13
Consecuencias del cambio climático en la oferta y demanda de energía Pedro Linares Real Academia de Ingeniería Madrid, 8 de abril de 2014

Consecuencias del cambio climático en la oferta y demanda .... PEDRO LINARES.pdf · Consecuencias del cambio climático en la oferta y demanda de energía Pedro Linares Real Academia

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Consecuencias del cambio climático en la oferta y demanda .... PEDRO LINARES.pdf · Consecuencias del cambio climático en la oferta y demanda de energía Pedro Linares Real Academia

Consecuencias del cambio climático en la oferta y demanda de energía

Pedro Linares

Real Academia de Ingeniería

Madrid, 8 de abril de 2014

Page 2: Consecuencias del cambio climático en la oferta y demanda .... PEDRO LINARES.pdf · Consecuencias del cambio climático en la oferta y demanda de energía Pedro Linares Real Academia

1 / 11

Cambio climático y energía Climate change is projected to reduce energy demand for heating and increase energy demand for cooling in the residential and commercial sectors (robust evidence, high agreement). Climate change is projected to affect energy sources and technologies differently, depending on resources (e.g., water flow, wind, insolation), technological processes (e.g., cooling), or locations (e.g., coastal regions, floodplains) involved.

Page 3: Consecuencias del cambio climático en la oferta y demanda .... PEDRO LINARES.pdf · Consecuencias del cambio climático en la oferta y demanda de energía Pedro Linares Real Academia

2 / 11

Muchas vías de influencia Cambio

Climático

Temperatura Precipitación Eventos extremos

Agua

Demanda Energética

Suministro Energético

Recurso Energético

Glaciares  Demanda  

Eficiencia  

Mi1gación  

Refrigeración  

Page 4: Consecuencias del cambio climático en la oferta y demanda .... PEDRO LINARES.pdf · Consecuencias del cambio climático en la oferta y demanda de energía Pedro Linares Real Academia

3 / 11

Pero no demasiada evidencia

A W O R L D B A N K S T U D Y

Jane Ebinger, Walter Vergara

K E Y I S S U E S F O R E N E R G Y S E C T O R A D A P TAT I O N

Climate Impacts on Energy Systems

Page 5: Consecuencias del cambio climático en la oferta y demanda .... PEDRO LINARES.pdf · Consecuencias del cambio climático en la oferta y demanda de energía Pedro Linares Real Academia

4 / 11

Demanda de energía • Demanda de calefacción:

– Reducción del 34% a 2100 • Demanda de aire acondicionado

– Aumento del 72% en 2100 • Variación regional

World Bank Study38

This U-shaped paĴ ern suggests that climate change may have ambiguous conse-quences for future energy demand, with the overall balance for energy demand varying regionally and seasonally (Figure 3.3).

This kind of analysis is usually studied using the concept of heating degree days and cooling degree days. Heating degree days is the sum of negative deviations of the actual temperature from the base temperature over a given period of time. The base temperature is defi ned as the temperature level where there is no need for either heating or cooling.26 Cooling degree days is the sum of positive deviations between the actual temperature and the base temperature.

This energy impact is not restricted to modifi cations in the accumulated temper-ature deviations from a base value (the degree days). Additional demand for energy could arise from energy inputs for heating and cooling equipment. This additional en-ergy demanded could be expressed by the coeĜ cient of performance (COP) of the ap-paratus, with represents the relation between the useful energy extracted and the energy consumed (usually in electric power devices, such as compressors). According to the fundamental heat equation,27 the amount of useful energy is directly proportional to the change in temperature. Therefore, assuming that the coeĜ cient of performance of cooling and heating equipment doesn’t change, an increase in the temperature variation increases the number of hours the apparatus is working, in turn raising energy consumption.

Global Demand

At the global level there are few studies that model heating and cooling demand in rela-tion to the present climate and future climate change.28 Isaac and Vuuren (2009) aĴ empt-ed to estimate climate impacts on global energy demand through end use (heating and cooling) by using simplifi ed relationships based on the activity, structure, and intensity eě ects. In this study, heating energy demand decreased by 34 percent worldwide by 2100 as a result of climate change, and air-conditioning energy demand rose by 72 percent.

Figure 3.3. Relationship between Building Energy Use and the Outdoor Temperature

Source: Guan, 2009.

Page 6: Consecuencias del cambio climático en la oferta y demanda .... PEDRO LINARES.pdf · Consecuencias del cambio climático en la oferta y demanda de energía Pedro Linares Real Academia

5 / 11

Tecnologías energéticas

Temperatura   Agua  

Térmicas   Eficiencia   Refrigeración  

Hidráulica   Otras  demandas   Menor  producible  Cambio  patrón  

Eólica   Variabilidad  Densidad  energ.   -­‐  

Solar   Eficiencia   Refrigeración  

Biomasa   Incierto   Bajada  de  rdto.  

Page 7: Consecuencias del cambio climático en la oferta y demanda .... PEDRO LINARES.pdf · Consecuencias del cambio climático en la oferta y demanda de energía Pedro Linares Real Academia

6 / 11

Tecnologías: Agua y CO2

Climate Impacts on Energy Systems 43

Most climate change impact assessments focus on water availability. A few studies also include comparisons with projected demand to test the vulnerability of water sup-ply (for example, Arnell, 1999; Dvorak et al., 1997; Joyce et al., 2005; LeĴ enmaier et al.; 1999; Wilby et al., 2006). In general, however, there is limited aĴ ention on the demand side. Changes in land use, higher water demand for crop irrigation, and population shifts caused by climate change are some of the issues that can aě ect the demand for water resources (Frederick and Major, 1997). Multiple uses of water resources (such as human and animal consumption, irrigation, ecosystem maintenance, and fl ood control) add signifi cant complexity to energy modeling. Similarly, it adds a large amount of un-certainty to climate impact assessments on energy systems.

The 2009 Market Report by Lux Research, “Global Energy: Unshackling Carbon From Water,” examined the carbon and water intensity of power production and as-sociated tradeoě s (Figure 3.4). It highlights the challenge of simultaneously reducing GHG emissions and limiting water consumption. Power production from solar PV and wind resources, for example, have the least carbon and water intensity but suf-

Figure 3.4. Effect of Emerging Technologies on Carbon and Water Intensity of Electricity Sources

Source: Lux Research, 2009.

Page 8: Consecuencias del cambio climático en la oferta y demanda .... PEDRO LINARES.pdf · Consecuencias del cambio climático en la oferta y demanda de energía Pedro Linares Real Academia

7 / 11

Hidráulica Climate Impacts on Energy Systems 31

rison and WhiĴ ington, 2002; Vicuña et al., 2005).6 The river fl ow series is simulated in hydrological models, which are in turn calibrated to current climate but forced with climate variables (normally from downscaled GCM data), such as precipitation and tem-perature for selected emission scenarios.

The modeling tools for analyzing climate impacts on a hydropower system ulti-mately depend on the complexity of the system, for which two factors can be highlighted (Lucena et al., 2009b). The fi rst is how relevant hydropower generation is for the whole power system, in other words, whether hydroelectricity is complementary to (for ex-ample, the United States and Western Europe) or complemented by (for example, Brazil and Norway) other power sources. If hydroelectricity is complementary to other gener-ating sources, average values for hydropower production generally provide a suĜ cient measure of climate impact. On the other hand, power systems fundamentally based in hydropower must be assessed in terms of a more conservative indicator, such as fi rm power,7 to minimize the risk of power shortages.

The second factor relates to geographical dispersion and the level of integration through transmission capacity. Transmission may play an important role in coping with regional climate variations in interconnected hydropower systems that cover a vast area. In Brazil and Colombia, for example, electricity transmission networks help to optimize the power system’s operation by compensating for regionally diě erent seasonal varia-tions (Lucena et al., 2010b; UPME 2009). In such a case, just as the operation of diě erent

Box 3.1. Projected Changes in Hydropower Generation

Modeling by the Norwegian University of Science and Technology examined climate impacts on river fl ows and hydropower generation to 2050. Systems at highest risk had both a high dependence on hydropower generation for electricity and a declining trend in runoff. South Africa is quoted as one example with a potential reduction of 70 GWh per year in generation by 2050. Afghanistan, Tajikistan, Venezuela, and parts of Brazil face similar challenges.

Source: Hamududu and Killingtveit, 2010.

Page 9: Consecuencias del cambio climático en la oferta y demanda .... PEDRO LINARES.pdf · Consecuencias del cambio climático en la oferta y demanda de energía Pedro Linares Real Academia

8 / 11

Eventos extremos

Page 10: Consecuencias del cambio climático en la oferta y demanda .... PEDRO LINARES.pdf · Consecuencias del cambio climático en la oferta y demanda de energía Pedro Linares Real Academia

9 / 11

¿Y en España?

Page 11: Consecuencias del cambio climático en la oferta y demanda .... PEDRO LINARES.pdf · Consecuencias del cambio climático en la oferta y demanda de energía Pedro Linares Real Academia

10 / 11

Consumo residencial (2012)

Calefacción  

ACS  

Cocina  

Iluminación  

Aire  Acondicionado  

Electrodomés1cos  

Fuente:  IDAE  

Page 12: Consecuencias del cambio climático en la oferta y demanda .... PEDRO LINARES.pdf · Consecuencias del cambio climático en la oferta y demanda de energía Pedro Linares Real Academia

11 / 11

Algunos pasos recomendables • Diversificación • Ahorro energético • Infraestructuras robustas • Redes inteligentes (también para agua) • En todo caso,

For most economic sectors, the impacts of drivers such as changes in population, age structure, income, technology, relative prices, lifestyle, regulation, and governance are projected to be large relative to the impacts of climate change (medium evidence, high agreement)

IPCC, 2014

Page 13: Consecuencias del cambio climático en la oferta y demanda .... PEDRO LINARES.pdf · Consecuencias del cambio climático en la oferta y demanda de energía Pedro Linares Real Academia

Gracias por su atención www.upcomillas.es/personal/pedrol