240
CONFINED ACOUSTIC PHONONS IN SI NANOMEMBRANES: IMPACT ON THERMAL PROPERTIES Emigdio Chávez Ángel M.Sc. Physics Tesi Doctoral Programa de Doctorat en Física Thesis Director: Supervisor: Prof. Dr. Clivia M. Sotomayor Torres Prof. Dr. Jordi Mompart Departament de Física Facultat de Ciències Research supported by the Comisión Nacional Científica y Tecnológica de Chile (CONICYT) 2014

CONFINED ACOUSTIC PHONONS IN SI NANOMEMBRANES: … · 2015. 9. 7. · Y como diría el Gran Gustavo Cerati, Gracias totales… iii . iv : Abstract v ABSTRACT The miniaturization trend

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • CONFINED ACOUSTIC PHONONS IN SI NANOMEMBRANES: IMPACT ON THERMAL

    PROPERTIES

    Emigdio Chávez Ángel

    M.Sc. Physics

    Tesi Doctoral Programa de Doctorat en Física

    Thesis Director:

    Supervisor:

    Prof. Dr. Clivia M. Sotomayor Torres

    Prof. Dr. Jordi Mompart

    Departament de Física

    Facultat de Ciències

    Research supported by the Comisión Nacional Científica y Tecnológica de Chile (CONICYT)

    2014

  • …“Gobernar es educar”… Pedro Aguirre Cerda,

    Presidente de Chile, 1938-1944

    …“La educación es un bien de consumo”… Sebastián Piñera Echenique,

    Presidente de Chile 2010-2014

    …“Vamos a invertir primero en educación, segundo en educación, tercero en educación. Un pueblo educado tiene las mejores opciones en la vida y es muy difícil que lo engañen los corruptos y

    mentirosos”… José Mujica Cordano,

    Presidente de Uruguay, 2010-2015

    Antes de votar: lea, mire, y juzgue

    A mi Madre

  • Acknowledgments

    i

    ACKNOWLEDGMENTS

    The author ex presses h is gratitude t o t he C hilean g overnment f or a r esearch fellowship

    through t he C omisión N acional C ientífica y T ecnológica d e C hile, C ONICYT, B ecas C hile

    2010. A dditionally, t he a uthor acknowledge t he financial s upport f rom t he F P7 pr ojects

    NANOFUNCTION ( grant nr . 257375) , N ANOPOWER ( grant nr . 256 959) and M ERGING

    (grant nr. 309150), as well as the Spanish MINECO projects nanoTHERM (grant nr. CSD2010-

    0044), ACPHIN (FIS2009-10150) and TAPHOR (MAT2012-31392).

    First of all, I would like to express my deepest gratitude to my thesis director Prof. Dr Clivia

    M. S otomayor T orres and a ll m y c olleagues i n the P hononic a nd P hotonic Nanostructures

    group, P2N, a t t he Catalan Institute of Nanoscience and nanotechnology, ICN2, especially t o

    Dr. F rancesc A lzina, D r Juan Sebastian R eparaz an d D r Jordi G omis B resco for their g reat

    contribution of the development of this work. Also, I would like to thank to Dr John Cuffe from

    Massachusetts I nstitute of T echnology, M IT, f or p roviding he lpful d iscussions during the

    development of this work.

    I would like to thanks to our collaborators from Technical Research Centre of Finland, VTT,

    Dr Andrey Shchepetov, Dr Mika Prunnila, and Prof. Dr Jouni Ahopelto for providing silicon

    membranes.

    I w ould l ike t o t hanks Dr T homas D ekorsy a nd hi s g roup from U niversity of K onstanz,

    Konstanz, Germany for the measurement of phonon lifetime accepting me for two stay abroad

    in his group.

    I would like to thank to Prof. Dr Bahram Djafari-Rouhani from the Institut d’Electronique,

    de Microélectronique et de Nanotechnologie (IEMN), Lille, France, and Prof. Dr El Houssaine

    El B oudouti f rom t he I nstitut d ’Electronique, de M icroélectronique et d e N anotechnologie

  • Acknowledgments

    ii

    (IEMN), L ille, F rance, and t he L DOM, F aculté d es Sciences, U niversité Mo hamed I, O ujda,

    Morocco, f or t heir c ontributions t o the und erstanding of t he di spersion r elation i n phonon ic

    crystals and the development of the PWE method.

    I would l ike to thank to Prof. Dr. Gang Chen, Prof. Dr. Keith Nelson, Dr. John Cuffe and

    Mr. Jeffrey Eliason from Massachusetts Institute of Technology (MIT) for the measurements of

    thermal diffusivity using the Transient Thermal Gradient method.

    I would l ike t o t hank all my f riends a nd colleagues f rom ICN2 especially t o Dr F rancesc

    Alzina, Dr Claudia Simão, Dr Erwan Guillotel, MsC Noèlia Arias, Dr Jordi Gomis-Bresco, Dr.

    Markus R aphael W agner, Dr B artlomiej G raczykowski, Dr Juan S ebastian R eparaz, Dr J uan

    Sierra, Dr Nikolaos Kehagias and Ms Sweta Bhansali for their great contribution to my

    scientific and social life. In particular, I would like to thank Jordi, whose ability to create new

    devices, e quipment, experimental methods etc. is inspiriting. Especial acknowledge t o Noèlia

    and Erwan for t heir indispensable work for t he s cientific development of group. El me u més

    profund agraïment a F rancesc per proporcionar les fructíferes discussions científiques i també

    per tota l'ajuda brindada durant el desenvolupament d'aquest treball.

    I a m a lso g rateful to Clivia f or pr oviding m e t his g reat oppo rtunity t o w ork i n E urope.

    Without her, nothing of the work developed in this thesis would have been possible.

    Finalmente quisiera agradecer a mi familia, especialmente a mi madre, Delcira Ángel, quien

    a pesar de todas las penurias pasadas nunca se can só de decirme “estudia”, la educación es e l

    bien más preciado que te puedo dejar. Por eso y muchas cosas más siempre estaré agradecido de

    mi vieja. Of course, my s incere thanks to Alexandra, who arrived in my darkest hours to put

    meaning to silence and mute to my fatigue.

    Y como diría el Gran Gustavo Cerati,

    Gracias totales…

  • iii

  • iv

  • Abstract

    v

    ABSTRACT

    The miniaturization trend of the technology has l ed to power level densities in excess 100

    watts/cm2, which are in the order of the heat produced in a nuclear reactor. The need for new

    cooling t echniques ha s p ositioned t he thermal management on t he s tage t he l ast y ears.

    Moreover, t he e ngineering of t he t hermal c onduction ope ns a r oute to e nergy ha rvesting

    through, for example, thermoelectric generation. As a consequence, control and engineering of

    phonons in the nanoscale is essential for tuning desirable physical properties in a device in the

    quest to find a suitable compromise between performance and power consumption.

    In the present work we study theoretically and experimentally the thickness-dependence of

    the thermal properties of silicon membranes with thicknesses ranging from 9 t o 2000 nm. We

    investigate the dispersion relations and the corresponding modification of the phase velocities of

    the a coustic modes us ing i nelastic B rillouin light scattering s pectroscopy. A r eduction o f t he

    phase/group velocities of the fundamental flexural mode by more than one order of magnitude

    compared to bulk values was observed and is theoretically explained. In addition, the lifetime of

    the coherent a coustic phonon modes w ith frequencies up t o 500 GHz was a lso studied us ing

    state-of-the-art u ltrafast p ump-probe: asynchronous opt ical s ampling ( ASOPS). W e ha ve

    observed that the lifetime of the first-order dilatational mode decreases significantly from ∼ 4.7

    ns to 5 ps with decreasing membrane thickness from ∼ 194 to 8 nm. Finally, the thermal

    conductivity of membranes was investigated using three different contactless techniques known

    as single-laser Raman t hermometry, t wo-laser R aman t hermometry an d t ransient t hermal

    gradient. We have found that the thermal conductivity of the membranes gradually reduces with

    their thickness, reaching values as low as 9 Wm-1K-1 for the thinnest membrane.

    In order to account for the observed thermal behaviour of the silicon membranes we have

    developed different theoretical approaches to explain the size dependence of thermal properties.

  • Abstract

    vi

    The simulation o f a coustic di spersion w as c arried out by us ing m odels based o n an el astic

    continuum approach, Debye and fitting approaches. The s ize dependence of the lifetimes was

    modelled considering intrinsic phonon-phonon processes and extrinsic phonon scatterings. The

    thermal c onductivity w as modelled us ing a m odified 2D D ebye a pproach (Huang m odel),

    Srivastava-Callaway-Debye model and Fuchs-Sondheimer approach.

    Our o bservations h ave si gnificant co nsequences f or S i-based t echnology, e stablishing t he

    foundation to investigate the thermal properties in others low-dimensional systems. In addition,

    this study would provide design guidelines and enable new approaches for thermal management

    at nanometric scales.

  • Table of contents

    vii

    TABLE OF CONTENTS

    Acknowledgments ................................................................................................................................. i

    Abstract .............................................................................................................................................. v

    Table of contents ................................................................................................................................ vii

    List of figures ................................................................................................................................... xiii

    List of tables ................................................................................................................................... xxiii

    List of publications and presentations ............................................................................................. xxv

    Published and accepted articles................................................................................................. xxv

    Non-related articles ................................................................................................................ xxvii

    Book chapters ......................................................................................................................... xxvii

    In preparation articles ............................................................................................................ xxviii

    Oral Presentations.................................................................................................................. xxviii

    List of acronyms .............................................................................................................................. xxxi

    Chapter I: Introduction and Objectives ............................................................................................... 1

    1.1 Nanoscale thermal conductivity .............................................................................................. 3

    1.2 Phonon confinement................................................................................................................ 8

    1.4 Thesis Outline........................................................................................................................ 10

    Chapter II: Acoustic Waves ............................................................................................................... 11

    2.1 Elastic continuum model ....................................................................................................... 11

    2.1.1 Boundary conditions and confined waves ................................................................. 13

  • Table of contents

    viii

    Lamb waves ........................................................................................................................ 15

    Symmetric and antisymmetric modes................................................................................. 16

    Shear Waves ....................................................................................................................... 21

    2.1.2 Layered systems ........................................................................................................ 22

    From one layer to N layers ................................................................................................. 23

    Example .............................................................................................................................. 24

    Chapter III: Anharmonicity and Thermal Conductivity ................................................................... 27

    3.1 Harmonic effect in crystals ................................................................................................... 27

    3.2 Phonon-phonon interaction ................................................................................................... 28

    3.2.1 Normal and Umklapp process ................................................................................... 31

    Selection Rules: Normal and Umklapp processes. ............................................................. 34

    3.3 Phonon lifetime: relaxation time approximation .................................................................. 35

    3.3 Evaluation of phonon relaxation times ................................................................................. 37

    3.3.1 Extrinsic relaxation times .......................................................................................... 38

    Boundary scattering ............................................................................................................ 38

    Impurity scattering.............................................................................................................. 40

    3.3.2 Intrinsic relaxation times ........................................................................................... 41

    Phonon density of states ..................................................................................................... 44

    Einstein and Debye approximations ................................................................................... 45

    3.4.3 Phonon-phonon interaction and the Debye approximation ....................................... 47

    Numerical simulations ........................................................................................................ 52

  • Table of contents

    ix

    Bulk Umklapp-processes .................................................................................................... 52

    Intrinsic sound absorption: Akhieser and Landau-Rumer mechanisms ............................. 57

    3.4 Thermal conductivity: modelling and approximations ........................................................ 58

    3.4.1 Specific heat capacity ................................................................................................ 60

    3.4.2 Thermal conductivity in low dimensional systems ................................................... 61

    Modified Debye-Callaway-Srivastava model: complete phonon-phonon scheme ............. 61

    Fuchs-Sondheimer model: correction of the thermal conductivity expression .................. 63

    Huang model: modified dispersion relation and correction of the thermal conductivity

    expression ........................................................................................................................... 64

    3.5 Phonon confinement and modification of specific heat capacity ........................................ 68

    3.5.1 Modification of the specific heat capacity ................................................................. 68

    3.6 Use of modified dispersion relation: defining criteria.......................................................... 72

    Chapter IV: Fabrication and Experimental Techniques .................................................................... 74

    4.1 Fabrication of ultrathin freestanding silicon membranes ..................................................... 74

    4.2 Advanced methods of characterizing phonon dispersion, lifetimes and thermal

    conductivity ................................................................................................................................. 76

    4.2.1 Brillouin scattering .................................................................................................... 76

    4.2.2 Pump-and-probe ultrafast spectroscopy. ................................................................... 82

    Generation and detection of high-frequency phonons ........................................................ 82

    Asynchronous Optical Sampling: ASOPS ......................................................................... 84

    4.2.3 Raman Thermometry ................................................................................................. 86

  • Table of contents

    x

    Single Laser Raman Thermometry: 1LRT ......................................................................... 87

    Measurement of the absorbed power .................................................................................. 91

    Measurement of the temperature field by two-laser Raman thermometry: 2LRT ............. 92

    4.2.4 Transient thermal grating (TTG) ............................................................................... 94

    Chapter V: Modelling and Experimental Results ............................................................................. 99

    5.1 Acoustic phonons dispersion relation in ultrathin silicon membranes ................................ 99

    5.1.1 Flexural mode dispersion ........................................................................................ 100

    5.2 Phonon lifetime: measurements and simulations. .............................................................. 102

    5.2.1 Lifetimes of Confined Acoustic Phonons in Ultrathin Silicon Membranes ............ 103

    5.2.2 Phonon lifetime: theoretical results ......................................................................... 105

    5.3 Thermal conductivity: measurements and simulations ...................................................... 114

    5.3.1 Reduction of the thermal conductivity in free-standing silicon nano-membranes

    investigated by non-invasive Raman thermometry .......................................................... 116

    5.3.2 A novel contactless technique for thermal field mapping and thermal conductivity

    determination: Two-Laser Raman Thermometry ............................................................. 122

    5.3.3 Transient thermal grating measurements: temperature dependence of thermal

    diffusivity ......................................................................................................................... 129

    5.4 Thermal rectification ........................................................................................................... 131

    5.4.1 Modelling of thermal rectification in Si and Ge thin films ..................................... 132

    Chapter VI: Conclusions and Future Work ..................................................................................... 137

    6.1 Thesis Summary .................................................................................................................. 137

  • Table of contents

    xi

    6.2 Future work ......................................................................................................................... 140

    Appendix I: Elastic continuum model ............................................................................................. 145

    I.1 Strain .................................................................................................................................... 145

    I.2 Stress .................................................................................................................................... 148

    I.3 Hooke’s law ......................................................................................................................... 151

    I.4 From strain-stress relation to equations of motion .............................................................. 153

    I.5 Boundary conditions and Lamb waves ............................................................................... 154

    Appendix II: ahnarmonicity and Thermal conductivity .................................................................. 157

    II.1 Harmonic effect in crystals ................................................................................................. 157

    II.2 Thermal conductivity models ............................................................................................. 159

    II.2.1 Boltzmann equation ................................................................................................ 159

    II.2.2 Kinetic theory ......................................................................................................... 161

    II.2.3 Cattaneo equation: hyperbolic heat equation. ......................................................... 165

    II.2.4 Callaway model ...................................................................................................... 166

    II.2.5 Holland model......................................................................................................... 170

    II.2.6 Holland-Callaway modifications ............................................................................ 172

    II. 3 Boundary scattering processes .......................................................................................... 173

    Appendix III: Modeling of thermal transport .................................................................................. 177

    III.1 Calculation of thermal conductivity ................................................................................. 177

    III.2 Modelling of thermal transport: 2LRT and FEM simulations ......................................... 180

    Curriculum Vitae .............................................................................................................................. 187

  • Table of contents

    xii

    References ........................................................................................................................................ 189

  • List of figures

    xiii

    LIST OF FIGURES

    Figure 2.1 Schematic representation of longitudinal and transversal waves ............................. 12

    Figure 2.2 Left: Scheme of a f ree-standing m embrane. R ight: Sy mmetric and antisymmetric

    waves. .......................................................................................................................................... 15

    Figure 2.3 Decomposition of longitudinal and transverse wavevectors. ................................... 16

    Figure 2.4 (a) Dimensionless acoustic dispersion relation, f·a, and (b) group velocity, vg, of Si

    membrane for d ilatational ( red dot ted lines, DW), f lexural (black s olid lines, FW) and s hear

    (blue dashed lines, SW) waves as a function of the dimensionless in-plane wavevector, q//·a. .. 19

    Figure 2.5 Out-of-plane component of the wavevector, the red solid and blue dotted lines are ql

    and qt wavevector component respectively for dilatational (a) and flexural (b) waves. ............. 20

    Figure 2.6 Scheme of layered system .......................................................................................... 23

    Figure 2.7 Scheme of symmetric three-layer system. Here “b” is the thickness of layer 1 and 3,

    and “a” is the thickness of layer 2 of layered system ................................................................. 25

    Figure 3.1 Diagrammatic representation of coordinates of a lattice point. ............................... 28

    Figure 3.2 Diagrammatic representation of a phonon-phonon interaction. .............................. 32

    Figure 3.3 Diagrammatic representation of N ormal and Umklapp p rocesses, left and right

    respectively. ................................................................................................................................. 33

    Figure 3.4 Construction for intersection of three phonons in a line for N process, adapted from

    ref. [7]. ......................................................................................................................................... 34

    Figure 3.5 Construction o f t he intersection of three phonons in a line t o i llustrate Umklapp-

    process......................................................................................................................................... 35

  • List of figures

    xiv

    Figure 3.6 Wavelength-dependent specularity p (λ) as a function o f phonon w avelength λ for

    roughness values of η = 0.5 nm (black), η = 1 nm (red), η = 2 nm (blue). ................................. 39

    Figure 3.7 Schematic representation of three phonon-phonon scattering processes. ................ 41

    Figure 3.8 (a-f): Areas of Integration in the x-x’ plane allowed for U-processes. Where xi = 1 to 6

    are given in Table 3.2 .................................................................................................................. 50

    Figure 3.9 Areas of Integration in the x-x’ plane allowed for N-processes. Where x i = 1 to 6 are

    given in Table 3.2 ........................................................................................................................ 51

    Figure 3.10 Relaxation rate, 1/τU, for bulk silicon at room temperature via class I (a) and class

    II (b) event. .................................................................................................................................. 53

    Figure 3.11 Relative contribution to the total intrinsic relaxation time for each processes and

    event ............................................................................................................................................ 53

    Figure 3.12 Total relaxation rate for Umklapp-processes. Grey dotted line denotes the different

    zones where each processes dominate. ....................................................................................... 54

    Figure 3.13 Relaxation rate as a function of temperature and reduced wavevector for different

    phonon-phonon processes. .......................................................................................................... 55

    Figure 3.14 Total relaxation rate f or class I event as a function of temperature and r educed

    wavevector: (a) three-dimensional plot, (b) contour plot (isoline). ............................................ 56

    Figure 3.15. Total relaxation rate for class II event as a function of temperature and reduced

    wavevector: (a) three-dimensional plot, (b) contour plot (isoline). ............................................ 56

    Figure 3.16 Modelling a nd c omparison o f t hermal c onductivity of free-standing s ilicon

    nanowires ref. [45] ..................................................................................................................... 63

    Figure 3.17 Number of discrete modes for 10 nm thick Si membrane a s a function of t he

    dimensionless in-plane wavevector. ............................................................................................ 66

  • List of figures

    xv

    Figure 3.18 Specific heat of Si as a function of temperature for the bulk (blue dashed line) and

    for 1 to 120 nm thick free standing membrane. ........................................................................... 69

    Figure 3.19 (a) Specific heat capacity and temperature dependence of flexural (red line), shear

    (blue line) and d ilatational (black line) polarizations for a 10 nm thick silicon membrane. For

    comparison the dependence of the Si bulk is also plotted (green line). (b) Contributions of each

    polarization to the t otal specific heat f or 10 nm and 1 nm thick silicon membrane. T he solid

    (dotted) black, solid (dotted) red and solid (dotted) blue lines represent the polarization

    contribution of f lexural, shear and di latational modes, respectively for 10 nm (1 nm) thick Si

    membrane. ................................................................................................................................... 70

    Figure 3.20 (a) N ormalized s pecific he at capacity as a f unction of temperature t he bl ue l ine

    illustrates the bulk values. (b) Specific heat as a function of the membrane thickness at 300, 10,

    4 and 1 K. .................................................................................................................................... 70

    Figure 3.21 Spectral density of the heat capacity of a 10 nm thick Si membrane at 30 K (a) and

    300 K (b) as a function of frequency. .......................................................................................... 71

    Figure 3.22 Lattice thermal energy (red solid line) and spacing energy (black solid and grey

    dashed lines) as a function of the temperature and thickness, respectively. (b) Magnified image

    of the low temperature/thickness regime plotted in linear scale. ................................................ 73

    Figure 4.1 (a) Typical SOI wafers used in the fabrication of the free-standing membranes with

    a few 100s nm thick SOI film and BOX layer. (b) The SOI film is thinned by thermal oxidation.

    The thermal process creates compressive stress in the f ilm, as shown by the arrows. (c) After

    release t he m embrane i s r elaxed a nd t ends t o b uckle. ( d) O ptical m icrograph o f a rel eased

    1.4x1.4 mm2 membrane with thickness of 9 nm. Courtesy of Prof. Dr. Jouni Ahopelto. ............ 75

    Figure 4.2 Wavevector conservation in the photoelastic backscattering configuration. ........... 79

    Figure 4.3 Wavevector conservation in backscattering configuration via the ripple effect. ...... 79

  • List of figures

    xvi

    Figure 4.4 (a) Schematics of apparatus used for backscattering configuration, (b) Photograph

    of appa ratus us ed f or backscattering configuration. T PFI i s a Tandem F abry-Perot

    Interferometer ............................................................................................................................. 80

    Figure 4.5 Schematic of Tandem Fabry-Perot Interferometer, TPFI, manufactured by JRS .... 81

    Figure 4.6 Typical Brillouin spectra recorded for 200 nm thick free-standing Si membrane. The

    first two peaks nearest the central quasi-elastic peak are identified as the zero-order f lexural,

    A0, and dilatational, S0, modes. The others belongs to f irst, and second order dilatational

    modes, S1 and S2, respectively. Adapted from J. Cuffe and E. Chavez et at. [21,137] ............... 81

    Figure 4.7 Schematic of the response of a semiconductor to an ultra-short pulse. Electrons are

    excited from the valence band, VB, to the conduction band, CB, where they decay rapidly to the

    bottom of the conduction band through electron-electron collisions and phonon emission. The

    dynamics a re then d escribed b y a s lower d ecay involving el ectron-hole pair r ecombination,

    carrier diffusion, and thermal diffusion. Courtesy of Dr. John Cuffe. ........................................ 84

    Figure 4.8 Schematic pump-probe experiment: (a) Mechanical delay and ( b )ASOPS with two

    mode-locked lasers, adapted from J. Cuffe [136] ....................................................................... 85

    Figure 4.9 Schematic time de lay be tween pum p an d pr obe pul ses. F rom G igaoptics G mbH

    website. ........................................................................................................................................ 86

    Figure 4.10 Schematic e xamples of R aman s pectra as t hermometer: ( a) t ypical R aman

    spectrum showing the anti-Stokes, Rayleigh, and St okes signal, (b) Redshift and br oadening of

    the linewidth due to temperature increasing, adapted from [154]. ............................................. 88

    Figure 4.11 Scheme of the Raman thermometry method. ........................................................... 90

    Figure 4.12 Schematic c onfiguration f or t he incident, reflected and t ransmitted power

    measurements. ............................................................................................................................. 92

  • List of figures

    xvii

    Figure 4.13 Schematic c onfiguration of the T wo-Laser R aman T hermometry T echnique

    developed in this work. ................................................................................................................ 94

    Figure 4.14 Typical time trace from a 400 nm thick Si membrane. The electronic response of

    the sample is seen, which decays quickly to leave the thermal response. This decay can then be

    fitted to extract the decay time, which is proportional to the thermal diffusivity. Courtesy of Dr.

    J. Cuffe. ....................................................................................................................................... 95

    Figure 4.15 Schematics of F our-beam T ransient T hermal G rating appa ratus adapt ed f rom

    Johnson e t a l. [173]. The angle be tween the pump beams i s controlled by sp litting the beams

    with a d iffraction grating (phase mask) with a w ell-defined pitch. T he pump beams are l ater

    blocked, w hile the signal from t he pr obe beam that i s di ffracted from t he t hermal di ffraction

    grating i s recorded. This signal is m ixed w ith an attenuated r eference b eam f or he terodyne

    detection. ..................................................................................................................................... 97

    Figure 5.1 Brillouin spectra as function of the angle of incidence, showing for the fundamental

    flexural mode of a 17.5 nm Si membrane. ................................................................................. 101

    Figure 5.2 Dispersion relation and phase velocity of the zero order flexural mode of a 17.5 nm

    silicon membrane: experimental results (blue dots), simulation (black solid line) and quadratic

    fit ( red das hed l ine). I nset ( a): Sc hematic r epresentation of t he di splacement f ields o f t he

    flexural mode, courtesy of Dr. Jordi Gomis-Bresco. ................................................................ 102

    Figure 5.3 Fractional c hange in r eflectivity as a function o f t ime in the 1 00 nm s ilicon

    membrane. T he s harp i nitial c hange i s due to the e lectronic r esponse of the membrane. T he

    subsequent w eaker o scillations a re d ue to the excited a coustic m odes. ( b) C lose-up of t he

    acoustic modes after subtraction of the electronic response for membranes with 100 and 30 nm

    thickness shown by the green and red line, respectively. The sinusoidal decay of the reflectivity

    due to the first-order dilatational mode is clearly observed as a f unction of time, with a faster

  • List of figures

    xviii

    decay obs erved for t he thinner m embrane. T he time trace o f the 30 nm m embrane ha s b een

    magnified by a factor of 10 for clarity. Adapted from J. Cuffe et al. [23]. ................................ 104

    Figure 5.4 Experimental and theoretical phonon lifetime of the first-order dilatational mode in

    free-standing silicon membranes as a function of frequency. Experimental data of free-standing

    silicon m embranes w ith t hickness values ranging f rom appr oximately 194 to 8 nm ( red

    dots) [23] and 222 nm (black dot ) [180]. Green l ine: extrinsic boundary scattering processes.

    Blue line intrinsic three-phonon normal scattering processes. The total contribution, calculated

    using M atthiessen’s r ule, i s s hown by t he s olid bl ack-dashed l ine. A dapted from J . C uffe et

    al. [23]. ...................................................................................................................................... 105

    Figure 5.5 Phonon-phonon processes in Si membranes: (a) Intrinsic relaxation rate as function

    of the frequency. (b) Relative contribution to the total intrinsic lifetime of each phonon-phonon

    processes as a function of the frequency. .................................................................................. 108

    Figure 5.6 (a) T hermal c onductivity of S i m embranes nor malized t o the S i bul k v alue a s

    function of the thickness. The experimental data were obtained from thermal transient gradient

    (black dots), R aman thermometry ( red dots) and t wo-laser R aman thermometry ( green d ot)

    methods, res pectively [184–186]. T he t heoretical d escription o f t he d ata u sing t he F uchs-

    Sondheimer model is shown in blue solid l ine. (b) Theoretical lifetime of the thermal phonon,

    τTH, as a function of thickness: black line includes modification of thermal phonon lifetime due

    to the decrease of the thermal conductivity, blue and red lines: constant thermal phonon lifetime

    of 17 and 6 ps are shown for comparison. ................................................................................ 110

    Figure 5.7 Experimental and theoretical phonon lifetime of the first-order dilatational mode in

    free-standing silicon m embranes as a f unction of frequency. D ata o f f ree-standing Si

    membranes w ith t hickness ra nging f rom 194 t o 8 nm (green dot s) w ere t aken f rom

    Reference [23] and t he da ta poi nt for a 222 nm thick m embrane ( violet do t) w as t aken from

  • List of figures

    xix

    reference [180]. Solid blue (a), red (b) and black lines (c) are the intrinsic Akhieser attenuation

    dependence ca lculated f or t hermal ph onon lifetimes of 17 p s ( a) and 6 ps ( b), w hereas ( c)

    includes the thickness-dependent. ............................................................................................. 112

    Figure 5.8 (a) Frequency dependence of the Q-factor for different values of the lifetime of the

    thermal phonon: bulk values, τTH,bulk = 3kbulk/(CVv2), 50% of the bulk value, τTH = 0.5τTH,bulk and

    10% of t he bul k v alue, τTH = 0.1τTH,bulk. (b) E xperimental an d t heoretical qu ality f actor of

    different phonon modes in a S i nano-resonator. T he experimental d ata ( red d ots) were taken

    from t he Reference [187], bl ue-solid line s hows t he best fit. Inset SEM image of the nano-

    resonator, courtesy of Dr. J. Gomis-Bresco. ............................................................................. 113

    Figure 5.9 Typical thermal conductivity measurement diagram .............................................. 115

    Figure 5.10 Theoretical and experimental absorptance, A, reflectance, R, and transmittance, T,

    as a function o f m embrane t hickness. T he s olids l ines ar e c alculation ob tained f rom F abry-

    Perot simulations, courtesy of Dr. Francesc Alzina. The solid dots are experimental data points.

    Inset: diagrammatic Fabry-Perot effect in membranes ............................................................ 118

    Figure 5.11 Calibration of the Raman shift of the LO Si mode as function of the temperature:

    the red and green dots were extracted from the References [156,186], respectively. ............... 119

    Figure 5.12 Raman s hift ( right ax is) of the l ongitudinal optical ( LO) Si p honon o f t he

    membranes as a function of the absorbed power and membrane thickness. The left axis

    represent the temperature obtained from the temperature dependence of the LO mode extracted

    from the slope of the Figure 5.11. ............................................................................................. 119

    Figure 5.13 Thermal conductivity of the membranes, κfilm/κbulk, normalized to the bulk Si value

    as a function o f the t hickness ( solid re d d ots). A s re ference p revious w ork in SOI [2–4] and

    membranes using TTG [184] are also shown. The theoretical description of the data using the

  • List of figures

    xx

    modification of the dispersion relation, Srivastava and Fuchs-Sondheimer models are shown in

    green dotted, black dashed and blue solid lines, respectively. .................................................. 120

    Figure 5.14 Three-dimensional contour plot of the thermal field distribution of a 250 nm thick

    free-standing Si membrane. The isoline distribution of the thermal field is also shown in a lower

    plane. The colour bar indicates the maximum temperatures reaches. ...................................... 123

    Figure 5.15 Vertical and horizontal temperature cuts of the isoline thermal field distribution of

    a 250 nm thick free-standing Si membrane. Note the high symmetric distribution in temperature

    from both cuts. ........................................................................................................................... 124

    Figure 5.16 Comparison of t he temperature m ap m easured and s imulated for a 1 µm th ick

    silicon m embrane. T he solid l ines rep resent theoretical cu rves w ith d ifferent t hermal

    conductivity values ranging from the bulk values (1) and decreasing progressively to 65% of the

    bulk values (0.65). ..................................................................................................................... 125

    Figure 5.17 Experimental temperature p rofile measured i n a 1 µm t hick S i membrane (green

    and pur ple dot s). T he pur ple do ts c ome from of t he ne gative pa rt o f t he F igure 5.16 m irror

    reflected to the right side. .......................................................................................................... 126

    Figure 5.18 Comparison of t he temperature m ap m easured and s imulated for a 2 µm th ick

    silicon membrane. The solid lines represent theoretical curves with thermal conductivity value

    of 118 WK−1m−1. ........................................................................................................................ 127

    Figure 5.19 Comparison of the measured and s imulated temperature map for a 250 nm thick

    silicon m embrane. T he so lid r ed l ine rep resents t heoretical cu rves w ith thermal co nductivity

    value of 81WK−1m−1. The bulk limit, black solid line, is shown by comparison. ....................... 127

    Figure 5.20 Theoretical and experimental thermal conductivity o f the Si membranes,

    normalized to the bulk Si value, κfilm/κbulk, as a function of thickness. The green solid dots show

  • List of figures

    xxi

    this work (2LRT) and as reference previous work data on SO I [2–4] and Si membranes using

    TTG [184], and Single-Raman thermometry, 1LRT, are also shown. ....................................... 128

    Figure 5.21 Thermal diffusivity as a function of grating spacing in a 200 nm thick Si membrane

    at different temperatures. .......................................................................................................... 130

    Figure 5.22 Temperature dependence o f t he t hermal di ffusivity for 100 a nd 20 0 nm t hick Si

    membranes. The Si bulk values are also shown for comparison [191,192] .............................. 131

    Figure 5.23 Two-segment sch emes for t hermal rectification: ( a) I n-plane Si -Si or Si -Ge

    configuration. (b) Out-of- plane Si-Ge configuration. .............................................................. 133

    Figure 5.24 Temperature d ependence o f t he i n-plane ( a) and out -of-plane ( b) t hermal

    conductivity of Si and Ge thin films. All curves were calculated with a mass-defect scattering

    parameter ( Γ) r eflecting t he na tural isotope c oncentration, w ith the e xception of the 500 nm

    thick Si film for which an increased mass-defect scattering was introduced (10Γ). ................. 134

    Figure 5.25 Calculated in-plane thermal rectification coefficient of (a) 500-200 nm Si-Si, (b)

    800-200 nm G e-Si and (c) 80 -15 nm G e-Si s ystems. C alculated out-of-plane t hermal

    rectification of a 100-20 nm S i-Ge system. For each configuration T H, was fixed and t he low

    temperature was varied. ............................................................................................................ 135

    Figure 6.1 SEM i mage o f t he or dered ( a) and di sorder ( b) phononi c c rystal f or t hermal

    properties analysis. Courtesy of Dr. Marianna Sledzinska. ..................................................... 142

    Figure I.1 Sectioned solid under external loading ................................................................... 148

    Figure I.2 Stress components ................................................................................................... 148

    Figure I.3 Traction on arbitrary orientation ............................................................................ 149

    Figure I.4 Typical graph of non-linear equation of dilatational waves for a fixed dimensionless

    wavevector, Q = 0.5, as a function of reduced frequency ......................................................... 156

  • List of figures

    xxii

    Figure II.1 Silicon dispersion relation, adapted from [212]. ................................................... 170

    Figure II.2 Schematic ph onon s pectrum s howing z one di vision, 0.5b, and the extension i nto

    second Brillouin zone. Adapted from [104]............................................................................... 172

    Figure III.1 (a) P honon di spersion r elation of bulk s ilicon and ge rmanium sys tems:

    experimental results (red and blue dots) from Ref. [176] and second-order polynomial f it (red

    and blue solid l ine). (b) Red and blue l ines: calculated temperature-dependence o f the lattice

    thermal c onductivity of b ulk s ilicon a nd ge rmanium, r espectively. R ed and blue do ts: t he

    experimental data of silicon and germanium bulk respectively obtained from Ref. [70] .......... 180

    Figure III.2 Normalized intensity of the monochromatic light with wavelength of 407 nm as a

    function of travelled distance in bulk silicon. Three different stars at 250 (red), 1000 (blue) and

    2000 ( green) nm ar e included to rough comparison w ith t he t hicknesses of t he s tudied

    membranes. Inset: idem in double logarithmic scale for better visualization of the graph. ..... 182

    Figure III.3 Absorptance ( A), r eflectance ( R), and t ransmittance ( T) as a function of the

    thickness o f t he m embranes. So lid black, r ed and blue lines ar e t he c alculated A , R and T

    coefficient c onsidering t he F abry-Perot e ffect. F or comparison t he bu lk l imit o f t he A and R

    coefficients ar e s hown i n dashed g rey an d pi nk l ines, r espectively. N ote that the os cillating

    behaviour is more appreciable at small thicknesses (a), while larger thicknesses the absorption

    reaches quietly the bulk values (b). Courtesy of Dr Francesc Alzina. ...................................... 183

    Figure III.4 Temperature d ependence o f t he b ulk s ilicon t hermal co nductivity. T he

    experimental d ata ( red d ots) w ere o btained from R ef. [214]. T he s olid blue l ine i s a s econd-

    order polynomial adjust. ........................................................................................................... 184

    Figure III.5 (a) Geometry of the sample used in the simulations. (b) Representative simulated

    temperature field. ...................................................................................................................... 185

  • List of tables

    xxiii

    LIST OF TABLES

    Table 1.1 Thermal conductivity measurements in Si nanostructures ........................................... 7

    Table 3.1 N and U-processes interactions. s is the polarization, L and T are the longitudinal

    and transverse polarization, respectively. The processes described in the last row is only valid

    for N-Processes ........................................................................................................................... 49

    Table 3.2 Limit values for areas of integration in the x-x’ space, with SL and ST longitudinal and

    transversal sound speed respectively. ......................................................................................... 50

    Table 3.3 Silicon parameters used in the simulation of Umklapp-processes in the bulk system. 52

    Table III.1 Silicon and Germanium parameters used in the calculations. .............................. 179

  • xxiv

  • List of publications & presentations

    xxv

    LIST OF PUBLICATIONS AND PRESENTATIONS

    Published and accepted articles

    1. J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E.

    Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, C. M. Sotomayor Torres, “A

    1D opt omechanical crystal w ith a c omplete pho nonic ba nd g ap”, Arxiv: 1401. 1691v2, 2014.

    Accepted in Nat. Commun.

    2. E. Chávez-Ángel, R .A. Zarate, J . G omis-Bresco, F . A lzina, C .M. S otomayor T orres,

    “Modification of Akhieser mechanism in Si nanomembranes and thermal conductivity dependence

    of the Q-factor of high frequency nanoresonators”, Accepted in Semicond. Sci. Tech.

    3. J.S. R eparaz, E. Chávez-Ángel, M. R . W agner, J. G omis-Bresco, B . G raczykowski, F .

    Alzina, and C . M. Sotomayor T orres, “Novel high resolution contactless t echnique for t hermal

    field m apping and t hermal c onductivity de termination: T wo-Laser R aman T hermometry”, R ev.

    Sci. Instr., Vol. 85, 034901, 2014.

    4. V. A. Shah, S. D. Rhead, J. E. Halpin, O. Trushkevych, E. Chávez-Ángel, A. Shchepetov, V.

    Kachkanov, N. R. Wilson, M Myronov, J. S. Reparaz, R. S. Edwards, M.R. Wagner, F. Alzina, I.

    P. Dolbnya, D. H. Patchett, P. S. Allred, M.J. Prest, P.M. Gammon, M. Prunnila, T. E. Whall, E.

    H. C . P arker, C .M. S otomayor T orres, D . R . L eadley, “ High q uality si ngle cr ystal G e n ano-

    membranes for opto-electronic integrated circuitry”, J. Appl. Phys. Vol. 115, 144307, 2014.

    5. E. Chávez-Ángel, J. S. Reparaz, J. Gomis-Bresco, M. R. Wagner, J. Cuffe, B. Graczykowski,

    A. S hchepetov, H . J iang, M . P runnila, J. A hopelto, F. A lzina a nd C . M . S otomayor T orres,

    “Reduction of the thermal conductivity in free-standing silicon nano-membranes investigated by

    non-invasive Raman thermometry”, APL Mat., Vol. 2, 012113, 2014.

    http://arxiv.org/ftp/arxiv/papers/1401/1401.1691.pdfhttp://arxiv.org/ftp/arxiv/papers/1401/1401.1691.pdfhttp://dx.doi.org/10.1063/1.4867166http://dx.doi.org/10.1063/1.4867166http://dx.doi.org/10.1063/1.4870807http://dx.doi.org/10.1063/1.4870807http://dx.doi.org/10.1063/1.4861796http://dx.doi.org/10.1063/1.4861796

  • List of publications & presentations

    xxvi

    6. J. C uffe, O . R istow, E. Chávez, A. S hchepetov, P -O. C hapuis, F . Alzina, M . H ettich, M .

    Prunnila, J. Ahopelto, T. Dekorsy and C. M. Sotomayor Torres, “Lifetime of Confined Acoustic

    Phonons in Ultra-Thin Silicon Membranes”, Phys. Rev Lett., Vol. 110, 095503, 2013.

    7. E. Chávez, J. Gomis-Bresco, F. Alzina, J.S. Reparaz, V.A. Shah, M. Myronov, D.R. Leadley

    and C .M. S otomayor T orres, “ Flexural m ode d ispersion i n ul tra-thin G e m embranes”, 14t h

    International Conference on Ultimate Integration on Silicon (ULIS), Vol. 185, 2013.

    8. E. Chávez-Ángel, F. Alzina, C.M. Sotomayor Torres, “Modelling of thermal rectification in Si

    and Ge thin films”, ASME 2013 International Mechanical Engineering Congress and Exposition:

    Heat Transfer and Thermal Engineering, Vol. 8C, V08CT09A013, 2013.

    9. J. Cuffe, E. Chávez, A. Shchepetov, P.O. Chapuis, El Houssaine El Boudouti, F. Alzina, T .

    Kehoe, J. Gomis-Bresco, D. Dudek, Y. Pennec, B. Djafari-Rouhani, M. Prunnila, J. Ahopelto, and

    C.M. S otomayor T orres, “Phonons i n Sl ow Motion: D ispersion R elations in U ltra-Thin Si

    Membranes”, Nano Lett., Vol. 12, 3569, 2012.

    10. E. Chávez, J. Cuffe, F. Alzina and C.M. Sotomayor Torres, “Calculation of the specific heat

    capacity in free-standing silicon membranes”, J. Phys.: Conf. Ser., Vol. 395, 012105, 2012.

    11. J. Cuffe, E. Chávez, A. Shchepetov, P.O. Chapuis, El Houssaine El Boudouti, F. Alzina, T .

    Kehoe, J. Gomis-Bresco, D. Dudek, Y. Pennec, B. Djafari-Rouhani, M. Prunnila, J. Ahopelto, and

    C.M. Sotomayor Torres “Effect of the phonon confinement on the dispersion relation and the heat

    capacity i n nanoscale Si m embranes”, ASME 201 2 I nternational M echanical E ngineering

    Congress and Exposition: Micro- and Nano-Systems Engineering and Packaging, Vol. 9, 1081,

    2012.

    http://prl.aps.org/abstract/PRL/v110/i9/e095503http://prl.aps.org/abstract/PRL/v110/i9/e095503http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6523515http://dx.doi.org/10.1115/IMECE2013-63613http://dx.doi.org/10.1115/IMECE2013-63613http://dx.doi.org/10.1021/nl301204uhttp://dx.doi.org/10.1021/nl301204uhttp://iopscience.iop.org/1742-6596/395/1/012105/http://iopscience.iop.org/1742-6596/395/1/012105/http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1751689http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1751689

  • List of publications & presentations

    xxvii

    Non-related articles

    12. S. F uentes, F . C espedes, P. M uñoz, E. Chávez and L. P adilla-Campos, “ Synthesis and

    structural characterization of nanocrystalline BaTiO3 at various calcination temperature” J. Chil.

    Chem. Soc. Vol 58, 2077, 2013.

    13. S. Fuentes, E. Chávez, L . Padilla-Campos and D.E. Diaz-Droguett, “Influence of r eactant

    type on the Sr incorporation grade and structural characteristics of Ba1−xSrxTiO3 (x=0−1) grown

    by sol–gel-hydrothermal synthesis” Ceramics International, Vol. 39, 8823, 2013.

    14. E. Chávez, S . F uentes, R . A . Zarate, L . P adilla-Campos, “ Structural anal ysis of

    nanocrystalline BaTiO3”, Journal of Molecular Structure, Vol. 984, 131, 2010.

    Book chapters

    15. M. Mouis, E. Chávez-Ángel, F. Alzina, A. Shchepetov, J. Ahopelto, C. M. Sotomayor Torres,

    A. Nassiopoulou, M. V. Costache, S. O. Valenzuela, B. Viala, D. Zakharov, Wensi Wang, Beyond

    CMOS Nanodevices 1, Chapter 7: “Thermal Energy Harvesting”, John Wiley & sons, Inc., pp.

    135-219, 2014.

    16. D. Leadley, V. Shah, J. Ahopelto, F. Alzina, E. Chávez-Ángel, J. Muhonen, M. Myronov, A.

    G. Nassiopoulou, H. Nguyen, E. Parker, J . Pekola, M. Prest, M. Prunnila, J. S. Reaparaz, C.M.

    Sotomayor Torres, K. Valalaki and T. Whall, BEYOND-CMOS NANODEVICES 1, Chapter 12:

    “Thermal isolator through nanostructuring”, John Wiley & sons, Inc., pp. 331-363, 2014.

    http://dx.doi.org/10.4067/S0717-97072013000400038http://dx.doi.org/10.4067/S0717-97072013000400038http://dx.doi.org/10.1016/j.ceramint.2013.04.070http://dx.doi.org/10.1016/j.ceramint.2013.04.070http://dx.doi.org/10.1016/j.ceramint.2013.04.070http://dx.doi.org/10.1016/j.molstruc.2010.09.017http://dx.doi.org/10.1016/j.molstruc.2010.09.017http://onlinelibrary.wiley.com/doi/10.1002/9781118984772.ch7/summaryhttp://onlinelibrary.wiley.com/doi/10.1002/9781118984772.ch12/summaryhttp://onlinelibrary.wiley.com/doi/10.1002/9781118984772.ch12/summary

  • List of publications & presentations

    xxviii

    In preparation articles

    17. F. A lzina, E. Chávez-Ángel, J.S. R eparaz, J. C uffe, J . G omis-Bresco, A . S hchepetov, J .

    Ahopelto, a nd C . M . S otomayor T orres, I nvited r eview a rticle: “Silicon m embranes: a m odel

    system to study heat transport”, to be published in APL Mat.

    Oral Presentations

    1. E. Chávez, F. Alzina and C. M. Sotomayor Torres, “Modelling of thermal rectification in Si

    and Ge thin films” European Material Research Society 2014 spring meeting, E-MRS 2014, May

    26-30, 2014, Lille, France.

    2. E. Chávez-Ángel, F. Alzina and C. M. Sotomayor Torres, “Modelling of thermal rectification

    in Si and Ge thin films” ASME 2013 International Mechanical Engineering Congress and

    Exposition, ASME-IMECE 2103, Nov. 15-21, 2013, San Diego, USA.

    3. E. Chávez, J .S. R eparaz, J . C uffe, J. G omis-Bresco, M . R . W agner, A . S hchepetov, M .

    Prunnila, J. A hopelto, F . Alzina a nd C . M . S otomayor T orres, “ Thermal p roperties o f si licon

    ultra-thin membranes: A theoretical and experimental approach” 2nd edition of largest European

    Event in Nanoscience and nanotechnology, ImageNano 2013, April 23-26, 2013, Bilbao, Spain.

    4. E. Chávez, J. Cuffe, F. Alzina, J. S. Reparaz, W. Khunsin, A. Goñi, C. M. Sotomayor Torres,

    “Calculation of thermal properties in silicon nanostructures” XVIII Simposio Chileno de Física,

    Nov. 21-23, 2012, La Serena, Chile.

  • List of publications & presentations

    xxix

    5. E. Chávez, J . C uffe, F . A lzina, C .M. S otomayor, “ Specific he at of ul tra-thin f ree standing

    silicon membranes” 6th European Thermal Sciences Conference, Eurotherm 2012, September 04-

    07, 2012, Poitiers, France.

    6. E. Chávez, J. Cuffe, F. Alzina, C.M. Sotomayor, “Heat capacity on free standing membranes

    included native oxide”, XIV International Conference on Phonon Scattering in Condensed Matter,

    Phonons 2012, July 8-12, 2012, Ann Arbor, MI USA.

    7. E. Chávez, P .O. Chapuis, J . C uffe, F . A lzina, C .M. S otomayor-Torres “ Relaxation r ate i n

    ultra-thin s ilicon m embranes”, S ummer S chool: “Energy H arvesting at micro an d n anoscale”,

    NiPS S ummer S chool 2011, August 1 -4, Wo rkshop “E nergy Man agement at Mi cro an d

    Nanoscale”, August 4-5, Perugia, Italy.

    8. E. Chávez, P .O. C hapuis, J. C uffe, F . A lzina, C .M. S otomayor-Torres “ Acoustic phonon

    relaxation rates in nanometer-scale membranes”, Phononics 2011: First International Conference

    on Phononic Crystals, Metamaterials and Optomechanics, Phononics 2011, May 29th to June 2nd

    2011, Santa Fé, New Mexico, USA.

  • xxx

  • List of acronyms

    xxxi

    LIST OF ACRONYMS

    1D One dimensional

    2D Two dimensional

    3D Three dimensional

    1-LRT Single-laser Raman thermometry

    2-LRT Two-laser Raman thermometry

    a Thickness of the membrane

    A Absorptance

    ASOPS Asynchronous optical sampling

    BHS Buffered hydrofluoric acid

    BOX Buried oxide layer

    BLS Brillouin light scattering

    BTE Boltzmann transport equation

    CCD Charge-couple device

    CW Continuous wave

    DOS Density of States

    DSP Double side polished

    DW Dilatational waves

    FEM Finite element method

    FDTR Frequency-domain thermoreflectance

    FPI Fabry-Pérot interferometer

    FW Flexural waves

    FWHM Full-width-half-maximum

    LA (L) Longitudinal acoustic

    HF Hydrofluoric acid

    ILS Inelastic light scattering

    LO Longitudinal optic

    MFP Mean free path

    PBTE Phonon Boltzmann transport equation

    R Reflectance

    RIE Reactive ion etching

    SAW Surface acoustic wave

  • List of acronyms

    xxxii

    SEM Scanning electronic microscopy

    SOI Silicon-on-insulator

    SW Shear waves

    T Transmittance

    TA (T) Transverse acoustic

    TDTR Time-domain thermoreflectance

    TMAH Tetramethyl ammonium hydroxide

    TPFI Tandem Fabry-Pérot interferometer

    TTG Transient thermal grating

    Q-factor Quality factor

  • Chapter I

    1

    CHAPTER I: INTRODUCTION AND OBJECTIVES

    Due t o t he l arge v ariety o f p romising t echnological ap plications, t he c oncept o f

    nanotechnology has become one of the most important and exciting fields encompassing many

    disciplines s uch a s phy sics, c hemistry, bi ology, medicine, engineering a mong ot hers. At

    nanometric sca les, material pr operties c an be dramatically modified i n c omparison w ith t heir

    bulk counterpart. This is, in part, due to the effects of quantum confinement and to the increase

    of s urface-volume r atio. F or e xample, a s pherical particle w ith s ize of 30 nm ha s 5 % of i ts

    atoms on its surface; at 10 nm this percentage has increased by 20% while at 5 nm atoms at the

    surface acco unt f or almost 50% t he t otal number [1]. These f actors c an e ither en hance or

    degrade elastic, reactive, thermal, optical and electrical characteristics among others.

    Great i nnovations i n controlled micro and nanofabrication ha ve l ed t o t he realization of

    novel materials, development of processes and unveiling of new phenomena at nanoscale which,

    in tu rn, have spurred technology g rowth a t an astounding pa ce, w hile o ffering us t he first

    building blocks for the next green-industrial revolution.

    In this sense, the control of the charge and heat transport in low-dimensional semiconductor

    structures has become a cornerstone in the development of this next technology revolution. This

    is in part motivated by the increasing importance of thermal management as a c onsequence of

    the large power d ensities r esulting from the continuous miniaturization of electronics

    components. Moreover, the e ngineering of the t hermal conduction ope ns a route t o energy

    harvesting t hrough, f or e xample, t hermoelectric generation. A s a consequence, c ontrol a nd

    engineering of phonons in the nanoscale is essential for tuning desirable physical properties in a

    device in the quest to find a suitable compromise between performance and power consumption.

  • Introduction & objectives

    2

    Developments arising from c onfinement of electronic charge and l ight i n nanostructures

    have been widely researched in the context of information and communication technology. In

    contrast, progress in the study of phonons as main actors in heat conductivity, carrier electronic

    mobility, detection limits and emission time-scales, among others, has been slower in rate and

    smaller v olume. An e xample of t he s till poo r state-of-the-art on th is to pic it that until now

    essential p arameters r emains u nknowns su ch a s: the frequency-dependence o f t he Grüneisen

    parameter, accurate measurements of phonon lifetime and/or phonon mean f ree path, the

    influence of constant [2–5] or frequency-dependent surface roughness parameter [6,7], the limit

    of diffusive/ballistic thermal transport and their associated temperature and thickness transition,

    to name but a f ew. One example of t his l imited state-of-the-art is th at only last year an

    experimental proof of the effective phonon mean free path in bulk silicon was obtained [8].

    The l ack of the k nowledge of t hese pa rameters i s d ue, i n pa rt, to s ubstantial challenges

    associated with their quantitative experimental determination and the corresponding theoretical

    model. In t his s ense, o ne s et of s tructures t hat are attracting increasing attention for t hermal

    studies is free-standing membranes. These include solids plates (slabs) or rods (bars) connected

    to s olid s ubstrate b y th e e xtremities. F rom one-atom th ick layers, e. g. g raphene [9], t o h igh

    purity and single-crystal structure, e.g. Si membranes [10], these structures have found use in a

    wide v ariety of i nteresting a nd i mportant applications, i ncluding v ery s ensitive f orces [11],

    mass [12] and p ressure sensors, low-loss m acromolecule se parators [13], bo lometers

    platform [14,15] and optomechanical cavities [16] among others.

    In addition, as there is no interference from a su bstrate and as they can be fabricated with

    precise, controlled and reproducible fabrication processes, these nanoscale objects facilitate the

    experimental analysis and comparison with theoretical models and are a text-book example of a

    nanoscale sy stem. T heir physical p roperties, e .g. el ectrical an d t hermal p roperties, can be

  • Chapter I

    3

    dramatically different compared to a thick sample or bulk counterpart, by orders of magnitude.

    All these characteristics are of special interest from experimental and theoretical point of view.

    1.1 Nanoscale thermal conductivity

    The understanding of h eat p ropagation and t hermal pr operties in low-dimensional

    nanostructures ha s m otivated i ncreasing r esearch activity an d, u ndoubtedly, the thermal

    conductivity, k, is one of the most important and fundamental physical quantities.

    The t hermal co nductivity of a m aterial g overns its ability t o t ransport h eat a nd p lays a

    fundamental role i n t he de sign a nd pe rformance of the t echnological de vices. The dominant

    carrier o f t he h eat en ergy depends o n t he t ype o f m aterial. I t can b e t ransported v ia ch arge

    carriers (electrons), l attice waves ( phonons), electromagnetic waves ( photons), o r sp in w aves

    (magnons). For non-metal, semiconductor and alloy materials the dominant conduction carrier

    is the lattice thermal conduction, i.e., by phonons. A phonon is a pseudo-particle which

    represents quantized modes of the vibrational energy of an atom or group of atoms in a lattice.

    Considering t hat phonons a re pseudo-particles, i t is p ossible t o associate to ea ch o f them an

    energy ħω and a pseudo-momentum p = ħq, which obey Bose-Einstein statistics [17].

    Similarly to the electron case, the phonon energy can be represented as a dispersion relation,

    i.e., a relationship between the phonon frequency and its wavevector. The slope of a dispersion

    relation c urves de termines t he phonon g roup v elocity, vg = dω/dq. F or t he bulk case, t he

    dispersion r elation of pho nons with short wavevector can b e co nsidered l inear an d t he sl ope

    represents the s ound v elocity in the m aterial. H owever, w hen w e d ecrease the characteristic

    dimensions of the material, this linear dependence no longer holds, and many d iscrete modes

    appear leading t o the quantization of the phonon energy. T his spatial confinement a ffects the

  • Introduction & objectives

    4

    phonon group velocity, density of s tates, specific heat capacity, e lectron-phonon and phonon-

    phonon interactions, etc. [18–23]. Moreover the decrease in dimension sets an upper limit to the

    phonon mean free path, because the acoustic wave cannot continue to travel in the media due to

    the boundaries.

    The recent e xperimental and t heoretical reports point t o a n enhancement of t he

    thermoelectricity figure o f m erit, ZT = S2σT/k (where S is the S eebeck co efficient, σ the

    electrical conductivity k the thermal conductivity and T is the temperature), in thin f ilms [24–

    28], nanowires [29–33], superlattices [34–37] and suspended phononic crystals [38–40]. This is

    primarily a r esult o f t he thermal c onductivity decrease compared t o t he bulk c ounterpart,

    without a co rresponding d ecrease in e lectrical properties. The r eduction of t he t hermal

    conductivity i n these sy stems h as b een a ssociated with two p rincipal f actors: ( i) t he

    modification of the acoustic di spersion relation due to the additional periodicity ( superlattices

    and phononic crystal structures) [41–43] or spatial confinement of the phonon modes (thin films

    and nanowires) [44–47] and (ii) the shortening of the phonon mean free path due to the diffuse

    scattering of phonons at the boundaries [2,48–50].

    To model heat t ransfer in nanostructures, ad vanced t heoretical models are r equired w hich

    correctly take into account the frequency dependence of phonon properties. The majority of the

    models of the thermal conductivity are derived from the phonon Boltzmann transport equation

    (PBTE) un der the s ingle m ode r elaxation-time a pproximation [17]. F or l ow-dimensional

    systems Zou et al. [51] classified the theoretical models into three types. The first one takes the

    bulk f ormulation f or the thermal conductivity, i ntroduces t he m odified di spersion relation

    caused by the spatial confinement and adds a boundary scattering rate to the total scattering rate

    through Mattiessen’s rule [44]. The second one uses the bulk dispersion relation and derives an

    exact solution of the PBTE after introducing the diffusive boundaries conditions, according to a

    Knudsen flow model [2,48,52]. The third model, proposed by Zou et al. [51], is a combination

  • Chapter I

    5

    of these two approaches. This model takes the modified expression of the thermal conductivity

    including the Knudsen flow model in addition to the modified dispersion relation. More recently

    Huang et al. [46] developed one- and two-dimensional expressions for the thermal conductivity

    of nanowire and thin films, which include the modified expression of the relaxation time due to

    the boundaries.

    The experimental m easurement o f t he t hermal c onductivity i nvolves t wo st eps: t he

    introduction o f thermal en ergy i nto t he sy stem (heating) and t he detection of the c hange o f

    temperature or related physical properties due to the increase in thermal energy (sensing). Both

    heating and sensing can be measured, mainly, by e lectrical, optical and/or the combination of

    both methods. In Table 1.1 a summary of main measurements of Si nanostructures performed in

    the last ten years is given.

    Reference Type of Nanostructure

    Relevant Dimensions

    [nm]

    Type of measurement

    Temperature [K]

    Thermal conductivity

    at 300 K [W K-1 m-1]

    Ma et al. [53]

    (2013) Inverse opals 18-38 Electrical, 3ω 30-400 0.6-1.3

    Grauby et al. [54]

    (2013) Nanowires 50 & 200 Electrical, 3ω-SThM

    Room temperature 22-150

    Claudio et al. [55]

    (2012)

    Nanostructured Bulk 30-40

    Electrical, commercial 2-300 15-24

    Feser et al. [56]

    (2012) Nanowires 110-150 Optical, TDTR Room temperature 12-40

    Marconnet et al. [57]

    (2012)

    Periodic porous nanobridge 196 Electrical, 3ω

    Room temperature 3.4-112

  • Introduction & objectives

    6

    Reference Type of Nanostructure

    Relevant Dimensions

    [nm]

    Type of measurement

    Temperature [K]

    Thermal conductivity

    at 300 K [W K-1 m-1]

    Weisse et al. [58]

    (2012)

    Porous nanowires 300-350 Optical, TDTR

    Room temperature 51-142

    Kim et al. [59]

    (2012)

    Free-standing phononic crystal 500

    Electrical, Joule heating

    Room temperature 32.6

    Fang et al. [60]

    (2012)

    Mesoporous nanocrystalline

    thin films 140-340 Electrical, 3ω 25-315 0.23-0.32

    Liu et al. [61]

    (2011) Free-standing

    membrane 500 & 700 Optical, Raman

    thermometry Room

    temperature 118 & 123

    Wang et al. [62]

    (2011) Nanocrystals 64-550 Electrical, 3ω 16-310 8-79

    Yu et al. [38]

    (2010)

    Free-standing phononic nanomesh

    22-25

    Electrical, suspended heater & detector

    80-320 1.5-17

    Doerk et al. [63]

    (2010) Nanowires 30-300 Optical, Raman thermometry

    Room temperature 10-81

    Tang et al. [39]

    (2010) Holey Si 100

    Electrical, suspended heater & detector

    20-300 1.7-51

    Schmotz et al. [64]

    (2010)

    Free-standing membrane 340

    Optical,

    thermal transient grating

    Room temperature 136

  • Chapter I

    7

    Reference Type of Nanostructure

    Relevant Dimensions

    [nm]

    Type of measurement

    Temperature [K]

    Thermal conductivity

    at 300 K [W K-1 m-1]

    Hochbaum et

    at. [30] (2008) Nanowires 20-300

    Electrical, suspended heater & detector

    20-320 2.5-8.5

    Boukai et al. [29]

    (2008) Nanowires 10 & 20

    Electrical, suspended heater & detector

    100-300 0.76 & 5.7

    Hao et al. [65]

    (2006) Thin films 50 and 80

    Electrical, suspended heater & detector

    Room temperature 32 & 38

    Ju [66]

    (2005) Thin films 20-50

    Electrical, on substrate heater

    & detector

    Room temperature 30-55

    Liu et at. [4]

    (2005) Free-standing membranes 30

    Electrical, Joule heating 300-450 30

    Liu et al. [49]

    (2004) Free-Standing

    membrane 20 & 100 Electrical, Joule

    heating 20-300 22 & 60

    Li et al. [45]

    (2003) Nanowires 22-115

    Electrical, suspended heater & detector

    20-320 6.7-40.7

    Table 1.1 Thermal conductivity measurements in Si nanostructures

    The first thermal conductivity models for bulk systems [67–70] were based on the solution

    of the phonon B oltzmann t ransport equation ( PBTE) unde r the s ingle m ode r elaxation time

    approximation. This approach provides the simplest picture of phonon interactions considering

    that each phonon mode has a single relaxation time independent of others modes, i.e., it assumes

    that a ll ot her phono n ha ve t heir e quilibrium di stribution [17]. The c alculation o f t he t hermal

    conductivity i n s emiconductor m aterial implies t he k nowledge of t hree m ajor frequency-

    dependent parameters, i.e., specific heat, CV, phonon group velocity, vg, and the phonon mean

  • Introduction & objectives

    8

    free path, Λ. The expression for thermal conductivity from the kinetic theory of gases is given

    by

    Λ= gV vC31k [1.1]

    Taking into consideration the contribution of each mode q with transverse (T) or longitudinal

    (L) polarization s, Equation [1.1] becomes:

    ∑ +=qs

    qsqsqsqsqsB

    nnvTVK

    )1(3

    222

    2

    τωk [1.2]

    where ħ is t he r educed P lack’s co nstant, V the total volume, T the t emperature, KB is t he

    Boltzmann c onstant, ωqs the phonon f requency, vqs the g roup v elocity, nqs the B ose-Einstein

    equilibrium phonon distribution function and τqs = Λqs/vqs the total relaxation time of each mode.

    From E quation [1.2] it is c lear that to m odel the lattice th ermal c onductivity w e n eed the

    dispersion relation, the t otal relaxation t ime of e ach m ode a nd a num erical s cheme f or

    performing t he i ntegration w ithin t he B rillouin z one. T he phon on di spersion r elation c an be

    calculated t hrough s everal m ethods. H owever, th e c alculation o f the intrinsic relaxation t ime

    and the summation over the Brillouin zone can be very time-consuming and the knowledge of

    the anharmonic phonon-phonon scattering strengths is not yet sufficiently-well established [71].

    1.2 Phonon confinement

    Acoustic phonons play an essential role in almost all the physical properties of a crystal. The

    statistics of phonons and their interaction with others particles sets a limit to some properties,

    such as: electrical and thermal conductivity, sound transmission, reflectivity of ionic c rystals,

    inelastic s cattering o f light, s cattering o f X-Rays a nd ne utrons, l inewidth o f qua ntum dot

  • Chapter I

    9

    emission, m aximum pow er carried b y optical f ibers a nd s o on [72,73]. In t his sen se, t he

    engineering of new devices able to generate and control phonons becomes an essential issue in

    the development of future technologies.

    The pioneering s tudies of confined waves were pe rformed by Lord Rayleigh [74] in 1885.

    He d emonstrated, t heoretically, the existence of surfaces acoustics waves, S AW, which

    propagates al ong t he p lane su rface o f an i sotropic solid half-space. T hese w aves ar e n on-

    dispersive, with a velocity slightly smaller than of t he bulk shear waves and their amplitudes

    decaying ex ponentially f rom t he su rface, i .e., these waves are co nfined in t he surface. Years

    later, following the results of Lord Rayleigh others scientists developed this topic, particularly

    Pochhammer, Love, Sezawa, S toneley, Lamb, among others. Following t he Pochhammer and

    Rayleigh’s work Horace Lamb [75] described the characteristics of waves propagating in free-

    standing plates.

    Early experiments to detect optical phonons in confined systems were performed by Fasol in

    1988 [76], who u sed R aman scat tering t echniques t o sh ow that t he w ave v ector o f o ptical

    phonons of a ten monolayer thick AlAs/GaAs/AlAs superlattice are confined and can only take

    values given by qz = nπ/Lz, where Lz is the thickness of the layers. This early experiment

    demonstrated no t on ly t hat pho nons are confined i n na nostructures bu t a lso that t he

    measurement of phonon wave vectors are well described by relatively simple continuum models

    of phono n c onfinement. Concerning t o m embranes, t echnically an aco ustic cav ity, first

    experimental observation of confined acoustic phon ons of n anometre-scale membranes was

    reported in 1987 in suspended 20 nm thick Au films [77]. Other works in free-standing

    membranes has been reported on 100 and 200 nm in SiN films in 2003 [78] and 30 nm Si films

    in 2004 [79].

  • Introduction & objectives

    10

    1.4 Thesis Outline

    In this thesis we report the study of thermal properties in free-standing silicon membranes. In

    Chapter I I, an analytical model for wave propagation in i sotropic f ree-standing me mbranes is

    developed. There the main concepts of the elastic continuum theory are described. Chapter III

    theoretical models of the thermal properties are developed, including phonon lifetime, phonon

    density of states, heat capacity and thermal conductivity. Chapter IV the fabrication of the

    samples and the different characterization techniques used for the study the phonon-dependent

    properties a re d escribed. T he ex perimental r esults an d t heir t heoretical d escription a re

    developed in Chapter V . F inally, t he c onclusion, the summary of t he main results a nd f uture

    extension of this work are shown in the Chapter VI.

  • Chapter II

    11

    CHAPTER II: ACOUSTIC WAVES

    In this chapter, a semi-analytical model for wave propagation in free-standing membrane is

    developed. T he f ree-standing m embrane consists of a solid pl ate, s lab, c onnected t o a solid

    substrate by the extremities. The membrane system is treated as a semi-infinite system, i.e., with

    infinite e xtensions in x and y directions b ut w ith a f inite extension in t he z component. The

    acoustic waves sustained by this system are solutions of the elasticity equation of the material

    with st ress-free conditions at t he bound aries at z = ±a/2, w here a is th e thickness o f t he

    membrane. In addition, the acoustic wave propagation and the phonon dispersion relation in a

    layered system are calculated.

    2.1 Elastic continuum model

    To calculate the dispersion relation the elastic continuum model is often used. In this model,

    the discrete nature of the atomic lattice is ignored and the material treated as a continuum. This

    model c an be de rived f rom t he t heory of l attice v ibrations by c onsidering t hat the lattice

    deformations vary slowly on a scale determined by the range of the inter-atomic forces [80], and

    is usually valid provided that the wavelength of elastic waves, λ, is significantly larger than the

    atomic la ttice co nstant, a0, i .e., λ/a0 ≥ 20. This corresponds to wavelengths approximately

    longer than 10 nm, or frequencies smaller than approximately 100 GHz [81].

    Within this model, a displacement of the material causes a strain, which can be described in

    terms of the strain tensor, S, and is related to the gradient of the displacement, �Ui/�xi. In the

    presence of the strain, the material generates internal forces that return it to its original

  • Acoustic waves

    12

    positions, i.e., the equilibrium state. These forces are expressed in terms of the stress tensor, T,

    which is related to the S tensor through the elastic constant tensor, C, as:

    klijklij SCT = [2.1]

    where Cijkl is a fourth order tensor, which has 81 components, but only 36 of these components

    are independent, due to symmetry considerations [69,82–84]. In isotropic materials, waves can

    travel equally well in all directions, and the elastic constant tensor can be further simplified to

    have two independent components.

    As shown in the Figure 2.1, depending on t he type of displacement, there are two types of

    acoustic waves. First, longitudinal waves (LA) are such that the displacement is parallel to the

    propagation di rection. S econd, t ransverse o r s hear w aves ( TA) ha ve t heir d isplacement i n a

    plane parallel to the wavefront and consequently normal to the propagation direction.

    Figure 2.1 Schematic representation of longitudinal and transversal waves

    The elastic continuum model provides an adequate description of elastics waves and can be

    used to d escribe c onfinement e ffects in na nostructures w hen the dimensions be come

    comparable t o the w avelength. A full d escription of t he p ropagation of a coustic w aves

    according to the continuum elasticity model is given in a number of comprehensive textbooks,

    by a uthors s uch a s A uld [82], N ayfeh [69], S add [83] and R ose [84]. A d etailed a nalysis an d

    development of the associated equations is described in Appendix I.

  • Chapter II

    13

    By describing strain S in terms of the displacement U and the stress T in terms of the strain

    component Sij, the equation of motion can be written purely in terms of the displacement and the

    C tensor as:

    ∂∂

    +∂∂

    ∂∂

    =∂

    k

    l

    l

    kijkl

    j

    i

    xU

    xUC

    xtU

    21

    2

    2

    ρ [2.2]

    In isotropic materials, waves can travel equally well in all directions, and the elastic constant

    tensor can be further simplified to have two independent components:

    ijijkkij SST µdλ 2+= [2.3]

    where λ is called Lamé’s constant and µ is referred to as the shear modulus. Then the equation

    of motion is given by:

    ) ( )( 222222

    UvvUvtU

    TLT ∇⋅∇−+∇=∂∂

    [2.4]

    where U = (u, v, w) is the amplitude of the displacement vector, vL = [(l + 2µ)/ρ]1/2 and vT =

    [µ/ρ]1/2 are the longitudinal and transversal velocities of acoustic waves in a g iven continuum

    medium, respectively.

    2.1.1 Boundary conditions and confined waves

    The introduction of boundary conditions in infinite media changes the nature of the acoustic

    propagation. SAW [74] are solution of the wave equation with st ress-free boundary condition

    on the surface. These waves are non-dispersive and they have two components corresponding to

    bulk shear and longitudinal waves, with a velocity lower than the bulk shear waves. The atomic

    displacement forming those waves occurs in the sagittal plane, that is, the plane normal to the

  • Acoustic waves

    14

    propagation direction and their amplitude decays exponentially from the surface. The motion of

    individual atoms is taken to be elliptical.

    Following Rayleigh’s w ork o ther s cientist d eveloped t his t opic, p articularly Love a nd

    Sezawa. Love found a purely shear waves, SW, with displacement normal to the sagittal plane

    existing in a half-space covered with a layer of softer material [85]. Sezawa found that SAW,

    with displacement in the sagittal plane, could exist in layered system [86]. Rayleigh, Love and

    Sezawa waves all occur in surface-wave-based devices.

    Following t he s ame c oncept Lamb described propagating waves i n i sotropic st ress-free

    plates, i.e., plate waves [75]. The waves sustained by this type of structures are solutions of the

    elasticity equation of material with stress-free conditions at the boundaries at z = ±a/2, where a

    is the thickness of the plate, with infinite extent in x and y directions. For unsupported plates the

    normal c omponents of the s tress t ensor v anish at the su rface. This sy stem h as t wo t ypes o f

    solutions: solutions with displacements confined to the sagittal xz plane, which are called Lamb

    waves and solutions w ith displacements p erpendicular t o the s agittal p lane ar e cal led s hear

    waves, SW. Lamb waves can be further divided into two categories of modes. Those with out-

    of-plane symmetric and antisymmetric displacements with respect to midplane of the plate are

    known as dilatational waves, DW, and flexural waves, FW, respectively.

  • Chapter II

    15

    Figure 2.2 Left: Scheme of a free-standing membrane. Right: Symmetric and antisymmetric waves.

    Lamb waves

    The classical problem of Lamb’s wave propagation is associated with a wave motion i n a

    stress-free and isotropic plate. The solution of this system can be uncoupled between two fields:

    shear waves (0, v, 0) and sagittal waves (u, 0, w). The displacement fields of the sagittal waves

    are f requently written using t he H elmholtz de composition [82]. This co nsists i n a l inear

    combination of a scalar, φ, and vectorial,ψ, potentials functions:

    j

    kijk

    ii xx

    U∂∂

    +∂∂

    =ψεφ [2.5]

    where εijk is the Levi-Civita te nsor and t he sc alar an d v ectorial p otential correspond t o

    irrotational and r otational fields, r espectively. Introducing this solution in t he e quation of

    motion, Equation [2.4], is p ossible to unc ouple t he po tentials generating two ha rmonic

    equations:

    2

    2

    22 1

    tvL ∂∂

    =∇φφ

    [2.6]

    2

    2

    22 1

    tvi

    Ti ∂

    ∂=∇

    ψψ

    [2.7]

    which has the typically plane wave solutions:

    )](exp[)()](exp[)(

    //