2
Frequent Constants geostationary orbit altitude h GEO 35786 km Low Earth Orbit altitude h LEO 120-3000 km speed of light c 299792.458 km / s universal gas constant (ideal gas) R 8.3144598 J mol -1 K -1 Moon distance from Earth d 384402 km Moon radius R 1737 km Moon surface acceleration g 1.625 m/s 2 Mars radius R 3396 km Mars surface acceleration g 3.72 m/s 2 Newtonian constant of gravitation G 6.673 848 × 10 -11 m 3 kg -1 s -2 standard acceleration of gravity g 0 9.806 65 m s -2 Earth mass M 5.974 × 10 24 kg Earth radius (volumetric mean) R 6.378 × 10 6 m solar luminosity L 3.846 × 10 26 W solar mass M 1.989 × 10 30 kg solar radius (volumetric mean) R 6.960 × 10 8 m Jupiter mass M 1.899 × 10 27 kg Jupiter radius R 6.991 × 10 7 m astronomical unit 1 UA 1.495 979 × 10 11 m parsec pc 1 pc 3.085 678 × 10 16 m Sidereal year 1 sidereal year 365.26 days Sidereal day 1 sidereal day 86164.09 s Astronomical Data Object Radius (km) Mass (kg) Sidereal Rotation Period Inclination of Equator to Orbit Plane Semimajor Axis of Orbit (km) Orbit Eccentricity Inclination of Orbit to the Ecliptic Plane Orbit Sidereal Period Sun 696000 1.989 × 10 30 25.38d 7.25º Mercury 2440 330.2 × 10 21 58.65d 0.01º 57.91 × 10 6 0.2056 7.00º 87.97d Venus 6052 4.869 × 10 24 243d* 177.4º 108.2 × 10 6 0.0067 3.39º 224.7d Earth 6378 5.974 × 10 24 23.9345h 23.45º 149.6 × 10 6 0.0167 0.00º 365.256d (Moon) 1737 73.48 × 10 21 27.32d 6.68º 384.4 × 10 3 0.0549 5.145º 27.322d Mars 3396 641.9 × 10 21 24.62h 25.19º 227.9 × 10 6 0.0935 1.850º 1.881y Jupiter 71490 1.899 × 10 27 9.925h 3.13º 778.6 × 10 6 0.0489 1.304º 11.86y Saturn 60270 568.5 × 10 24 10.66h 26.73º 1.433 × 10 9 0.0565 2.485º 29.46y Uranus 25560 86.83 × 10 24 17.24h* 97.77º 2.872 × 10 9 0.0457 0.772º 84.01y Neptune 24760 102.4 × 10 24 16.11h 28.32º 4.495 × 10 9 0.0113 1.769º 164.8y (Pluto) 1195 12.5 × 10 21 6.387d 122.5º 5.870 × 10 9 0.2444 17.16º 247.7y *Retrograde Regions of the Electromagnetic Spectrum Wavelenth (m) Frequency (Hz) Photon Energy (J) Radio > 1 × 10 -1 < 3 × 10 -9 < 2 × 10 -24 Microwave 1 × 10 -3 - 1 × 10 -1 3 × 10 9 - 3 × 10 11 2 × 10 -24 - 2 × 10 -22 Infrared 7 × 10 -7 - 1 × 10 -3 3 × 10 11 - 4 × 10 14 2 × 10 -22 - 3 × 10 -19 Optical 4 × 10 -7 - 7 × 10 -7 4 × 10 14 - 7.5 × 10 14 3 × 10 -19 - 5 × 10 -19 UV 1 × 10 -8 - 4 × 10 -7 7.5 × 10 14 - 3 × 10 16 5 × 10 -19 - 2 × 10 -17 X-ray 1 × 10 -11 - 1 × 10 -8 3 × 10 16 - 3 × 10 19 2 × 10 -17 - 2 × 10 -14 Gamma-ray < 1 × 10 -11 > 3 × 10 19 2 × 10 -14 Drage equation Delta V neglecting drag and gravity ROCKET DYNAMICS Specific Impuls Thrust Burn Time Structural Ratio Delta V Burnout Speed Optimization procedure to an N- stage vehicle Drag and gravity loss η – Langrange multiplier Mass Ratio Payload Ratio Effective exaust velocity IDEAL GAS RELATIONS Ideal gas model Change in specific internal energy For constant C v Change in specific enthalpy For constant C p m o = m E + m p + m PL m f = m E + m PL m E Empty / structural mass m p Propellant mass m PL Payload mass λ Payload ratio ε Structural ratio D,C D Drag, Drag coefficient q=½ρv 2 Dynamic pressure A Frontal area of the vehicle c Effective exhaust velocity c a Exhaust speed relative to the rocket p a Static pressure of the atmosphere p e Rocket nozzle pressure m e Rate at which exhaust mass flows across the nozzle exit plane A e Nozzle exit area T Thrust I sp Specific impulse n Mass ratio Δt Burn time Δv D ,Δv G Drag loss, gravity loss γ Flight path angle v bo Burnout speed COMPRESSIBLE FLOW IN NOZZLES AND DIFFUSERS CONSTANTS Momentum equation for steady-state one dimension flow Ideal gas velocity of sound Mach number Stagnation enthalpy Isentropic flow funtion relating temperature and stagnation temperature (constant k) Isentropic flow funtion relating pressure and stagnation pressure (constant k) Gravitational parameters Body Body Symbol μ=GM (km 3 /s 2 ) SOI radius (km) Sun 1.32712440017987 × 10 11 Mercury 2.2032080486 × 10 4 112 000 Venus 3.24858598826 × 10 5 616 000 Earth 3.98600435608 × 10 5 925 000 (Moon) 4.902799108 × 10 3 66 100 Mars* 4.2828314258 × 10 4 577 000 Jupiter* 1.2671276785779 6×10 8 48 200 000 Saturn* 3.7940626061137 × 10 7 54 800 000 Uranus* 5.794549007072 × 10 6 51 800 000 Neptune* 6.836534063879 × 10 6 86 600 000 (Pluto)* 9.81600888 × 10 2 3 080 000 *Includes the gravitational parameters of the planet’s satellites EMPOWERING ENGINEERS [email protected] www.valispace.com

CONSTANTS ROCKET DYNAMICS

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: CONSTANTS ROCKET DYNAMICS

Frequent Constants

geostationary orbit altitudehGEO35786 km

Low Earth Orbit altitudehLEO120-3000 km

speed of lightc299792.458 km ⁄ s

universal gas constant (ideal gas)R8.3144598 J mol-1 K-1

Moon distance from Earthd384402 km

Moon radiusR1737 km

Moon surface accelerationg1.625 m/s2

Mars radiusR3396 km

Mars surface accelerationg3.72 m/s2

Newtonian constant of gravitationG6.673 848 × 10-11 m3 kg-1 s-2

standard acceleration of gravityg09.806 65 m s-2

Earth massM5.974 × 1024 kg

Earth radius (volumetric mean)R6.378 × 106 m

solar luminosityL3.846 × 1026 W

solar massM1.989 × 1030 kg

solar radius (volumetric mean)R6.960 × 108 m

Jupiter massM1.899 × 1027 kg

Jupiter radiusR6.991 × 107 m

astronomical unit1 UA1.495 979 × 1011 m

parsec pc1 pc3.085 678 × 1016 m

Sidereal year1 sidereal year365.26 days

Sidereal day1 sidereal day86164.09 s

Astronomical Data

ObjectRadius (km)Mass (kg)Sidereal Rotation

Period

Inclination of Equator to

Orbit Plane

Semimajor Axis of Orbit (km)

Orbit Eccentricity

Inclination of Orbit to the

Ecliptic Plane

Orbit Sidereal Period

Sun6960001.989 × 103025.38d7.25º————

Mercury2440330.2 × 102158.65d0.01º57.91 × 1060.20567.00º87.97d

Venus60524.869 × 1024243d*177.4º108.2 × 1060.00673.39º224.7d

Earth63785.974 × 102423.9345h23.45º149.6 × 1060.01670.00º365.256d

(Moon)173773.48 × 102127.32d6.68º384.4 × 1030.05495.145º27.322d

Mars3396641.9 × 102124.62h25.19º227.9 × 1060.09351.850º1.881y

Jupiter714901.899 × 10279.925h3.13º778.6 × 1060.04891.304º11.86y

Saturn60270568.5 × 102410.66h26.73º1.433 × 1090.05652.485º29.46y

Uranus2556086.83 × 102417.24h*97.77º2.872 × 1090.04570.772º84.01y

Neptune24760102.4 × 102416.11h28.32º4.495 × 1090.01131.769º164.8y

(Pluto)119512.5 × 10216.387d122.5º5.870 × 1090.244417.16º247.7y

*Retrograde

Regions of the Electromagnetic Spectrum

Wavelenth (m)Frequency (Hz)Photon Energy (J)

Radio> 1 × 10-1< 3 × 10-9< 2 × 10-24

Microwave1 × 10-3 - 1 × 10-13 × 109 - 3 × 10112 × 10-24 - 2 × 10-22

Infrared7 × 10-7 - 1 × 10-33 × 1011 - 4 × 10142 × 10-22 - 3 × 10-19

Optical4 × 10-7 - 7 × 10-74 × 1014 - 7.5 × 10143 × 10-19 - 5 × 10-19

UV1 × 10-8 - 4 × 10-77.5 × 1014 - 3 × 10165 × 10-19 - 2 × 10-17

X-ray1 × 10-11 - 1 × 10-83 × 1016 - 3 × 10192 × 10-17 - 2 × 10-14

Gamma-ray< 1 × 10-11> 3 × 10192 × 10-14

Drage equation Delta V neglecting drag and gravity

ROCKET DYNAMICS

Specific Impuls Thrust

Burn Time

Structural Ratio Delta V

Burnout Speed

Optimization procedure to an N- stage vehicle

Drag and gravity loss

η – Langrange multiplier

Mass Ratio Payload Ratio

Effective exaust velocity

IDEAL GAS RELATIONS

Ideal gas model

Change in specific internal energy For constant Cv

Change in specific enthalpy For constant Cp

mo = mE + mp + mPL

mf = mE + mPL

mE ≡ Empty / structural massmp ≡ Propellant massmPL ≡ Payload massλ ≡ Payload ratioε ≡ Structural ratioD,CD ≡ Drag, Drag coefficient

q=½ρv2 ≡ Dynamic pressureA ≡ Frontal area of the vehiclec ≡ Effective exhaust velocityca ≡ Exhaust speed relative to the rocketpa ≡ Static pressure of the atmospherepe ≡ Rocket nozzle pressureme ≡ Rate at which exhaust mass flows across the nozzle exit plane

Ae ≡ Nozzle exit areaT ≡ ThrustIsp ≡ Specific impulsen ≡ Mass ratioΔt ≡ Burn timeΔvD,ΔvG ≡ Drag loss, gravity lossγ ≡ Flight path angle vbo ≡ Burnout speed

COMPRESSIBLE FLOW IN NOZZLES AND DIFFUSERS

CONSTANTS

Momentum equation for steady-state one dimension flow

Ideal gas velocity of sound

Mach number

Stagnation enthalpy

Isentropic flow funtion relating temperature and stagnation temperature (constant k)

Isentropic flow funtion relating pressure and stagnation pressure (constant k)

Momentum equation for steady-state one dimension flow

Gravitational parameters

BodyBody Symbolμ=GM (km3/s2)SOI radius (km)

Sun1.32712440017987 × 1011—

Mercury2.2032080486 × 104112 000

Venus3.24858598826 × 105616 000

Earth3.98600435608 × 105925 000

(Moon)4.902799108 × 10366 100

Mars*4.2828314258 × 104577 000

Jupiter*1.2671276785779 6×10848 200 000

Saturn*3.7940626061137 × 10754 800 000

Uranus*5.794549007072 × 10651 800 000

Neptune*6.836534063879 × 10686 600 000

(Pluto)*9.81600888 × 1023 080 000

*Includes the gravitational parameters of the planet’s satellites

EMPOWERING ENGINEERS

contact [email protected] www.valispace.com

Page 2: CONSTANTS ROCKET DYNAMICS

RELATIVE MOTION

i ≡ inertial frame, s ≡ reference frameωsi ≡ angular velocity of the s frame with respect to the i framer ≡ position vector in s frame, v ≡ velocity, a ≡ accelerationR ≡ position vector of the origin of s–frame

ORBITS

Orbital Maneuvers

Hohmann Transfer

3 bodiesJacobi integral

e ≡ eccentricitya ≡ semimajor axisb ≡ semiminor axisp ≡ semi lactus rectum / parameterrP ≡ periapsisra ≡ apoapsisF ≡ Focus , C ≡ Centerc ≡ linear eccencitry

Ellipse Properties

ε ≡ specific energyvr ≡ radial velocityγ ≡ flight path angleT ≡ orbital periodn ≡ mean motionM ≡ mean anomalyE ≡ eccentric anomalyθ ≡ true anomalyvesc ≡ escape velocity

Gravitational Parameter

Ε as function of θ

eccentricity

Orbital period

Specific energy

Eccentricity vector

Kepler’s 3rd law

Orbit equation Kepler’s 1st law

Radial velocity

Mean motion

vis - viva equation

Escape velocity

Kepler’s Equation

Elliptical Orbits

Polar Coordinates

KinematicEquations

MotionEquations

Unit Vectors

KinematicEquations

MotionEquations

Unit Vectors

Cylindrical Coordinates

KinematicEquations

Equations of Motion

Unit Vectors

Spherical Coordinates

Parabolic orbits

Parabolic mean anomaly

Barker’s equation

Hyperbolic orbits

Hyperbolic mean anomaly

Kepler’s equation for the hyperbola

True anomaly in terms of F

Circular Orbit

Orbit equation

Orbital period

velocity

specific energyTime versus true anomaly

Central Force

Formal solution of the central force

Kepler's 2nd law

Conservation of angular momentum

Specific angular momentum

Central force

Gravitational central force

H ≡ Angular momentumh ≡ specific angular momentumdAdt μ ≡ gravitational parameter

≡ areal velocity

v ≡ velocityE ≡ Total EnergyU ≡ Potential Energyr ≡ position

Orbital Elements

Effects of the Earth’s oblateness

h ≡ specific angular momentumi ≡ inclinationω ≡ right ascension (RA) of the ascending nodee ≡ eccentricity

Oblateness and second zonal harmonics

Planet Oblateness J2

Mercury 0.000 60 × 10-6

Venus 0.000 4.458 × 10-6

Earth 0.003353 1.08263 × 10-3

Mars 0.00648 1.96045 × 10-3

Jupiter 0.06487 14.736 × 10-3

Saturn 0.09796 16.298 × 10-3

Uranus 0.02293 3.34343 × 10-3

Neptune 0.01708 3.411 × 10-3

(Moon) 0.0012 202.7 × 10-6

ω ≡ argument of perigeeθ ≡ true anomaly

SATELLITE ATTITUDE DYNAMICS

δ − spin, ψ − precession, ν − nutation

Euler’s equations for torque-free motion

Angular Position of the body in the spinning reference frame

Angular velocity in the spinning reference frame

Angular moment components

γ – wobble angle

Relations between precession and spin

Dual-Spin Spacecraft - Axisymmetric Body

Phase angle

time during transfer