.34

17

.36

17

.20

17

.50

17

.29

17

.31

17

.27

Ti

0.6

6

0.7

4

0.7

2

0.7

1

0.7

0

0.7

2

0.7

8

0.6

7

0.7

6

0.6

7

0.6

2

0.7

7

0.7

6

0.7

1

Na

3.1

8

3.1

1

2.9

7

3.0

5

2.9

1

2.9

1

2.8

9

3.0

6

2.8

7

3.0

5

3.1

3

3.2

1

3.2

1

3.0

7

K

0.1

3

0.1

1

0.1

2

0.0

9

0.0

9

0.1

1

0.1

0

0.1

2

0.1

0

0.1

1

0.0

9

0.1

0

0.1

3

0.1

1

P

0.0

4

0.0

6

0.0

6

0.0

7

0.0

4

0.0

4

0.0

6

0.0

7

0.0

6

0.0

7

0.0

7

0.0

7

0.0

5

0.0

3

Cr

0.0

6

0.0

4

0.0

6

0.0

5

0.0

5

0.0

5

0.0

4

0.0

6

0.0

5

0.0

4

0.0

4

0.0

5

0.0

5

0.0

4

K/T

i

0.1

9

0.1

5

0.1

7

0.1

2

0.1

3

0.1

6

0.1

3

0.1

8

0.1

3

0.1

6

0.1

4

0.1

3

0.1

7

0.1

5

Cl/

K

0.0

0

0.0

2

0.0

2

0.0

3

0.0

1

0.0

0

0.0

0

0.0

2

0.0

2

0.0

2

0.0

0

0.0

0

0.0

3

0.0

1

Page 119: Constraining the nature of E- and N-type components in the Baffin

106

Mel

t in

clu

sion

s co

nti

nu

ed

Sam

ple

A

K1

2/1

1

AK

12

/13

AK

12

/14

.1

AK

12

/14

.2

AK

12

/15

AK

12

/16

AK

12

/i4

.1

AK

12

/i7

A

K1

2/i

9

AK

12

/i1

1

AK

12

/i1

6

AK

12

/i2

4

PI0

2c

PI0

2c

Typ

e

N

N

N

N

N

N

N

N

N

N

N

N

N

N

(wt

%)

SiO

2

48

.38

48

.28

48

.63

48

.53

48

.15

48

.49

50

.39

48

.37

48

.93

49

.39

48

.68

48

.77

48

.87

48

.64

MgO

9.0

7

8.5

5

8.8

6

9.0

5

8.8

5

8.8

1

5.2

4

6.7

2

7.2

3

7.3

9

8.1

9

8.5

0

8.4

8

8.4

4

Mn

O

0

.14

0.1

6

0.1

6

0.1

3

0.1

3

0.1

9

0.1

5

0.1

2

0.1

9

0.1

5

0.2

4

0.1

8

0.1

8

0.1

7

CaO

13

.68

13

.98

13

.53

13

.39

13

.69

13

.82

15

.34

14

.94

14

.88

14

.76

14

.21

13

.98

13

.46

13

.80

FeO

*

9.4

8

9.2

3

9.3

8

9.1

6

9.0

1

9.3

2

8.8

8

9.4

9

9.7

5

9.5

4

9.5

0

9.1

4

9.9

8

9.0

1

Al 2

O3

15

.91

16

.22

15

.90

15

.83

16

.13

15

.75

17

.13

16

.49

16

.15

16

.45

15

.88

15

.90

15

.44

15

.77

TiO

2

1

.00

1.1

2

0.9

5

0.9

6

0.9

4

0.9

3

1.0

4

0.9

6

1.0

5

0.9

4

0.9

4

0.8

8

1.2

0

1.1

4

Na 2

O

1

.78

1.7

9

1.7

8

1.7

7

1.7

9

1.6

8

1.9

0

1.7

6

1.6

7

1.8

3

1.6

9

1.7

8

1.9

3

1.9

0

K2O

0.0

9

0.0

9

0.0

9

0.1

0

0.0

9

0.0

8

0.0

8

0.0

7

0.0

9

0.0

7

0.0

8

0.0

8

0.1

2

0.1

1

P2O

5

0.0

8

0.0

8

0.0

8

0.0

7

0.0

9

0.0

4

0.1

0

0.1

4

Cr 2

O3

0.0

8

0.0

8

0.0

8

0.0

5

0.0

7

0.0

4

0.0

8

0.0

7

0.0

4

0.0

6

0.0

6

0.0

7

To

tal

9

9.7

3

99

.62

99

.48

99

.11

99

.04

99

.18

10

0.2

9

99

.18

10

0.0

3

10

0.6

4

99

.51

99

.31

99

.77

99

.11

Cl

(pp

m)

20

0

10

30

40

0

15

5

20

13

18

20

S (

pp

m)

24

4

16

8

12

8

28

0

44

0

16

4

12

0

12

1

16

1

15

1

19

9

15

0

Cat

ion

s p

rop

ort

ion

s (1

00

cat

ion

s)

S

i 4

4.5

3

44

.49

44

.82

44

.92

44

.62

44

.76

46

.69

45

.26

45

.13

45

.29

44

.81

45

.00

44

.94

44

.95

Mg

12

.44

11

.74

12

.17

12

.49

12

.22

12

.12

7.2

4

9.3

7

9.9

4

10

.11

11

.24

11

.68

11

.62

11

.63

Mn

0.9

5

1.0

9

1.1

4

0.9

4

0.9

3

1.3

5

1.0

3

0.8

1

1.3

3

1.0

3

1.6

5

1.2

6

1.2

8

1.1

8

Ca

13

.50

13

.80

13

.36

13

.28

13

.59

13

.67

15

.23

14

.98

14

.70

14

.50

14

.01

13

.82

13

.26

13

.67

Fe

7.3

0

7.1

1

7.2

3

7.0

9

6.9

8

7.1

9

6.8

8

7.4

3

7.5

2

7.3

1

7.3

1

7.0

5

7.6

7

6.9

6

Al

17

.26

17

.61

17

.27

17

.27

17

.61

17

.13

18

.70

18

.19

17

.56

17

.77

17

.22

17

.29

16

.73

17

.18

Ti

0.6

9

0.7

8

0.6

6

0.6

7

0.6

5

0.6

4

0.7

2

0.6

7

0.7

3

0.6

5

0.6

5

0.6

1

0.8

3

0.7

9

Na

3.1

8

3.2

0

3.1

7

3.1

8

3.2

1

3.0

1

3.4

1

3.2

0

2.9

8

3.2

6

3.0

1

3.1

9

3.4

4

3.4

1

K

0.1

0

0.1

1

0.1

0

0.1

1

0.1

1

0.1

0

0.1

0

0.0

9

0.1

1

0.0

8

0.0

9

0.0

9

0.1

4

0.1

3

P

0.0

6

0.0

6

0.0

6

0.0

5

0.0

7

0.0

3

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

8

0.1

1

Cr

0.0

6

0.0

6

0.0

6

0.0

4

0.0

5

0.0

3

0.0

6

0.0

5

0.0

3

0.0

4

0.0

4

0.0

5

K/T

i

0.1

4

0.1

4

0.1

6

0.1

7

0.1

7

0.1

5

0.1

4

0.1

3

0.1

5

0.1

3

0.1

4

0.1

5

0.1

7

0.1

6

Cl/

K

0.0

2

0.0

0

0.0

1

0.0

3

0.0

4

0.0

0

0.0

2

0.0

1

0.0

2

0.0

2

0.0

2

0.0

2

Page 120: Constraining the nature of E- and N-type components in the Baffin

107

Mel

t in

clu

sion

s co

nti

nu

ed

Sam

ple

P

I02

c P

I02

c P

I02

c P

I3c

PI0

6c

PI0

6c

PI0

6c

PI0

6c

PI0

6c

PI0

6c

PI0

6c

PI0

6c

PI0

6c

PI0

6c

PI0

6c

PI0

6c

PI0

6c

PI0

6c

Typ

e

N

E

N

N

E

N

E

N

N

E

N

E

N

N

N

N

E

E

(wt

%)

SiO

2

48

.91

48

.55

48

.64

48

.94

49

.20

49

.20

49

.05

48

.54

48

.61

48

.91

48

.76

49

.25

48

.91

48

.76

48

.48

48

.82

48

.91

48

.71

MgO

8.0

6

8.3

3

8.6

2

7.4

8

7.1

1

7.4

8

7.7

5

7.7

0

7.9

9

7.8

6

7.9

8

8.1

0

8.0

4

7.9

7

7.9

4

8.1

3

7.9

1

7.9

8

Mn

O

0

.17

0.1

5

0.1

9

0.1

5

0.1

6

0.1

4

0.1

7

0.1

8

0.1

9

0.1

7

0.1

7

0.1

5

0.1

5

0.1

5

0.1

7

0.1

7

0.1

7

0.1

8

CaO

14

.08

13

.73

13

.51

13

.97

14

.38

14

.17

14

.12

14

.08

13

.92

14

.01

13

.87

13

.84

13

.87

13

.68

13

.87

13

.92

13

.97

13

.79

FeO

*

9.2

1

10

.22

10

.09

10

.00

8.8

6

8.8

3

9.1

2

8.8

1

8.7

7

8.9

5

8.7

8

8.7

3

8.9

6

8.7

6

8.6

9

8.8

5

8.7

3

8.7

9

Al 2

O3

15

.80

15

.47

15

.39

15

.28

16

.08

15

.89

15

.81

15

.61

15

.71

15

.72

15

.67

15

.84

15

.64

15

.56

15

.81

15

.76

15

.67

15

.63

TiO

2

1

.18

1.1

1

1.1

2

1.2

1

1.2

7

1.2

7

1.1

8

1.1

9

1.1

9

1.2

2

1.1

5

1.2

0

1.2

1

1.2

7

1.2

0

1.2

1

1.1

5

1.1

9

Na 2

O

1

.92

1.8

9

1.8

6

1.8

0

2.0

1

1.9

2

1.9

7

1.9

1

2.0

2

1.9

7

1.9

8

2.0

1

2.0

2

1.9

5

1.9

7

2.0

1

2.0

0

1.9

9

K2O

0.1

2

0.1

6

0.1

2

0.0

8

0.1

5

0.1

2

0.1

4

0.1

3

0.1

4

0.1

5

0.1

2

0.1

7

0.1

4

0.1

4

0.1

4

0.1

4

0.1

5

0.1

7

P2O

5

0.1

0

0.0

8

0.0

9

0.1

0

0.1

0

0.1

1

0.1

1

0.0

9

0.0

9

0.0

8

0.1

1

0.1

3

0.1

6

0.1

0

0.1

4

0.0

8

0.0

9

0.0

8

Cr 2

O3

To

tal

9

9.5

5

99

.69

99

.63

99

.01

99

.32

99

.13

99

.42

98

.24

98

.63

99

.04

98

.59

99

.42

99

.10

98

.34

98

.41

99

.09

98

.75

98

.51

Cl

(pp

m)

S (

pp

m)

Cat

ion

s p

rop

ort

ion

s (1

00

cat

ion

s)

S

i 4

5.0

8

44

.80

44

.77

45

.68

45

.59

45

.71

45

.31

45

.33

45

.10

45

.31

45

.33

45

.44

45

.30

45

.53

45

.15

45

.13

45

.40

45

.29

Mg

11

.07

11

.46

11

.83

10

.41

9.8

2

10

.36

10

.67

10

.72

11

.05

10

.86

11

.06

11

.14

11

.10

11

.09

11

.02

11

.20

10

.95

11

.06

Mn

1.2

1

1.0

6

1.3

1

1.0

4

1.1

2

0.9

8

1.1

9

1.2

7

1.3

3

1.1

9

1.2

0

1.0

5

1.0

5

1.0

6

1.2

0

1.1

9

1.1

9

1.2

7

Ca

13

.90

13

.57

13

.32

13

.97

14

.28

14

.11

13

.97

14

.09

13

.84

13

.91

13

.82

13

.68

13

.77

13

.69

13

.84

13

.79

13

.89

13

.74

Fe

7.1

0

7.8

9

7.7

7

7.8

1

6.8

7

6.8

6

7.0

5

6.8

8

6.8

0

6.9

3

6.8

3

6.7

4

6.9

4

6.8

4

6.7

7

6.8

4

6.7

8

6.8

3

Al

17

.16

16

.82

16

.70

16

.81

17

.56

17

.40

17

.21

17

.18

17

.18

17

.17

17

.17

17

.22

17

.07

17

.12

17

.35

17

.17

17

.14

17

.13

Ti

0.8

2

0.7

7

0.7

8

0.8

5

0.8

9

0.8

9

0.8

2

0.8

4

0.8

3

0.8

5

0.8

0

0.8

3

0.8

4

0.8

9

0.8

4

0.8

4

0.8

0

0.8

3

Na

3.4

3

3.3

8

3.3

2

3.2

6

3.6

1

3.4

6

3.5

3

3.4

6

3.6

3

3.5

4

3.5

7

3.6

0

3.6

3

3.5

3

3.5

6

3.6

0

3.6

0

3.5

9

K

0.1

4

0.1

9

0.1

4

0.0

9

0.1

8

0.1

4

0.1

6

0.1

5

0.1

7

0.1

8

0.1

4

0.2

0

0.1

7

0.1

7

0.1

7

0.1

7

0.1

8

0.2

0

P

0.0

8

0.0

6

0.0

7

0.0

8

0.0

8

0.0

9

0.0

9

0.0

7

0.0

7

0.0

6

0.0

9

0.1

0

0.1

3

0.0

8

0.1

1

0.0

6

0.0

7

0.0

6

Cr

K/T

i

0.1

7

0.2

4

0.1

8

0.1

1

0.2

0

0.1

6

0.2

0

0.1

9

0.2

0

0.2

1

0.1

8

0.2

4

0.2

0

0.1

9

0.2

0

0.2

0

0.2

2

0.2

4

Cl/

K

Page 121: Constraining the nature of E- and N-type components in the Baffin

108

Mel

t in

clu

sion

s co

nti

nu

ed

Sam

ple

P

I06

c P

I06

c P

I06

c P

I06

c P

I07

c P

I07

c P

I07

c P

I07

c P

I07

c P

I07

c P

I07

c P

I07

c P

I07

c P

I07

c P

I07

c P

I09

c P

I09

c P

I09

c

Typ

e

E

E

N

N

E

N

N

N

E

E

N

E

N

E

E

N

N

E

(wt

%)

SiO

2

49

.74

49

.08

48

.86

48

.78

49

.08

48

.80

49

.09

48

.90

48

.87

48

.63

48

.71

48

.87

48

.80

48

.93

48

.76

48

.87

49

.20

49

.60

MgO

6.4

5

8.0

1

7.9

5

7.7

5

8.4

3

7.5

9

6.8

5

6.7

8

7.6

7

7.9

1

8.2

0

7.8

8

7.8

6

8.3

5

8.2

1

7.5

1

8.2

2

8.3

2

Mn

O

0

.19

0.1

7

0.1

7

0.2

0

0.1

8

0.2

0

0.1

7

0.1

8

0.1

8

0.1

7

0.1

8

0.1

6

0.1

9

0.1

7

0.1

8

0.2

0

0.1

4

0.1

5

CaO

14

.36

13

.58

14

.03

13

.80

13

.87

14

.11

14

.59

14

.48

13

.93

13

.88

13

.59

13

.71

13

.80

13

.81

13

.56

14

.25

13

.44

13

.75

FeO

*

9.6

0

10

.00

9.9

6

9.8

6

8.9

7

10

.27

9.8

6

10

.02

10

.39

10

.33

10

.13

9.8

5

10

.09

9.0

8

10

.21

10

.16

9.4

5

9.6

3

Al 2

O3

15

.12

15

.45

15

.39

15

.25

15

.57

15

.06

15

.46

15

.67

15

.31

15

.25

15

.23

15

.31

15

.38

15

.51

15

.35

15

.12

15

.94

15

.43

TiO

2

1

.30

1.1

3

1.1

8

1.2

3

1.2

8

1.1

8

1.1

9

1.2

9

1.2

1

1.2

0

1.1

4

1.2

0

1.2

0

1.1

4

1.1

4

1.1

6

1.2

4

1.1

5

Na 2

O

2

.12

1.9

5

1.9

1

1.8

6

2.0

1

1.8

6

1.7

9

1.8

4

1.9

2

1.8

8

1.8

9

1.9

1

1.8

5

1.9

7

1.9

3

1.6

8

1.9

8

1.8

5

K2O

0.1

9

0.1

5

0.1

3

0.1

3

0.1

7

0.1

1

0.1

2

0.1

2

0.1

4

0.1

5

0.1

2

0.1

5

0.1

3

0.1

4

0.1

4

0.1

1

0.1

2

0.1

5

P2O

5

0.1

9

0.1

2

0.0

7

0.0

8

0.1

0

0.1

3

0.1

5

0.1

0

0.1

2

0.0

9

0.1

1

0.1

3

0.0

6

0.1

4

0.1

3

0.0

6

0.1

0

0.1

1

Cr 2

O3

To

tal

9

9.2

6

99

.64

99

.65

98

.94

99

.66

99

.30

99

.27

99

.38

99

.75

99

.49

99

.30

99

.16

99

.36

99

.24

99

.61

99

.12

99

.84

10

0.1

4

Cl

(pp

m)

S (

pp

m)

Cat

ion

s p

rop

ort

ion

s (1

00

cat

ion

s)

S

i 4

6.2

6

45

.30

45

.11

45

.33

45

.09

45

.27

45

.74

45

.49

45

.14

45

.03

45

.08

45

.38

45

.19

45

.17

44

.97

45

.46

45

.28

45

.56

Mg

8.9

4

11

.02

10

.94

10

.74

11

.54

10

.50

9.5

1

9.4

0

10

.56

10

.92

11

.31

10

.91

10

.85

11

.49

11

.29

10

.41

11

.28

11

.39

Mn

1.3

4

1.1

9

1.1

9

1.4

1

1.2

3

1.3

7

1.1

9

1.2

5

1.2

7

1.1

8

1.2

6

1.1

2

1.3

0

1.2

0

1.2

8

1.4

3

1.0

0

1.0

7

Ca

14

.31

13

.43

13

.88

13

.74

13

.65

14

.03

14

.57

14

.43

13

.79

13

.77

13

.48

13

.64

13

.69

13

.66

13

.40

14

.20

13

.25

13

.53

Fe

7.4

7

7.7

2

7.6

9

7.6

6

6.8

9

7.9

7

7.6

8

7.8

0

8.0

3

8.0

0

7.8

4

7.6

5

7.8

1

7.0

1

7.8

7

7.9

0

7.2

7

7.4

0

Al

16

.57

16

.80

16

.75

16

.70

16

.86

16

.47

16

.98

17

.18

16

.67

16

.64

16

.61

16

.75

16

.79

16

.87

16

.68

16

.58

17

.29

16

.70

Ti

0.9

1

0.7

8

0.8

2

0.8

6

0.8

8

0.8

2

0.8

3

0.9

0

0.8

4

0.8

4

0.7

9

0.8

4

0.8

4

0.7

9

0.7

9

0.8

1

0.8

6

0.7

9

Na

3.8

2

3.4

9

3.4

2

3.3

5

3.5

8

3.3

5

3.2

3

3.3

2

3.4

4

3.3

8

3.3

9

3.4

4

3.3

2

3.5

3

3.4

5

3.0

3

3.5

3

3.2

9

K

0.2

3

0.1

8

0.1

5

0.1

5

0.2

0

0.1

3

0.1

5

0.1

4

0.1

7

0.1

8

0.1

5

0.1

8

0.1

6

0.1

7

0.1

7

0.1

3

0.1

4

0.1

7

P

0.1

5

0.0

9

0.0

5

0.0

6

0.0

8

0.1

0

0.1

2

0.0

8

0.0

9

0.0

7

0.0

9

0.1

0

0.0

4

0.1

1

0.1

0

0.0

4

0.0

8

0.0

8

Cr

K/T

i

0.2

5

0.2

3

0.1

9

0.1

8

0.2

2

0.1

6

0.1

8

0.1

6

0.2

0

0.2

2

0.1

8

0.2

1

0.1

9

0.2

1

0.2

1

0.1

6

0.1

7

0.2

2

Cl/

K

Page 122: Constraining the nature of E- and N-type components in the Baffin

109

Mel

t in

clu

sion

s co

nti

nu

ed

Sam

ple

P

I09

c P

I09

c P

I09

c P

I09

c P

I09

c P

I09

c P

I09

c P

I09

c P

I09

c P

I10

c P

I10

c P

I10

c P

I10

c P

I10

c P

I10

c P

I10

c P

I10

c P

I10

c

Typ

e

E

N

N

E

E

E

E

E

E

E

N

N

N

N

N

N

N

N

(wt

%)

SiO

2

49

.45

49

.05

48

.89

49

.13

49

.30

48

.92

49

.28

49

.26

49

.10

49

.34

48

.94

49

.00

48

.89

48

.94

48

.77

49

.26

49

.16

48

.85

MgO

7.4

1

7.3

7

8.4

8

8.7

4

8.3

0

8.2

1

7.1

5

8.5

5

8.4

7

8.3

7

8.6

5

8.4

3

7.5

5

7.2

5

7.3

1

6.9

9

6.4

8

8.0

5

Mn

O

0

.19

0.1

6

0.1

9

0.1

5

0.1

8

0.1

3

0.1

9

0.1

6

0.1

8

0.1

8

0.1

4

0.1

8

0.1

6

0.1

8

0.1

7

0.1

9

0.1

6

0.1

7

CaO

14

.14

14

.84

13

.18

13

.42

13

.58

13

.56

14

.31

13

.44

13

.57

13

.53

13

.55

13

.62

14

.18

14

.39

14

.25

14

.48

14

.25

14

.03

FeO

*

8.4

1

9.5

6

10

.05

9.5

1

9.0

3

10

.13

10

.02

9.4

0

9.8

7

9.7

0

9.8

8

10

.00

10

.25

10

.16

10

.28

9.8

6

9.7

3

9.8

7

Al 2

O3

16

.10

15

.53

15

.33

15

.45

15

.55

15

.04

15

.36

15

.56

15

.26

15

.59

15

.36

15

.33

15

.58

15

.53

15

.61

15

.84

16

.08

15

.42

TiO

2

1

.18

1.1

9

1.1

9

1.1

3

1.0

9

1.2

2

1.2

3

1.1

7

1.1

4

1.1

8

1.1

7

1.1

8

1.1

6

1.1

7

1.1

9

1.2

1

1.2

2

1.1

6

Na 2

O

1

.85

1.6

9

1.9

6

1.8

6

2.0

9

1.8

3

1.7

7

1.9

3

1.8

8

1.8

6

1.8

8

1.8

4

1.7

7

1.7

8

1.7

7

1.8

9

1.8

8

1.8

4

K2O

0.1

5

0.1

3

0.1

3

0.1

4

0.1

6

0.1

6

0.1

5

0.1

6

0.1

6

0.1

5

0.1

3

0.1

4

0.1

2

0.1

3

0.1

3

0.1

3

0.1

3

0.1

2

P2O

5

0.1

2

0.1

3

0.0

9

0.0

9

0.1

6

0.0

9

0.1

4

0.1

9

0.1

1

0.1

1

0.0

9

0.0

7

0.1

2

0.1

0

0.0

6

0.1

0

0.1

0

0.0

5

Cr 2

O3

To

tal

9

9.0

1

99

.64

99

.48

99

.62

99

.44

99

.29

99

.60

99

.83

99

.74

10

0.0

1

99

.79

99

.79

99

.79

99

.63

99

.54

99

.94

99

.18

99

.56

Cl

(pp

m)

S (

pp

m)

Cat

ion

s p

rop

ort

ion

s (1

00

cat

ion

s)

S

i 4

5.8

3

45

.46

45

.06

45

.26

45

.38

45

.46

45

.69

45

.26

45

.19

45

.30

45

.10

45

.09

45

.25

45

.37

45

.26

45

.47

45

.87

45

.14

Mg

10

.24

10

.18

11

.65

12

.00

11

.39

11

.37

9.8

8

11

.71

11

.62

11

.46

11

.88

11

.57

10

.42

10

.02

10

.11

9.6

2

9.0

1

11

.09

Mn

1.3

6

1.1

4

1.3

2

1.0

4

1.2

2

0.9

1

1.3

4

1.1

3

1.2

4

1.2

4

0.9

5

1.2

7

1.1

2

1.2

3

1.1

9

1.2

9

1.1

2

1.1

9

Ca

14

.04

14

.74

13

.02

13

.25

13

.39

13

.50

14

.21

13

.23

13

.38

13

.31

13

.38

13

.43

14

.06

14

.29

14

.17

14

.32

14

.25

13

.89

Fe

6.5

2

7.4

1

7.7

5

7.3

3

6.9

5

7.8

7

7.7

7

7.2

2

7.6

0

7.4

5

7.6

1

7.7

0

7.9

3

7.8

8

7.9

8

7.6

1

7.5

9

7.6

3

Al

17

.59

16

.96

16

.65

16

.78

16

.87

16

.47

16

.78

16

.85

16

.55

16

.87

16

.68

16

.63

16

.99

16

.97

17

.07

17

.23

17

.68

16

.79

Ti

0.8

2

0.8

3

0.8

3

0.7

8

0.7

5

0.8

5

0.8

6

0.8

1

0.7

9

0.8

1

0.8

1

0.8

2

0.8

1

0.8

2

0.8

3

0.8

4

0.8

6

0.8

1

Na

3.3

2

3.0

4

3.5

0

3.3

2

3.7

3

3.3

0

3.1

8

3.4

4

3.3

6

3.3

1

3.3

6

3.2

8

3.1

8

3.2

0

3.1

9

3.3

8

3.4

0

3.3

0

K

0.1

8

0.1

5

0.1

5

0.1

7

0.1

9

0.1

9

0.1

7

0.1

9

0.1

8

0.1

8

0.1

6

0.1

6

0.1

5

0.1

5

0.1

5

0.1

5

0.1

5

0.1

4

P

0.0

9

0.1

0

0.0

7

0.0

7

0.1

2

0.0

7

0.1

1

0.1

5

0.0

9

0.0

8

0.0

7

0.0

5

0.1

0

0.0

8

0.0

5

0.0

7

0.0

8

0.0

4

Cr

K/T

i

0.2

2

0.1

8

0.1

9

0.2

1

0.2

5

0.2

2

0.2

0

0.2

3

0.2

3

0.2

2

0.1

9

0.1

9

0.1

8

0.1

9

0.1

8

0.1

8

0.1

8

0.1

8

Cl/

K

Page 123: Constraining the nature of E- and N-type components in the Baffin

110

Mel

t in

clu

sion

s co

nti

nu

ed

Sam

ple

P

I10

c P

I10

c P

I10

c P

I10

c P

I10

c P

I10

c P

I13

c P

I13

c P

I13

c P

I13

c P

I13

c P

I13

c P

I13

c P

I13

c P

I13

c P

I13

c P

I13

c P

I13

c

Typ

e

N

N

N

N

N

N

E

N

E

N

N

E

N

N

N

N

N

N

(wt

%)

SiO

2

49

.16

48

.23

48

.78

48

.91

48

.77

48

.58

49

.33

49

.11

49

.41

48

.93

48

.82

49

.34

49

.14

49

.36

48

.94

48

.84

49

.13

48

.90

MgO

5.9

8

7.3

6

7.4

2

7.6

8

8.6

6

8.0

6

6.7

5

7.3

7

7.1

6

8.1

2

7.5

6

7.3

8

6.9

2

6.2

5

7.1

7

7.9

5

6.6

4

7.7

5

Mn

O

0

.18

0.2

5

0.2

0

0.1

7

0.1

5

0.1

7

0.1

5

0.1

9

0.1

7

0.2

0

0.1

5

0.1

8

0.1

8

0.1

9

0.1

8

0.1

8

0.1

3

0.1

6

CaO

14

.52

13

.35

14

.19

14

.17

13

.44

13

.96

12

.34

13

.88

14

.39

13

.86

14

.21

14

.38

14

.38

14

.62

14

.23

13

.73

14

.43

13

.91

FeO

*

9.7

2

12

.77

10

.08

9.5

9

9.8

8

10

.07

8.6

7

10

.16

9.1

7

10

.03

10

.28

9.4

3

10

.12

10

.26

10

.33

10

.01

9.6

6

9.5

0

Al 2

O3

16

.17

14

.47

15

.77

15

.66

15

.53

15

.40

15

.72

15

.32

15

.74

15

.40

15

.26

15

.69

15

.53

15

.85

15

.50

15

.36

15

.92

15

.66

TiO

2

1

.27

1.0

8

1.2

3

1.1

7

1.1

9

1.1

5

2.3

9

1.2

2

1.2

1

1.2

0

1.1

9

1.2

0

1.1

5

1.2

2

1.1

4

1.2

4

1.1

7

1.1

8

Na 2

O

1

.92

1.6

6

1.7

5

1.7

6

1.7

9

1.8

4

2.5

5

1.8

7

1.9

6

1.8

8

1.8

6

1.9

4

1.9

5

1.9

2

1.8

5

1.8

0

1.9

9

1.8

8

K2O

0.1

4

0.0

9

0.1

3

0.1

3

0.1

4

0.1

2

0.9

1

0.1

3

0.1

6

0.1

4

0.1

1

0.1

6

0.1

2

0.1

3

0.1

3

0.1

3

0.1

4

0.1

3

P2O

5

0.1

0

0.0

7

0.0

9

0.1

2

0.1

5

0.0

9

0.2

6

0.0

8

0.1

5

0.1

2

0.0

9

0.1

5

0.1

0

0.0

9

0.1

7

0.1

3

0.1

3

0.0

7

Cr 2

O3

To

tal

9

9.1

6

99

.34

99

.64

99

.37

99

.69

99

.44

99

.07

99

.34

99

.52

99

.88

99

.53

99

.85

99

.59

99

.89

99

.64

99

.37

99

.33

99

.14

Cl

(pp

m)

S (

pp

m)

Cat

ion

s p

rop

ort

ion

s (1

00

cat

ion

s)

S

i 4

5.8

9

44

.92

45

.10

45

.34

44

.98

44

.95

45

.83

45

.58

45

.72

44

.98

45

.30

45

.48

45

.56

45

.75

45

.36

45

.25

45

.79

45

.38

Mg

8.3

2

10

.22

10

.23

10

.61

11

.91

11

.12

9.3

5

10

.20

9.8

8

11

.13

10

.46

10

.14

9.5

6

8.6

4

9.9

1

10

.98

9.2

3

10

.72

Mn

1.2

9

1.7

8

1.4

1

1.2

1

1.0

1

1.2

0

1.0

3

1.3

4

1.2

0

1.4

1

1.0

8

1.2

7

1.2

5

1.3

0

1.2

6

1.2

5

0.8

8

1.1

5

Ca

14

.52

13

.32

14

.06

14

.07

13

.28

13

.84

12

.28

13

.80

14

.27

13

.65

14

.13

14

.20

14

.28

14

.52

14

.13

13

.63

14

.41

13

.83

Fe

7.5

9

9.9

5

7.7

9

7.4

3

7.6

2

7.7

9

6.7

4

7.8

9

7.1

0

7.7

1

7.9

8

7.2

7

7.8

5

7.9

5

8.0

1

7.7

6

7.5

3

7.3

7

Al

17

.79

15

.88

17

.19

17

.11

16

.88

16

.79

17

.21

16

.76

17

.17

16

.69

16

.69

17

.04

16

.97

17

.31

16

.93

16

.77

17

.49

17

.13

Ti

0.8

9

0.7

6

0.8

6

0.8

2

0.8

3

0.8

0

1.6

7

0.8

5

0.8

4

0.8

3

0.8

3

0.8

3

0.8

0

0.8

5

0.7

9

0.8

6

0.8

2

0.8

2

Na

3.4

7

3.0

0

3.1

4

3.1

6

3.2

0

3.3

0

4.5

9

3.3

7

3.5

2

3.3

5

3.3

5

3.4

7

3.5

1

3.4

5

3.3

2

3.2

3

3.6

0

3.3

8

K

0.1

6

0.1

1

0.1

5

0.1

5

0.1

6

0.1

4

1.0

8

0.1

6

0.1

9

0.1

6

0.1

3

0.1

8

0.1

4

0.1

6

0.1

6

0.1

6

0.1

6

0.1

5

P

0.0

8

0.0

6

0.0

7

0.1

0

0.1

2

0.0

7

0.2

1

0.0

6

0.1

2

0.0

9

0.0

7

0.1

2

0.0

8

0.0

7

0.1

3

0.1

0

0.1

0

0.0

6

Cr

K/T

i

0.1

8

0.1

4

0.1

8

0.1

9

0.2

0

0.1

8

0.6

4

0.1

8

0.2

3

0.2

0

0.1

6

0.2

2

0.1

8

0.1

9

0.2

0

0.1

8

0.2

0

0.1

8

Cl/

K

Page 124: Constraining the nature of E- and N-type components in the Baffin

111

Mel

t in

clu

sion

s co

nti

nu

ed

Sam

ple

P

I14

c P

I14

c P

I14

c P

I14

c P

I14

c P

I14

c P

I14

c P

I14

c P

I14

c P

I14

c P

I14

c P

I14

c P

I14

c P

I14

c P

I14

c P

I14

c P

I14

c P

I14

c

Typ

e

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

(wt

%)

SiO

2

48

.79

48

.56

48

.73

49

.04

49

.52

49

.17

48

.71

48

.70

48

.90

49

.02

49

.02

48

.81

49

.89

48

.70

48

.93

48

.77

48

.54

48

.55

MgO

7.8

0

8.9

4

8.6

4

8.1

0

6.7

8

7.4

9

7.7

4

7.8

9

8.8

4

8.5

9

8.8

3

8.4

5

9.0

2

7.5

6

6.9

3

6.8

3

7.9

2

8.4

0

Mn

O

0

.18

0.1

4

0.1

8

0.1

5

0.2

0

0.1

6

0.1

8

0.1

6

0.1

5

0.1

2

0.1

5

0.1

6

0.1

7

0.2

0

0.1

8

0.1

7

0.1

5

0.1

7

CaO

14

.52

13

.86

14

.06

14

.89

14

.90

14

.77

14

.47

14

.55

13

.70

14

.17

14

.00

14

.34

14

.37

14

.80

15

.07

15

.55

14

.68

14

.33

FeO

*

9.7

6

9.2

4

9.6

1

8.8

1

8.7

5

8.7

0

9.7

9

9.6

6

9.6

0

8.6

0

9.5

0

9.6

8

7.9

0

9.6

3

9.6

6

9.2

8

9.5

9

9.5

4

Al 2

O3

15

.66

15

.69

15

.39

15

.86

16

.33

16

.12

15

.52

15

.52

15

.38

16

.03

15

.29

15

.42

15

.66

15

.78

15

.83

16

.36

15

.55

15

.51

TiO

2

1

.13

1.0

4

1.0

8

1.1

5

1.1

2

1.1

1

1.1

5

1.1

9

1.0

9

1.1

0

1.1

3

1.1

6

1.1

1

1.1

5

1.1

9

1.2

6

1.1

6

1.1

2

Na 2

O

1

.66

1.7

4

1.7

5

1.6

5

1.8

0

1.7

3

1.6

6

1.6

8

1.7

4

1.7

5

1.7

2

1.6

8

1.7

3

1.6

9

1.6

4

1.6

7

1.6

2

1.6

5

K2O

0.0

7

0.0

9

0.0

8

0.0

8

0.0

8

0.0

8

0.0

8

0.0

7

0.0

6

0.0

6

0.0

9

0.0

7

0.0

7

0.0

8

0.0

7

0.0

7

0.0

7

0.0

7

P2O

5

0.1

2

0.0

5

0.0

8

0.0

8

0.0

9

0.1

0

0.1

0

0.1

2

0.1

2

0.0

7

0.0

7

0.1

0

0.0

6

0.1

1

0.1

0

0.1

1

0.0

6

0.1

0

Cr 2

O3

To

tal

9

9.6

8

99

.34

99

.60

99

.81

99

.57

99

.42

99

.39

99

.53

99

.58

99

.51

99

.80

99

.87

99

.98

99

.70

99

.61

10

0.0

7

99

.34

99

.44

Cl

(pp

m)

S (

pp

m)

Cat

ion

s p

rop

ort

ion

s (1

00

cat

ion

s)

Si

45

.10

44

.84

44

.87

45

.20

45

.77

45

.54

45

.16

45

.10

45

.10

45

.25

45

.11

44

.95

45

.61

44

.96

45

.41

45

.04

45

.06

44

.89

Mg

10

.75

12

.31

11

.86

11

.13

9.3

4

10

.34

10

.70

10

.89

12

.15

11

.82

12

.11

11

.60

12

.29

10

.41

9.5

9

9.4

0

10

.96

11

.58

Mn

1.2

4

0.9

4

1.2

8

1.0

5

1.4

1

1.0

9

1.2

7

1.1

3

1.0

5

0.8

2

1.0

7

1.1

4

1.1

5

1.3

8

1.2

6

1.1

6

1.0

7

1.1

5

Ca

14

.38

13

.71

13

.87

14

.70

14

.76

14

.66

14

.37

14

.44

13

.54

14

.01

13

.80

14

.15

14

.08

14

.64

14

.98

15

.39

14

.60

14

.20

Fe

7.5

4

7.1

4

7.4

0

6.7

9

6.7

6

6.7

4

7.5

9

7.4

8

7.4

0

6.6

4

7.3

1

7.4

6

6.0

4

7.4

4

7.5

0

7.1

7

7.4

5

7.3

8

Al

17

.06

17

.08

16

.70

17

.23

17

.79

17

.60

16

.96

16

.94

16

.72

17

.44

16

.58

16

.74

16

.87

17

.17

17

.31

17

.81

17

.01

16

.90

Ti

0.7

9

0.7

2

0.7

5

0.8

0

0.7

8

0.7

7

0.8

0

0.8

3

0.7

6

0.7

6

0.7

8

0.8

0

0.7

6

0.8

0

0.8

3

0.8

8

0.8

1

0.7

8

Na

2.9

8

3.1

2

3.1

2

2.9

5

3.2

3

3.1

1

2.9

8

3.0

2

3.1

1

3.1

3

3.0

7

3.0

0

3.0

7

3.0

3

2.9

5

2.9

9

2.9

2

2.9

6

K

0.0

8

0.1

0

0.0

9

0.1

0

0.0

9

0.0

9

0.0

9

0.0

8

0.0

7

0.0

8

0.1

0

0.0

8

0.0

8

0.0

9

0.0

9

0.0

9

0.0

8

0.0

8

P

0.0

9

0.0

4

0.0

6

0.0

6

0.0

7

0.0

7

0.0

8

0.0

9

0.0

9

0.0

5

0.0

5

0.0

8

0.0

5

0.0

9

0.0

8

0.0

9

0.0

5

0.0

8

Cr

K/T

i

0.1

0

0.1

4

0.1

2

0.1

2

0.1

2

0.1

1

0.1

1

0.0

9

0.1

0

0.1

0

0.1

3

0.1

0

0.1

1

0.1

2

0.1

0

0.1

0

0.1

0

0.1

1

Cl/

K

Page 125: Constraining the nature of E- and N-type components in the Baffin

112

Mel

t in

clu

sion

s co

nti

nu

ed

Sam

ple

P

I15

c P

I15

c P

I15

c P

I15

c P

I15

c P

I15

c P

I17

c P

I17

c P

I17

c P

I17

c P

I17

c P

I17

c P

I17

c P

I17

c P

I17

c P

I17

c P

I17

c P

I17

c

Typ

e

N

N

N

N

N

N

E

E

E

E

E

E

E

E

E

E

E

E

(wt

%)

SiO

2

48

.94

49

.08

48

.50

48

.74

49

.16

49

.84

49

.29

49

.05

49

.27

49

.03

49

.10

49

.42

49

.12

49

.20

49

.05

49

.12

49

.31

49

.85

MgO

8.2

0

8.7

3

8.9

3

8.4

7

6.0

3

5.0

5

8.1

2

8.1

4

8.1

4

8.0

8

8.1

1

8.1

0

8.0

8

8.1

6

8.1

0

8.1

4

7.8

3

7.9

5

Mn

O

0

.20

0.2

0

0.1

7

0.1

7

0.1

7

0.1

4

0.1

8

0.1

5

0.1

9

0.1

6

0.1

8

0.1

5

0.1

4

0.1

6

0.1

9

0.1

5

0.1

5

0.1

8

CaO

14

.27

13

.83

13

.63

14

.31

15

.51

15

.60

13

.83

13

.88

13

.85

13

.63

13

.70

13

.59

13

.80

13

.82

13

.79

13

.73

13

.83

13

.77

FeO

*

9.4

9

9.5

6

9.5

2

9.6

7

9.5

6

8.8

5

9.7

5

9.9

1

9.7

2

9.7

4

9.8

4

9.9

7

9.9

1

9.8

2

9.8

3

9.7

9

9.6

5

9.7

7

Al 2

O3

15

.69

15

.20

15

.52

15

.29

16

.08

16

.56

14

.61

14

.57

14

.81

14

.54

14

.79

14

.73

14

.66

14

.69

14

.64

14

.70

14

.57

14

.45

TiO

2

1

.16

1.1

0

1.0

6

1.0

7

1.1

9

1.1

8

1.2

0

1.1

8

1.1

8

1.2

2

1.0

6

1.2

8

1.2

6

1.1

9

1.2

0

1.2

5

1.2

5

1.2

1

Na 2

O

1

.67

1.6

9

1.6

6

1.6

9

1.7

0

1.8

7

1.9

6

1.9

0

1.8

8

1.9

1

1.9

4

1.9

5

1.8

8

1.9

6

1.9

7

1.9

5

1.9

0

1.9

4

K2O

0.0

7

0.0

8

0.0

8

0.0

8

0.0

7

0.0

9

0.1

9

0.1

9

0.2

0

0.1

9

0.2

1

0.1

9

0.2

1

0.1

7

0.2

2

0.1

7

0.1

8

0.1

7

P2O

5

0.1

2

0.1

3

0.1

2

0.0

8

0.1

1

0.1

4

0.1

1

0.1

1

0.1

0

0.1

0

0.1

1

0.0

9

0.1

9

0.1

1

0.0

8

0.0

9

0.1

1

0.1

4

Cr 2

O3

To

tal

9

9.8

0

99

.60

99

.18

99

.56

99

.58

99

.32

99

.24

99

.08

99

.34

98

.60

99

.04

99

.47

99

.25

99

.28

99

.07

99

.09

98

.78

99

.43

Cl

(pp

m)

S (

pp

m)

Cat

ion

s p

rop

ort

ion

s (1

00

cat

ion

s)

S

i 4

5.0

4

45

.18

44

.84

45

.00

45

.77

46

.68

45

.64

45

.60

45

.56

45

.77

45

.54

45

.78

45

.65

45

.59

45

.46

45

.64

46

.03

46

.15

Mg

11

.25

11

.98

12

.31

11

.66

8.3

7

7.0

5

11

.21

11

.28

11

.22

11

.24

11

.21

11

.19

11

.19

11

.27

11

.19

11

.27

10

.90

10

.97

Mn

1.3

7

1.3

9

1.1

8

1.1

7

1.2

2

0.9

6

1.2

6

1.0

6

1.3

3

1.1

3

1.2

6

1.0

5

0.9

8

1.1

2

1.3

3

1.0

5

1.0

6

1.2

6

Ca

14

.07

13

.64

13

.50

14

.16

15

.47

15

.65

13

.72

13

.83

13

.72

13

.63

13

.62

13

.49

13

.74

13

.72

13

.70

13

.67

13

.83

13

.66

Fe

7.3

0

7.3

6

7.3

6

7.4

7

7.4

4

6.9

3

7.5

5

7.7

1

7.5

2

7.6

0

7.6

3

7.7

2

7.7

0

7.6

1

7.6

2

7.6

1

7.5

3

7.5

6

Al

17

.02

16

.49

16

.91

16

.64

17

.65

18

.28

15

.95

15

.96

16

.14

16

.00

16

.17

16

.08

16

.06

16

.04

15

.99

16

.10

16

.03

15

.76

Ti

0.8

0

0.7

6

0.7

4

0.7

4

0.8

3

0.8

3

0.8

4

0.8

3

0.8

2

0.8

6

0.7

4

0.8

9

0.8

8

0.8

3

0.8

4

0.8

7

0.8

8

0.8

4

Na

2.9

8

3.0

2

2.9

8

3.0

3

3.0

7

3.4

0

3.5

2

3.4

3

3.3

7

3.4

6

3.4

9

3.5

0

3.3

9

3.5

2

3.5

4

3.5

1

3.4

4

3.4

8

K

0.0

8

0.0

9

0.0

9

0.0

9

0.0

8

0.1

1

0.2

2

0.2

3

0.2

4

0.2

3

0.2

5

0.2

2

0.2

5

0.2

0

0.2

6

0.2

0

0.2

1

0.2

0

P

0.0

9

0.1

0

0.0

9

0.0

6

0.0

8

0.1

1

0.0

9

0.0

9

0.0

8

0.0

8

0.0

9

0.0

7

0.1

5

0.0

9

0.0

6

0.0

7

0.0

9

0.1

1

Cr

K/T

i

0.1

0

0.1

2

0.1

2

0.1

2

0.1

0

0.1

3

0.2

7

0.2

7

0.2

9

0.2

6

0.3

4

0.2

5

0.2

8

0.2

4

0.3

1

0.2

3

0.2

4

0.2

4

Cl/

K

Page 126: Constraining the nature of E- and N-type components in the Baffin

113

Mel

t in

clu

sion

s co

nti

nu

ed

Sam

ple

P

I18

c P

I18

c P

I18

c P

I18

c P

I18

c P

I18

c P

I18

c P

I18

c P

I18

c P

I18

c P

I18

c P

I18

c P

I18

c P

I18

c P

I18

c P

I18

c P

I18

c P

I18

c

Typ

e

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

(wt

%)

SiO

2

49

.70

49

.96

49

.73

49

.67

49

.77

50

.10

49

.60

49

.51

49

.83

50

.01

49

.69

49

.74

49

.42

49

.84

49

.71

49

.58

49

.51

49

.35

MgO

8.3

5

8.2

6

8.3

5

8.2

7

8.3

1

8.2

7

7.6

9

7.8

9

7.8

1

7.1

6

8.2

8

8.0

4

7.9

5

7.8

2

7.3

0

8.0

9

8.3

6

7.9

7

Mn

O

0

.17

0.1

7

0.1

5

0.1

6

0.1

5

0.1

6

0.1

5

0.1

9

0.1

7

0.1

5

0.1

2

0.1

9

0.1

8

0.1

2

0.1

8

0.1

6

0.1

3

0.1

8

CaO

13

.37

13

.53

13

.71

13

.55

13

.45

13

.48

14

.07

13

.93

13

.85

14

.52

13

.62

13

.97

14

.09

13

.96

14

.56

13

.59

13

.50

13

.76

FeO

*

9.5

7

9.5

8

9.7

8

9.8

0

9.8

3

9.7

1

9.8

8

9.6

9

9.0

8

10

.16

9.6

7

9.6

6

9.0

7

9.6

1

9.7

4

9.6

4

9.1

6

9.9

4

Al 2

O3

14

.73

14

.82

14

.77

14

.74

14

.70

14

.58

14

.75

14

.70

15

.83

14

.50

14

.67

14

.76

15

.75

15

.05

14

.68

14

.74

15

.80

15

.73

TiO

2

1

.18

1.2

0

1.1

7

1.1

4

1.2

1

1.2

1

1.2

1

1.2

1

0.9

9

1.2

2

1.2

5

1.2

5

1.1

1

1.1

8

1.2

1

1.1

4

1.1

0

1.0

0

Na 2

O

1

.90

1.9

1

1.9

5

1.8

7

1.9

2

1.9

1

1.8

4

1.7

9

1.8

1

1.7

9

1.8

7

1.8

4

1.8

2

1.8

3

1.8

0

1.8

3

1.8

5

1.8

3

K2O

0.1

9

0.2

1

0.1

7

0.1

9

0.1

9

0.1

8

0.1

7

0.1

7

0.1

7

0.1

6

0.2

0

0.1

9

0.1

6

0.1

9

0.1

6

0.2

1

0.1

3

0.1

3

P2O

5

0.1

4

0.1

2

0.1

3

0.1

3

0.0

7

0.1

0

0.1

1

0.1

2

0.1

6

0.1

4

0.1

2

0.0

7

0.1

4

0.0

7

0.0

8

0.1

3

0.1

3

0.0

8

Cr 2

O3

To

tal

9

9.3

0

99

.76

99

.91

99

.52

99

.60

99

.70

99

.47

99

.19

99

.69

99

.82

99

.49

99

.71

99

.69

99

.67

99

.42

99

.11

99

.67

99

.96

Cl

(pp

m)

S (

pp

m)

Cat

ion

s p

rop

ort

ion

s (1

00

cat

ion

s)

S

i 4

6.0

0

46

.04

45

.79

45

.93

46

.00

46

.24

46

.06

45

.95

45

.95

46

.43

46

.08

45

.89

45

.51

46

.20

46

.18

46

.06

45

.67

45

.40

Mg

11

.52

11

.35

11

.46

11

.40

11

.45

11

.38

10

.65

10

.92

10

.74

9.9

1

11

.45

11

.06

10

.92

10

.81

10

.11

11

.20

11

.50

10

.93

Mn

1.1

8

1.1

9

1.0

7

1.1

3

1.0

7

1.1

4

1.0

4

1.3

1

1.1

8

1.0

8

0.8

6

1.3

1

1.2

8

0.8

4

1.2

3

1.1

3

0.9

2

1.2

3

Ca

13

.26

13

.36

13

.53

13

.42

13

.32

13

.33

14

.00

13

.85

13

.68

14

.44

13

.53

13

.81

13

.90

13

.87

14

.49

13

.53

13

.34

13

.56

Fe

7.4

1

7.3

8

7.5

3

7.5

8

7.6

0

7.5

0

7.6

7

7.5

2

7.0

0

7.8

9

7.5

0

7.4

5

6.9

9

7.4

5

7.5

7

7.4

9

7.0

7

7.6

5

Al

16

.07

16

.10

16

.03

16

.06

16

.01

15

.86

16

.14

16

.08

17

.20

15

.87

16

.03

16

.05

17

.10

16

.44

16

.07

16

.14

17

.18

17

.06

Ti

0.8

2

0.8

3

0.8

1

0.7

9

0.8

4

0.8

4

0.8

5

0.8

4

0.6

8

0.8

5

0.8

7

0.8

7

0.7

7

0.8

2

0.8

5

0.8

0

0.7

6

0.6

9

Na

3.4

1

3.4

1

3.4

8

3.3

5

3.4

4

3.4

2

3.3

1

3.2

2

3.2

3

3.2

2

3.3

6

3.2

9

3.2

5

3.2

9

3.2

4

3.3

0

3.3

1

3.2

6

K

0.2

2

0.2

4

0.2

0

0.2

2

0.2

2

0.2

1

0.2

0

0.2

0

0.2

0

0.1

9

0.2

3

0.2

2

0.1

8

0.2

2

0.1

9

0.2

5

0.1

6

0.1

5

P

0.1

1

0.0

9

0.1

0

0.1

0

0.0

5

0.0

8

0.0

9

0.0

9

0.1

2

0.1

1

0.0

9

0.0

6

0.1

1

0.0

6

0.0

7

0.1

0

0.1

0

0.0

6

Cr

K/T

i

0.2

7

0.2

9

0.2

5

0.2

8

0.2

7

0.2

6

0.2

3

0.2

4

0.3

0

0.2

3

0.2

7

0.2

6

0.2

4

0.2

7

0.2

2

0.3

1

0.2

0

0.2

1

Cl/

K

Page 127: Constraining the nature of E- and N-type components in the Baffin

114

Mel

t in

clu

sion

s co

nti

nu

ed

S

amp

le

PI1

9c

PI2

3c

PI2

3c

PI2

3c

PI2

3c

PI2

3c

PI2

3c

PI2

3c

PI2

3c

PI2

3c

PI2

3c

Typ

e

N

E

E

E

E

E

E

E

E

E

E

(wt

%)

S

iO2

48

.58

50

.30

49

.74

49

.57

49

.78

49

.48

49

.50

49

.12

49

.27

49

.05

48

.84

MgO

8.6

8

6.8

5

7.2

9

7.6

2

7.9

4

8.0

8

8.1

0

8.1

6

8.0

9

8.3

2

8.2

0

Mn

O

0

.17

0.1

6

0.1

4

0.1

7

0.1

7

0.1

6

0.1

4

0.1

7

0.1

7

0.1

6

0.1

5

CaO

13

.85

14

.13

14

.30

14

.23

14

.08

13

.79

14

.03

13

.88

13

.87

13

.96

13

.84

FeO

*

9.6

7

8.6

3

8.6

1

8.7

7

8.7

9

8.8

0

8.8

2

8.7

6

8.8

2

8.7

3

8.7

6

Al 2

O3

15

.25

16

.73

16

.27

16

.24

16

.16

16

.09

16

.07

15

.79

15

.64

15

.85

15

.81

TiO

2

1

.10

1.1

7

1.0

7

1.1

1

1.1

0

1.1

1

1.0

4

1.1

5

1.0

7

1.1

5

1.0

4

Na 2

O

1

.75

2.0

3

2.0

2

1.9

2

1.9

5

2.0

4

1.9

8

1.9

1

1.9

7

1.9

5

1.9

1

K2O

0.0

7

0.1

5

0.1

6

0.1

6

0.2

0

0.1

5

0.1

6

0.1

5

0.1

6

0.1

7

0.1

6

P2O

5

0.1

1

0.1

1

0.1

1

0.1

0

0.1

0

0.1

0

0.0

8

0.1

5

0.0

9

0.1

3

0.1

3

Cr 2

O3

T

ota

l

99

.23

10

0.2

6

99

.71

99

.89

10

0.2

7

99

.80

99

.92

99

.24

99

.15

99

.47

98

.84

Cl

(pp

m)

S

(pp

m)

C

atio

ns

pro

po

rtio

ns

(100

cat

ion

s)

Si

44

.94

46

.19

45

.89

45

.57

45

.53

45

.44

45

.46

45

.37

45

.54

45

.18

45

.31

Mg

11

.97

9.3

8

10

.03

10

.44

10

.83

11

.06

11

.09

11

.24

11

.15

11

.42

11

.34

Mn

1.1

9

1.1

1

0.9

8

1.1

8

1.1

8

1.1

1

0.9

7

1.1

9

1.1

9

1.1

2

1.0

5

Ca

13

.73

13

.90

14

.14

14

.02

13

.80

13

.57

13

.81

13

.74

13

.74

13

.78

13

.76

Fe

7.4

8

6.6

3

6.6

4

6.7

4

6.7

2

6.7

6

6.7

7

6.7

7

6.8

2

6.7

2

6.8

0

Al

16

.62

18

.11

17

.69

17

.59

17

.42

17

.41

17

.40

17

.19

17

.04

17

.20

17

.29

Ti

0.7

7

0.8

1

0.7

4

0.7

7

0.7

6

0.7

7

0.7

2

0.8

0

0.7

4

0.8

0

0.7

3

Na

3.1

4

3.6

1

3.6

1

3.4

2

3.4

6

3.6

3

3.5

3

3.4

2

3.5

3

3.4

8

3.4

4

K

0.0

8

0.1

8

0.1

9

0.1

9

0.2

3

0.1

8

0.1

9

0.1

8

0.1

9

0.2

0

0.1

9

P

0.0

9

0.0

9

0.0

9

0.0

8

0.0

8

0.0

8

0.0

6

0.1

2

0.0

7

0.1

0

0.1

0

Cr

K

/Ti

0

.11

0.2

2

0.2

5

0.2

4

0.3

1

0.2

3

0.2

6

0.2

2

0.2

5

0.2

5

0.2

6

Cl/

K

Page 128: Constraining the nature of E- and N-type components in the Baffin

115

Table 4 Olivine-melt inclusion traverse for sample Db15/13. Major and minor

elements given as weight percent oxide and analyzed by electron microprobe.

Uncertainty was below 1% for major elements, checked by analyzing standards.

Mg number is defined as Mg/(Mg+Fe). All Fe as FeO*.

Page 129: Constraining the nature of E- and N-type components in the Baffin

116

Oli

vin

e-m

elt

incl

usi

on

-oli

vin

e tr

aver

ses

Ph

ase

Oli

vin

e O

livin

e O

livin

e O

livin

e O

livin

e M

I M

I M

I M

I M

I M

I M

I M

I M

I M

I

Dis

tan

ce

(µm

) 0

1

0

20

30

40

50

60

70

80

90

10

0

11

0

12

0

13

0

14

0

SiO

2

40

.99

41

.01

40

.51

40

.46

49

.79

46

.33

49

.64

49

.56

49

.61

49

.52

49

.53

49

.76

49

.55

49

.58

49

.58

MgO

4

7.5

7

47

.99

47

.29

47

.14

6.4

8

13

.50

7.3

8

7.8

4

8.0

1

8.1

7

8.2

4

8.1

6

8.1

7

8.1

8

8.1

9

Mn

O

0.2

0

0.1

7

0.1

9

0.1

9

0.1

4

0.1

0

0.1

5

0.1

9

0.1

6

0.1

4

0.1

2

0.1

8

0.1

7

0.1

6

0.2

0

CaO

0

.33

0.3

3

0.3

4

0.3

8

14

.19

8.8

5

14

.37

14

.29

14

.08

14

.10

13

.99

13

.86

13

.98

13

.99

13

.95

FeO

*

11

.94

11

.87

12

.01

12

.61

9.2

2

10

.20

9.6

4

9.8

1

9.5

9

9.8

4

9.6

5

9.5

1

9.6

7

9.6

3

9.6

5

Al 2

O3

0.0

8

0.0

7

0.0

6

0.0

6

15

.86

13

.12

15

.52

15

.46

15

.44

15

.32

15

.50

15

.34

15

.36

15

.31

15

.29

TiO

2

0.0

1

0.0

0

0.0

0

0.0

1

1.1

8

1.1

0

1.1

9

1.1

5

1.1

4

1.2

2

1.1

1

1.1

3

1.2

5

1.1

2

1.1

5

Na 2

O

1.0

8

1.7

8

1.8

2

1.8

0

1.7

9

1.7

4

1.7

3

1.8

5

1.7

6

1.7

8

K2O

0.0

8

0.0

8

0.0

7

0.0

9

0.0

9

0.0

8

0.1

1

0.0

9

0.0

8

0.0

9

P2O

5

0.0

0

0.1

9

0.0

0

0.0

0

0.0

0

0.0

0

0.1

8

0.3

8

0.2

0

0.2

9

Cr 2

O3

0.0

4

0.0

6

0.0

6

0.0

7

0.0

6

0.0

6

0.0

7

0.0

5

0.0

6

0.0

9

NiO

0

.32

0.3

2

0.3

2

0.3

1

0.0

1

To

tal

10

1.4

4

10

1.7

5

10

0.7

2

10

1.1

6

96

.87

94

.40

10

0.0

0

10

0.2

6

99

.98

10

0.2

3

10

0.0

3

10

0.0

3

10

0.5

3

10

0.0

7

10

0.2

7

Cat

ion

pro

po

rtio

n (

10

0 c

atio

ns)

S

i 3

3.0

3

32

.96

32

.88

32

.77

48

.34

44

.67

45

.88

45

.48

45

.70

45

.58

45

.69

45

.78

45

.38

45

.63

45

.46

Mg

57

.13

57

.50

57

.22

56

.92

9.3

8

19

.41

10

.17

10

.73

11

.00

11

.20

11

.32

11

.19

11

.16

11

.22

11

.19

Mn

1.2

3

1.0

0

1.1

9

1.1

7

1.0

3

0.6

9

1.0

4

1.3

3

1.1

0

0.9

5

0.8

4

1.2

3

1.1

7

1.1

3

1.3

5

Ca

0.2

8

0.2

9

0.2

9

0.3

3

14

.75

9.1

5

14

.24

14

.05

13

.90

13

.90

13

.83

13

.66

13

.71

13

.79

13

.71

Fe

8.0

5

7.9

8

8.1

5

8.5

4

7.4

8

8.2

3

7.4

6

7.5

3

7.3

9

7.5

7

7.4

4

7.3

1

7.4

1

7.4

2

7.4

0

Al

0.0

7

0.0

7

0.0

6

0.0

5

18

.15

14

.91

16

.91

16

.72

16

.76

16

.62

16

.85

16

.64

16

.58

16

.61

16

.53

Ti

0.0

0

0.0

0

0.0

0

0.0

1

0.8

6

0.8

0

0.8

3

0.8

0

0.7

9

0.8

5

0.7

7

0.7

8

0.8

6

0.7

7

0.8

0

Na

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

2.0

2

3.1

9

3.2

4

3.2

1

3.1

9

3.1

2

3.0

8

3.2

9

3.1

3

3.1

6

K

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

9

0.1

0

0.0

9

0.1

0

0.1

0

0.0

9

0.1

2

0.1

1

0.0

9

0.1

1

P

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.1

4

0.0

0

0.0

0

0.0

0

0.0

0

0.1

4

0.2

9

0.1

6

0.2

3

Cr

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

3

0.0

5

0.0

4

0.0

5

0.0

4

0.0

5

0.0

5

0.0

4

0.0

4

0.0

6

Ni

0.2

1

0.2

0

0.2

1

0.2

0

0.0

1

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

Fe/

Mg

0.1

4

0.1

4

0.1

4

0.1

5

0.8

0

0.4

2

0.7

3

0.7

0

0.6

7

0.6

8

0.6

6

0.6

5

0.6

6

0.6

6

0.6

6

Mg n

um

ber

8

7.6

5

87

.82

87

.53

86

.95

55

.64

70

.23

57

.71

58

.76

59

.81

59

.68

60

.34

60

.48

60

.10

60

.21

60

.19

Page 130: Constraining the nature of E- and N-type components in the Baffin

117

Oli

vin

e-m

elt

incl

usi

on

-oli

vin

e tr

aver

ses

con

tin

ued

Ph

ase

MI

MI

MI

MI

Oli

vin

e O

livin

e O

livin

e O

livin

e O

livin

e

Dis

tan

ce (

µm

) 1

50

16

0

17

0

18

0

19

0

20

0

21

0

22

0

23

0

SiO

2

49

.56

49

.47

49

.67

43

.20

40

.99

40

.99

40

.87

40

.86

40

.96

MgO

7

.99

7.7

6

6.8

3

36

.76

45

.05

47

.49

47

.59

47

.41

47

.76

Mn

O

0.1

8

0.1

8

0.2

1

0.1

6

0.2

0

0.2

0

0.1

9

0.2

0

0.1

8

CaO

1

4.1

2

14

.40

14

.54

3.0

6

0.4

5

0.3

4

0.3

3

0.3

5

0.3

4

FeO

*

9.6

8

10

.04

9.6

6

12

.78

12

.92

11

.95

11

.84

11

.84

11

.90

Al 2

O3

15

.26

15

.42

15

.71

4.3

8

0.3

4

0.0

5

0.0

6

0.0

5

0.0

4

TiO

2

1.0

5

1.2

0

1.1

5

0.1

8

0.0

2

0.0

1

0.0

0

0.0

0

0.0

1

Na 2

O

1.7

7

1.7

9

1.8

8

0.4

8

K

2O

0

.08

0.0

9

0.0

9

0.0

5

P

2O

5

0.0

0

0.1

4

0.0

7

0.2

2

C

r 2O

3

0.0

7

0.0

9

0.0

8

0.0

4

N

iO

0.2

8

0.3

2

0.3

2

0.3

2

0.3

3

To

tal

99

.76

10

0.5

8

99

.87

10

1.2

9

10

0.2

5

10

1.3

4

10

1.2

0

10

1.0

3

10

1.5

1

Cat

ion

pro

po

rtio

n (

10

0 c

atio

ns)

Si

45

.71

45

.36

45

.86

36

.10

33

.72

33

.07

32

.99

33

.05

33

.00

Mg

10

.99

10

.61

9.4

0

45

.79

55

.24

57

.11

57

.28

57

.17

57

.35

Mn

1.2

4

1.2

4

1.4

3

1.0

1

1.2

3

1.2

2

1.1

7

1.2

1

1.1

0

Ca

13

.96

14

.15

14

.38

2.7

4

0.4

0

0.2

9

0.2

9

0.3

1

0.2

9

Fe

7.4

7

7.7

0

7.4

6

8.9

3

8.8

9

8.0

6

7.9

9

8.0

1

8.0

1

Al

16

.59

16

.66

17

.09

4.3

2

0.3

3

0.0

5

0.0

6

0.0

4

0.0

4

Ti

0.7

3

0.8

3

0.8

0

0.1

1

0.0

1

0.0

1

0.0

0

0.0

0

0.0

0

Na

3.1

6

3.1

9

3.3

6

0.7

7

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

K

0.1

0

0.1

0

0.1

0

0.0

5

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

P

0.0

0

0.1

1

0.0

5

0.1

6

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

Cr

0.0

5

0.0

6

0.0

6

0.0

2

0.0

0

0.0

0

0.0

0

0.0

0

0.0

0

Ni

0.0

0

0.0

0

0.0

0

0.0

0

0.1

9

0.2

1

0.2

1

0.2

1

0.2

2

Fe/

Mg

0.6

8

0.7

3

0.7

9

0.1

9

0.1

6

0.1

4

0.1

4

0.1

4

0.1

4

Mg n

um

ber

5

9.5

3

57

.95

55

.77

83

.68

86

.14

87

.63

87

.76

87

.71

87

.74

Page 131: Constraining the nature of E- and N-type components in the Baffin

118

Table 5 Pillow margin matrix glass volatile chemistry. Volatile ratios obtained

using secondary ion mass spectrometry (SIMS). Concentrations calculated using

SIMS ratio data and calibration curves and corrected for background volatiles (see

Methods). Error propagation calculated as error on calibration curve slope,

concentration and (for H2O) y-intercept.

Page 132: Constraining the nature of E- and N-type components in the Baffin

119

Pil

low

mar

gin

mat

rix g

lass

vo

lati

les

Sam

ple

A

k1

2/2

mtx

A

Ak1

2/2

mtx

B

Ak1

2/6

mtx

D

b1

5/2

6m

tx

PI1

7/1

8m

txA

P

I17

/18

mtx

B

Typ

e N

N

N

N

E

E

(pp

m)

CO

2

0

0

0

0

2

11

2

H2O

(w

t %

) 0

0

0

0

0

0

F

73

72

74

83

13

4

14

1

S

71

73

75

18

41

42

Cl

18

18

20

27

64

66

Pro

pag

ated

err

or6

CO

2

0

0

0

0

11

6

11

4

H2O

(w

t %

) 1

2

3

1

3

1

F

28

28

28

28

30

15

3

S

4

4

5

2

3

35

Cl

4

4

4

4

5

66

Co

rrec

ted

SIM

S r

atio

C/ S

i -2

.56

E-0

3

-3.0

4E

-03

-2.0

5E

-03

-2.8

6E

-03

1.4

0E

-04

8.0

9E

-03

OH/ S

i 5

.20

E-0

2

2.1

5E

-02

-1.6

5E

-02

-4.0

0E

-02

-1.7

0E

-02

6.6

0E

-02

F/ S

i 2

.13

E-0

1

2.1

3E

-01

2.1

8E

-01

2.4

5E

-01

3.9

4E

-01

4.1

4E

-01

S/ S

i 1

.15

E-0

1

1.1

8E

-01

1.2

0E

-01

2.8

2E

-02

6.6

0E

-02

6.7

2E

-02

Cl / S

i 2

.60

E-0

2

2.6

0E

-02

2.7

8E

-02

3.8

1E

-02

9.1

1E

-02

9.3

0E

-02

Err

or

on

SIM

S r

aw r

atio

C/ S

i

3.8

4E

-03

3.8

3E

-03

3.8

6E

-03

3.8

5E

-03

4.1

8E

-03

4.1

3E

-03

OH/ S

i

3.2

1E

-01

3.2

1E

-01

3.2

1E

-01

3.2

1E

-01

3.2

1E

-01

4.6

3E

-01

F/ S

i 3

.96

E-0

2

3.9

6E

-02

3.9

8E

-02

3.9

6E

-02

3.9

7E

-02

2.2

3E

-01

S/ S

i 1

.48

E-0

3

1.2

8E

-03

1.4

8E

-03

1.1

3E

-03

1.4

9E

-03

2.7

7E

-02

Cl / S

i 2

.93

E-0

3

2.9

3E

-03

2.9

5E

-03

2.9

5E

-03

3.1

6E

-03

4.7

0E

-02

Page 133: Constraining the nature of E- and N-type components in the Baffin

120

Table 6 Melt inclusion volatile chemistry. Volatile ratios obtained using

secondary ion mass spectrometry (SIMS). Concentrations calculated using SIMS

ratio data and calibration curves and corrected for background volatiles (see

Methods). Error propagation calculated as error on calibration curve slope,

concentration and (for H2O) y-intercept.

Page 134: Constraining the nature of E- and N-type components in the Baffin

121

Mel

t in

clu

sion

vo

lati

les

Sam

ple

A

k1

2/i

4

Ak1

2/i

7

Ak1

2/i

9

Ak1

2/i

11

Ak1

2/i

16

Ak1

2/i

24

Db

15

/i7

Db

15

/i10

Db

15

/i12

Db

15

/i18

Db

15

/i26

.1

Typ

e

N

N

N

N

N

N

E

N

N

N

N

(pp

m)

C

O2

24

16

17

4

16

40

11

57

0

36

23

9

41

1

45

4

16

H2O

(w

t %

) 0

.0

0.0

0

.0

0.0

0

.0

0.0

0

.0

0.0

0

.0

0.0

0

.0

F

54

11

64

55

73

77

96

76

46

79

61

S

12

0

12

1

16

1

15

1

19

9

15

0

80

1

23

0

83

11

2

71

Cl

15

5

20

13

18

20

50

30

23

30

23

Pro

pag

ated

err

or

C

O2

19

01

19

6

59

7

11

0

10

8

0

10

7

11

3

32

7

29

8

13

7

H2O

(w

t %

) 1

1

0

0

0

2

5

1

1

0

2

2

F

28

27

28

28

28

28

28

28

27

28

28

S

7

8

9

9

12

9

45

14

5

7

4

Cl

4

5

4

4

4

4

4

4

4

4

4

SIM

S r

atio

C/ S

i 1

.75

E-0

1

1.2

6E

-02

1.1

8E

-01

7.8

7E

-04

4.1

4E

-03

-7.9

2E

-04

2.6

0E

-03

1.7

2E

-02

2.9

7E

-02

3.2

8E

-02

1.1

4E

-03

OH/ S

i 2

.73

E-0

2

3.6

2E

-02

9.0

5E

-02

6.5

2E

-02

6.7

6E

-02

1.8

8E

-03

-4.4

7E

-02

-4.4

7E

-02

1.4

3E

-01

2.0

8E

-02

-3.0

6E

-02

F/ S

i 1

.60

E-0

1

3.3

1E

-02

1.8

9E

-01

1.6

2E

-01

2.1

4E

-01

2.2

7E

-01

2.8

3E

-01

2.2

3E

-01

1.3

5E

-01

2.3

2E

-01

1.7

8E

-01

S/ S

i 1

.93

E-0

1

1.9

4E

-01

2.5

8E

-01

2.4

2E

-01

3.1

9E

-01

2.4

1E

-01

1.2

9E

+00

3.6

9E

-01

1.3

3E

-01

1.8

0E

-01

1.1

3E

-01

Cl / S

i 2

.18

E-0

2

7.5

4E

-03

2.8

4E

-02

1.8

1E

-02

2.4

9E

-02

2.8

0E

-02

7.1

0E

-02

4.3

2E

-02

3.2

1E

-02

4.2

3E

-02

3.3

0E

-02

Err

or

on

SIM

S r

aw r

atio

C/ S

i 6

.87

E-0

2

7.0

7E

-03

2.1

6E

-02

3.9

8E

-03

3.8

9E

-03

3.8

3E

-03

3.8

6E

-03

4.0

6E

-03

1.1

8E

-02

1.0

8E

-02

4.9

6E

-03

OH/ S

i

3.2

1E

-01

3.2

1E

-01

3.2

1E

-01

3.2

1E

-01

3.2

1E

-01

3.2

1E

-01

3.2

1E

-01

3.2

1E

-01

3.2

1E

-01

3.2

1E

-01

3.2

1E

-01

F/ S

i

3.9

7E

-02

3.9

5E

-02

3.9

5E

-02

3.9

6E

-02

3.9

7E

-02

3.9

6E

-02

3.9

6E

-02

3.9

7E

-02

3.9

6E

-02

3.9

6E

-02

3.9

5E

-02

S/ S

i

1.5

2E

-03

2.8

5E

-03

2.0

6E

-03

1.7

1E

-03

2.2

6E

-03

2.0

7E

-03

4.0

2E

-03

3.9

9E

-03

1.7

0E

-03

1.4

8E

-03

1.2

8E

-03

Cl / S

i 2

.99

E-0

3

3.5

3E

-03

2.9

7E

-03

3.0

1E

-03

2.9

7E

-03

2.9

5E

-03

2.9

7E

-03

3.0

9E

-03

2.9

4E

-03

2.9

7E

-03

2.9

7E

-03

Page 135: Constraining the nature of E- and N-type components in the Baffin

122

Mel

t in

clu

sion

vo

lati

les

con

tinu

ed

S

amp

le

Pd

13

/i1

2

Pd

13

/i1

5

Pd

13

/i1

8.1

P

d13

/i1

8.2

P

d19

/i3

Pd

19

/i6

.1

Pd

19

/i6

.2

Pd

19

/i1

1

PI1

7/i

1

PI1

7/i

2

PI1

7/i

5

Typ

e

N

N

N

N

N

N

N

N

E

E

E

(pp

m)

C

O2

4

0

48

24

22

56

13

64

44

7

70

12

44

78

12

76

H2O

(w

t %

) 0

.0

0.0

0

.0

0.0

0

.1

0.0

0

.0

0.0

0

.0

0.0

0

.0

F

99

79

10

2

45

10

2

6

11

0

3

81

12

2

70

S

77

10

2

38

5

10

2

11

2

9

15

1

1

26

8

14

5

85

Cl

29

21

23

12

64

15

23

1

25

54

36

Pro

pag

ated

err

or

C

O2

11

0

0

10

9

10

8

71

0

54

4

35

4

11

6

15

23

12

4

25

3

H2O

(w

t %

) 1

1

1

1

0

0

0

0

1

1

0

F

29

28

29

27

31

27

29

27

28

29

28

S

5

6

22

6

15

2

10

2

16

8

5

Cl

4

4

4

4

17

9

8

4

4

4

5

SIM

S r

atio

C/ S

i 2

.73

E-0

4

-1.5

4E

-03

3.5

0E

-03

1.7

1E

-03

1.6

3E

-01

9.8

5E

-02

3.2

3E

-02

5.0

6E

-03

8.9

9E

-02

5.6

3E

-03

9.2

2E

-02

OH/ S

i 3

.65

E-0

2

-6.8

5E

-02

-4.5

8E

-02

-6.6

1E

-02

4.5

9E

-01

1.8

9E

-01

1.2

7E

-01

1.4

1E

-01

4.5

0E

-02

-7.9

3E

-02

1.5

7E

-01

F/ S

i 2

.89

E-0

1

2.3

2E

-01

2.9

9E

-01

1.3

2E

-01

2.9

9E

-01

1.6

4E

-02

3.2

2E

-01

8.9

3E

-03

2.3

8E

-01

3.5

7E

-01

2.0

6E

-01

S/ S

i 1

.24

E-0

1

1.6

5E

-01

6.1

8E

-01

1.6

4E

-01

1.8

0E

-01

1.4

6E

-02

2.4

3E

-01

8.3

2E

-04

4.3

0E

-01

2.3

3E

-01

1.3

7E

-01

Cl / S

i 4

.10

E-0

2

3.0

3E

-02

3.2

5E

-02

1.6

5E

-02

9.0

3E

-02

2.1

6E

-02

3.2

3E

-02

1.2

0E

-03

3.5

8E

-02

7.6

8E

-02

5.0

7E

-02

Err

or

on

SIM

S r

aw r

atio

C/ S

i 3

.97

E-0

3

3.8

5E

-03

3.9

4E

-03

3.8

9E

-03

2.5

6E

-02

1.9

6E

-02

1.2

8E

-02

4.1

8E

-03

5.5

0E

-02

4.4

7E

-03

9.1

5E

-03

OH/ S

i

3.2

1E

-01

3.2

1E

-01

3.2

1E

-01

3.2

1E

-01

3.2

2E

-01

3.2

1E

-01

3.2

1E

-01

3.2

1E

-01

3.2

1E

-01

3.2

1E

-01

3.2

1E

-01

F/ S

i

4.0

0E

-02

3.9

7E

-02

3.9

7E

-02

3.9

7E

-02

4.2

7E

-02

3.9

9E

-02

4.0

3E

-02

3.9

9E

-02

3.9

5E

-02

3.9

6E

-02

4.0

5E

-02

S/ S

i

2.5

0E

-03

1.9

9E

-03

3.0

9E

-03

1.4

9E

-03

1.0

5E

-02

1.8

9E

-03

3.7

4E

-03

1.3

6E

-03

4.3

6E

-03

1.4

5E

-03

1.7

1E

-03

Cl / S

i 2

.99

E-0

3

2.9

7E

-03

2.9

5E

-03

2.9

4E

-03

1.1

7E

-02

6.4

2E

-03

5.6

0E

-03

2.9

9E

-03

2.9

5E

-03

2.9

4E

-03

3.1

6E

-03

Page 136: Constraining the nature of E- and N-type components in the Baffin

123

Mel

t in

clu

sion

vo

lati

les

con

tinu

ed

S

amp

le

PI1

7/i

9.1

P

I17

/i9

.2

PI1

7/i

13

.1

PI1

7/i

13

.2

PI1

7/i

14

PI1

7/i

18

PI1

7/i

19

PI1

7/i

20

.1

PI1

7/i

20

.2

Typ

e

E

N

E

E

E

E

E

E

E

(pp

m)

C

O2

85

8

45

8

12

9

10

46

74

12

89

19

71

76

0

H2O

(w

t %

) 0

.0

0.0

0

.0

0.0

0

.0

0.0

0

.0

0.0

0

.0

F

10

5

91

18

3

14

2

11

8

12

5

11

4

13

0

13

1

S

41

2

43

7

24

0

56

51

5

38

8

19

0

16

0

16

3

Cl

28

16

15

9

79

27

51

82

60

64

Pro

pag

ated

err

or

C

O2

73

5

24

1

13

5

58

7

11

4

16

1

15

0

10

8

0

H2O

(w

t %

) 1

1

3

2

1

3

2

6

1

F

29

28

32

30

29

29

29

30

30

S

24

25

14

4

29

22

11

9

9

Cl

5

4

7

12

4

5

5

4

4

SIM

S r

atio

C/ S

i 6

.20

E-0

2

3.3

1E

-02

9.3

3E

-03

7.5

6E

-02

5.3

1E

-03

9.3

2E

-02

1.4

2E

-01

5.4

7E

-03

-1.2

0E

-03

OH/ S

i 3

.60

E-0

2

5.3

0E

-02

1.5

8E

-02

-2.7

0E

-02

-1.2

3E

-01

1.4

8E

-02

2.1

0E

-02

-8.5

6E

-03

-6.2

2E

-02

F/ S

i 3

.08

E-0

1

2.6

8E

-01

5.3

6E

-01

4.1

6E

-01

3.4

8E

-01

3.6

8E

-01

3.3

4E

-01

3.8

3E

-01

3.8

6E

-01

S/ S

i 6

.61

E-0

1

7.0

2E

-01

3.8

6E

-01

9.0

2E

-02

8.2

7E

-01

6.2

4E

-01

3.0

5E

-01

2.5

7E

-01

2.6

3E

-01

Cl / S

i 3

.93

E-0

2

2.3

2E

-02

2.2

6E

-01

1.1

2E

-01

3.7

7E

-02

7.2

8E

-02

1.1

7E

-01

8.5

8E

-02

9.1

0E

-02

Err

or

on

SIM

S r

aw r

atio

C/ S

i 2

.66

E-0

2

8.7

1E

-03

4.8

9E

-03

2.1

2E

-02

4.1

3E

-03

5.8

3E

-03

5.4

0E

-03

3.8

9E

-03

3.8

7E

-03

OH/ S

i

3.2

1E

-01

3.2

1E

-01

3.2

1E

-01

3.2

1E

-01

3.2

1E

-01

3.2

1E

-01

3.2

1E

-01

3.2

1E

-01

3.2

1E

-01

F/ S

i

4.0

0E

-02

3.9

6E

-02

3.9

8E

-02

3.9

7E

-02

3.9

6E

-02

3.9

7E

-02

3.9

6E

-02

3.9

6E

-02

3.9

7E

-02

S/ S

i

3.5

8E

-03

4.2

3E

-03

2.6

3E

-03

2.2

5E

-03

3.1

8E

-03

2.7

6E

-03

2.1

1E

-03

1.7

9E

-03

1.4

3E

-03

Cl / S

i 3

.70

E-0

3

2.9

4E

-03

4.8

0E

-03

8.6

4E

-03

2.9

7E

-03

3.5

3E

-03

3.1

2E

-03

2.9

7E

-03

2.9

9E

-03

Page 137: Constraining the nature of E- and N-type components in the Baffin

124

Table 7 Geochemical models. See Appendix 1.1 for methods and details.

Page 138: Constraining the nature of E- and N-type components in the Baffin

125

Geo

chem

ical

model

ing

Sta

rtin

g

Com

posi

tion

Ass

imil

ant

1

Ass

imil

ant

2

Ass

imil

ant

3

Pd19

(Bulk

rock

)

*B

affi

n I

slan

d

gra

nit

e

**A

lter

ed b

asal

t

(1 w

t% H

2O

added

)

**

Alt

ered

bas

alt

(5 w

t% H

2O

add

ed)

Fra

ctio

nat

ion

(wt

%)

SiO

2

44.9

3

68.0

0

59.2

8

57

.01

MgO

22.0

4

0.6

7

2.6

3

2.5

3

Mn

O

0.1

8

0.0

4

0.1

9

0.1

8

CaO

9.0

3

2.7

2

1.3

9

1.3

4

FeO

*

10.4

2

3.4

2

3.2

9

Fe 2

O3

2.2

0

0.4

1

0.3

9

FeO

3.0

1

2.8

9

Al 2

O3

10.4

5

15.8

0

19.4

3

18

.69

TiO

2

0.7

9

0.3

9

2.6

5

2.5

5

Na 2

O

0.9

1

3.8

0

2.3

2

2.2

4

K2O

0.0

2

4.4

3

7.2

5

6.9

7

P2O

5

0.0

6

0.1

1

0.4

4

0.4

3

H2O

1.8

4

0.9

9

4.7

8

Cl

(pp

m)

2000.0

2

00

0.0

K/T

i

Cl/

K

*

Sam

ple

95T

-511 f

rom

Ther

iault

et

al 2

003

* *

Sam

ple

d 8

01B

-37R

-1 f

rom

Kel

ley e

t al

. 2003 w

ith S

ite

801 C

l co

nte

nts

fro

m B

arn

es e

t

al. 2

012

Page 139: Constraining the nature of E- and N-type components in the Baffin

126

Geo

chem

ical

model

ing

conti

nu

ed

Ass

imil

ant

1

Ass

imil

ant

2

Ass

imil

ant

3

1 %

Co

nta

min

atio

n

1 %

Conta

min

atio

n

10 %

Conta

min

atio

n

10 %

Conta

min

atio

n

20 %

Conta

min

atio

n

10

%

Co

nta

min

atio

n

50

%

Co

nta

min

atio

n

Fra

ctio

nat

ion

35

.1 %

80.6

%

5.3

%

4.4

%

4.4

%

4.4

%

4.4

%

(wt

%)

S

iO2

40

.75

52.3

1

40.8

2

40.7

4

40.7

8

40

.72

40

.80

MgO

6.9

1

1.7

1

18.1

2

18.4

5

18.0

1

18

.44

16

.47

MnO

0.1

7

0.3

3

0.1

7

0.1

7

0.1

7

0.1

7

0.1

7

CaO

11

.71

20.1

8

8.5

9

8.5

1

8.5

2

8.5

1

8.4

5

FeO

*

9.5

0

19.9

2

9.5

3

9.5

3

9.4

9

9.5

2

9.2

6

Fe 2

O3

F

eO

A

l 2O

3

27

.32

0.5

1

20.0

5

19.8

9

20.1

5

19

.88

20

.99

TiO

2

1.0

5

4.1

1

0.7

5

0.7

6

0.7

8

0.7

6

0.8

4

Na 2

O

2

.39

0.1

0

1.7

7

1.7

4

1.7

7

1.7

4

1.8

8

K2O

0.0

5

0.2

1

0.0

9

0.1

0

0.2

0

0.1

0

0.6

0

P2O

5

0.1

6

0.6

2

0.1

2

0.1

2

0.1

2

0.1

2

0.1

5

H2O

C

l (p

pm

)

40

41

40

41

K/T

i 0

.08

6

0.0

86

0.2

0.2

3

0.4

3

0.2

3

1.2

Cl/

K

0.0

3

0.0

003

2

0.0

36

0.0

06

Page 140: Constraining the nature of E- and N-type components in the Baffin

127

Appendix 1. Supplementary methods information regarding modeling and SIMS

sample preparation.

Page 141: Constraining the nature of E- and N-type components in the Baffin

128

1.1 Modeling crystal fractionation and crustal contamination

Both MELTS (Asimow & Ghiorso 1998) and XSTALN, a thermodynamic

modeling program by Don Francis, were used in this study to model crystal

fractionation and contamination in order to determine if these processes can

reproduce the K/Ti ratios in the Baffin suite. To see the effects of crystal

fractionation on the K/Ti ratio, sample Db14/3 was used as a representative N-

type starting composition in MELTS and the temperature was decreased from the

liquidus, ~1220 °C, in 20 ° C steps to ~1050 °C (i.e., approximate eruption

temperature calculated using the Nielsen and Dungan [1983] two-lattice mixing

model). In MELTS, olivine and plagioclase were crystallized (where the timing of

crystallization is determined by the program itself) and in XSTALN, olivine was

made to crystallize first, followed by olivine and plagioclase in the proportion

70:30 (olivine:plagioclase), an approximation of their cotectic proportions at that

temperature. The results obtained from these two modeling programs are shown

in Table 7.

To model the effects of contamination of granitic crust on the variation of

K/Ti and Cl/K, our starting composition was whole rock sample Pd-19 (22 wt %

MgO) and we used Baffin sample 95T-511 from Thériault et al. (2003) as the

contaminant composition (Table 7). In both MELTS and XSTALN, we increased

the percent of added contaminant until a K/Ti ratio of 0.2 was achieved (i.e., the

lowest E-type K/Ti ratio). To model the effects of contamination of

hydrothermally altered oceanic crust on the variation of K/Ti and Cl/K using Pd-

19 again, we used the major element composition from Kelley et al.’s (2003)

sample 801B-37R-1 with an average Cl content (0.02 wt %) for the same

Page 142: Constraining the nature of E- and N-type components in the Baffin

129

sampling site (Site 801) from Barnes et al. (2012). As the major element

composition did not include water, 1 wt % and 5 wt % H2O were each added by

diluting the other oxides accordingly. Using both modeling programs, we

modeled the addition of each of these contaminants with concurrent fractionation

of olivine and plagioclase until a K/Ti ratio of 0.2 and a Cl/K of 0.08 (i.e., the

highest mantle value) was achieved. In XSTALN, olivine was crystalized first

followed by olivine + plagioclase in their cotectic proportions.

1.2 SIMS sample preparation

The five samples chosen for SIMS analysis were pulverized to ~500

micron fragments (approximately the size of an average olivine phenocryst). The

crushed margins were then sieved and 400-500 μm and 500-600 μm sized crystals

were used to make grain mounts. The sieved crystals were immersed in water-

soluble glycerine on blank slides under the microscope, and olivines hosting the

largest melt inclusions with the smallest shrinkage bubbles were extracted with

tweezers for SIMS analysis. Unlike microprobe analysis, melt inclusions less than

60 µm were also selected as these had no visible shrinkage bubbles. These olivine

crystals were then mounted using Stuers EpoFix epoxy in a one-inch external

diameter aluminum ring and ground until the first desired melt inclusion was

exposed. A second epoxy mount was created by removing olivine crystals as their

melt inclusions were exposed by further grinding with 600 grit paper. Olivines

were removed by hand using a soldering iron, with care was paid to avoid

fracturing the crystals. The melt inclusions were examined using transmitted and

reflected light to avoid shrinkage bubbles and/or cracks. In the case of the larger

Page 143: Constraining the nature of E- and N-type components in the Baffin

130

melt inclusions (>60 μm diameter), however, shrinkage bubbles were almost

always present. This second mount was polished with 800- and then 1200-grit

abrasive paper, and finally with 1 micron alumina paste, rinsing in a sonic bath

between grinding steps. The crystals were then individually removed by hand

from the epoxy with a soldering iron and placed in an indium mount. Special

attention was paid to ensure that the olivine crystals were placed such that the

exposed and polished melt inclusions were flat. Once all the crystals were placed

in the indium mount, the mount was placed in a metal press for 15 minutes at a

time to ensure the grains were secured in the indium and that all inclusions were

indeed flat. The indium mount was cleaned with 0.3 μm diamond paste and rinsed

with Milli-Q water and compressed air several times to remove any paste that may

have remained between the crystals and indium. The indium mount was dried in a

vacuum oven at 110°C and 10-3

torr for at least 12 hours, gold-coated, then stored

in a 10-7

torr vacuum for 24 hours before the commencement of SIMS analysis.

1.3 Modeling crystallization depth estimation using the SolEx program

Since the water contents of the melt inclusions and pillow margin glasses

are below the background volatile levels, the SolEx CO2-H2O model for

crystallization depth/ depth of melt inclusion formation cannot be directly applied

with the observed water concentrations. This program is relatively insensitive to

changes in water content, however (i.e., the slope on a CO2 vs. H2O graph is

almost zero at low water contents), and so the SolEx program was used to

calculate CO2 solubility at the minimum water content (0.0001 wt % H2O [100

ppm]) the program would run. Melt inclusion Db15/i18 was used as a starting

Page 144: Constraining the nature of E- and N-type components in the Baffin

131

composition to calculate the SolEx isobars, as it has a K/Ti ratio of 0.18 (and so is

not strongly E- nor strongly N-type) and has been analyzed for volatiles. The

SolEx program was run at an oxygen fugacity of NNO +0.5, and at a temperature

of ~1200°C.

Page 145: Constraining the nature of E- and N-type components in the Baffin

132

Appendix 2. Olivine volatile ratios obtained using secondary ion mass

spectrometry (SIMS). Concentrations calculated using SIMS ratio data and

calibration curves. Error propagation calculated as error on calibration curve

slope, concentration and (for H2O) y-intercept. Cl concentrations are low in

olivine, therefore the standard deviation is large, causing unrealistic errors.

Page 146: Constraining the nature of E- and N-type components in the Baffin

133

Olivine volatile blanks

Sample PI17/18 Pd19/8 Ak12/6a Pd13/15a

(ppm)

CO2 64 107 154 153

H2O (wt %) 0.13 0.26 0.21 0.27

F 22 35 29 34

S 1 1 1 2

Cl 1 1 1 1

Propagated error8

CO2 105 454 74 193

H2O (wt %) 0 0 0 0

F 2 3 3 3

S 1 1 1 1

Cl9 1417889 918218 1393882 1091427

SIMS raw ratio

C/Si 4.64E-03 7.76E-03 1.11E-02 1.10E-02 OH/Si 5.48E-01 8.85E-01 7.51E-01 9.04E-01

F/Si 6.50E-02 1.03E-01 8.56E-02 1.00E-01

S/Si 1.54E-03 2.32E-03 2.33E-03 2.83E-03

Cl/Si 9.75E-04 1.47E-03 1.42E-03 2.13E-03

Standard deviations on SIMS raw ratio

C/Si 1 sigma 3.81E-03 1.64E-02 2.67E-03 6.96E-03

OH/Si 1 sigma 3.46E-03 7.38E-03 3.89E-03 9.39E-03

F/Si 1 sigma 5.45E-04 1.00E-03 6.01E-04 1.20E-03

S/Si 1 sigma 4.47E-04 5.02E-04 5.37E-04 1.05E-03

Cl/Si 1 sigma 1.01E+03 6.51E+02 9.89E+02 7.74E+02

Page 147: Constraining the nature of E- and N-type components in the Baffin

134

Appendix 3. P1326-2 glass standard composition, used to monitor SIMS

reproducibility. Major elements and trace elements analyzed by electron

microprobe. All Fe as FeO*. Concentrations calculated using SIMS ratio data and

calibration curves and corrected for background volatiles (see Methodology).

Error propagation calculated as error on calibration curve slope, concentration and

(for H2O) y-intercept.

Page 148: Constraining the nature of E- and N-type components in the Baffin

135

P1326-2 Standard

Sample P1326-2 Propagated error

(wt %)

SiO2 49.17

MgO 7.55

MnO 0.19

CaO 12.32

FeO* 10.76

Al2O3 14.70

TiO2 1.56

Na2O 2.80

K2O 0.20

Cr2O3 0.01

Total 99.65

CO2 (ppm) 291 3.8

H2O (wt %) 0.068 0.0002

F (ppm) 150 0.45

S (ppm) 1448 2

Cl (ppm) 190 0.35

Cations proportions (100 cations)

Si 45.41

Mg 10.40

Mn 1.33

Ca 12.19

Fe 8.31

Al 16.00

Ti 1.08

Na 5.01

K 0.24

Cr 0.01

Total: 100.00

Page 149: Constraining the nature of E- and N-type components in the Baffin

136

Appendix 4 Electron microprobe detection limits for major and minor elements.

Page 150: Constraining the nature of E- and N-type components in the Baffin

137

Detection limits

Electron Microprobe

Glass Olivine

ppm ppm

Si 376 429

Mg 384 281

Mn 756 331

Ca 421 130

Fe 855 221

Al 340 333

Ti 1483 251

Ni n/a 133

Na 466 n/a

K 321 n/a

P 401* n/a

Cr 447 432

S 233 n/a

Cl 52 n/a

*D.L. is 2165 ppm for samples Ak2, Ak12, Ak11a, PI12 and

Db15

Page 151: Constraining the nature of E- and N-type components in the Baffin

138

Appendix 5 Electron microprobe reproducibility data for major and minor

elements.

Page 152: Constraining the nature of E- and N-type components in the Baffin

139

Microprobe glass data reproducibility using standard VG-2

K2O TiO2 K/Ti

Average 1s Average 1s Average 1s

Apr-11 0.22 0.013 1.81 0.072 0.20 0.017

Jul-11 0.21 0.014 1.91 0.10 0.19 0.006

Aug-11 0.21 0.010 1.86 0.070 0.20 0.014

Dec-11 0.21 0.0074 1.82 0.097 0.20 0.012

All 0.21 0.010 1.85 0.090 0.20 0.013

Microprobe olivine data reproducibility using an olivine standard

MgO FeO

Date Average Percent

difference Average

Percent

difference

Jul-11 51.02 0.57 7.70 0.34

Aug-11 51.07 0.06 7.78 0.40