Conference Ppt 2

Embed Size (px)

Citation preview

  • 7/25/2019 Conference Ppt 2

    1/29

    Low Complexity Neural Network for Maximum

    Power Point Tracking of Photovoltaic System in

    Rapidly Changing eather Conditions

    Presented !y"#

    Prachitara Satapathy

    Dept. of Electrical Engg.

  • 7/25/2019 Conference Ppt 2

    2/29

    Outline

    Introduction

    Proposed PV system

    PV array modeling & characteristics

    Proposed techniques

    Computationally efficient FL!! "CEFL!!#

    $rigonometric FL!! "$FL!!#

    %esult analysis

    Conclusion and future or'%eferences

  • 7/25/2019 Conference Ppt 2

    3/29

    IntroductionPV systems are most preferred (ecause)

    *perate at +PP to ma,imi-e the efficiency of system.

    +PP$

    technique used to get the ma,imum possi(le poer from solar

    panels.

    +a,imum poer point trac'er "+PP$# trac's the +PP &

    connected (eteen the PV array and (oost conerter.

    Proides clean green energy

    Less operating & maintenance cost

    Smart distri(uted generationMPP

    MPP

  • 7/25/2019 Conference Ppt 2

    4/29

    Proposed PV system

    Solar $rradiance

    TemperatureVPV

    %mpp

    or %ref

    &oost

    converter

    Control

    unitMPPT

    controller

    'NN(

    P%array

    Fig.1Block diagram of PV system+PP$ controller generates the reference oltage ith input as irradiance and

    temperature.

    Control unit to generate duty cycle for the (oost conerter.

    )uty

    cycle

  • 7/25/2019 Conference Ppt 2

    5/29

    P% array modeling * characteristics

    /asic (uilding (loc' of PV arrays is solar cell. P0! 1unction that conerts light energy into electricity directly.

    $ ph

    P

    %P%

    $)

    #

    +

    Rsh

    $sh

    RS $P%

    R,

    -ig. /. Single diode model to model single solar cell

  • 7/25/2019 Conference Ppt 2

    6/29

    pplying 2irchhoff3s la to the node 4P3 e get

    Dshphp I0I0I5I

    "6#

    Contd7.

    $he mathematical model of PV array is represented (y the

    equation)

    ( )

    +

    +=

    sh

    Spvpvps

    s

    spvpv

    rspphppv

    RRIVNN

    N

    RIV

    kTA

    qININI 6e,p

    "8#9

  • 7/25/2019 Conference Ppt 2

    7/29

    Parameters %alues

    Maximum Power (Pmpp) 40W

    Vola!e a maximum power (Vmpp) 6:.;V

    Current at ma,imum poer "Impp# "#$A

    Shor %ir%ui %urre& (Is%) "#$A

    'pe&%ir%ui vola!e (Vo%) "#*V

    Temperaure %oe++i%ie& o+ shor%ir%ui (ki)

    0#00,

    -ell reverse sauraio& %urre& (Irr) #".0,A

    Num/er o+ series %ells (Ns) $

    a!le.0 1ey specifications of ELDORA-40 module '0k2m/3 /45C(

    Contd7.

  • 7/25/2019 Conference Ppt 2

    8/29

    5 45 0555

    45

    055

    Vpv (Volt)

    Ipv(Am

    p)

    I-V characteristics of PV array

    MPP

    MPP

    MPP

    0555 2m/

    655 2m/

    455 2m/

    5 45 0555

    4555

    05555

    Vpv (Volt)

    Pp

    v(W

    att)

    P-V characteristics of PV array

    MPP

    MPP

    MPP

    0555 2m/

    455 2m/

    655 2m/

    a!

    "!

    -ig.6. 'a( $#% characteristics and '!( P#% characteristics of P% array

    Contd7.

  • 7/25/2019 Conference Ppt 2

    9/29

    Proposed $echniques

    Functional Lin' rtificial !eural !etor' "FL!!# is used

    to trac' +PP.

    /ecause it is

  • 7/25/2019 Conference Ppt 2

    10/29

    Computational efficient FL!! "CEFL!!#

    $rigonometric FL!! "$FL!!#

    Contd7.

    -ig.7. the structure of neural network for MPPT

    $o lo comple,ity FL!!s are discussed here.

  • 7/25/2019 Conference Ppt 2

    11/29

    Computationally 8fficient -L9NN 'C8-L9NN(

    Single layer netor'

    ll the inputs of the input pattern pass through FE/ to produce

    the e,panded input pattern

    $he structure of CEFL!! is shon in Fig.=.

    -ig.4. 9rchitecture of Computationally 8fficient -L9NN

  • 7/25/2019 Conference Ppt 2

    12/29

    The output of FEB is described by theequation:

    Contd7.

    #tanh">

    6>6

    ? ==

    ==

    +=&1pi

    1i

    s

    1

    s

    1i

    s

    i

    s

    i 2Aa345

    875P"P58# and 156> 87n"n58#

    "@#

    Ahere> p 5 num(er of output of FE/>

    n 5 num(er of input to FE/ for one output>

    a 5 input (ias eight matri,>

    s 5 current num(er of sample>S 5 total num(er of samples or patterns

    nd 5 input eight matri,.

  • 7/25/2019 Conference Ppt 2

    13/29

    Ahere>

    =

    =

    #B".........>#>"C

    >#B".........>#>"C

    MWkWW

    M2k22

    sss

    Tsss

    fter the e,pansion the output is calculated (y

    = =M

    k

    sss k2kW66

    #9"#"D

    s2sWs6

    5input matri, for 4sth3 sample>

    5output eight matri, for 4sth3 sample>

    5predicted output for 4sth3 sample>M 5 total num(er of input to

    the summation (loc' after e,pansion.

    ";#

    "=#

    Contd7.

  • 7/25/2019 Conference Ppt 2

    14/29

    Trigonometric -L9NN 'T-L9NN(

    Single layer neural netor'

    $rigonometric functions are used in the FE/

    Each ,iin input pattern is e,panded using trigonometric functions

    ith order 4p3 as )

    sin" ,i#> cos" ,i#> sin "8 ,i#> cos"8 ,i#>7sin"p ,i#>

    cos"p ,i#9.

  • 7/25/2019 Conference Ppt 2

    15/29

    Contd7.

    $he structure of the $FL!! is shon in Fig.G.

    -ig.:. 9rchitecture of Trigonometric -L9NN

  • 7/25/2019 Conference Ppt 2

    16/29

    $he trigonometric e,pansion after the FE/ is gien (elo)

    the output is calculated (y)

    Contd7.

    ( )

    ( )

    ====

    ==

    ===

    #cos"#>sin"

    >>

    #>cos"#>sin"

    >>>6

    @H@

    8

    @:@

    8G8=

    8

    8;86

    ssss

    sss

    ssss

    ssss

    2pi22pi2

    22eemperaur2

    2pi22pi2

    22irra7ia&%e22

    "G#

    =

    =M

    k

    sssk2kW6

    6

    #9"#" ":#'56> 87.+"+5H#

    =

    =

    #B".........>#>"C

    >#B".........>#>"C

    MWkWW

    M2k22

    sss

    Tsss

    Ahere>

    "#

  • 7/25/2019 Conference Ppt 2

    17/29

    daptation *f Aeights nd Performance

    Ealuation

    $he error for each sample is e,pressed as)

    $he cost function is )

    $he cost function minimi-ed (y gradient descent algorithm (y

    training the eights.

    $he learning rate "J# is ta'en in the range of "?.60?.8#.

    67e = "H#

    #"8

    6 8ke4= "6?#

  • 7/25/2019 Conference Ppt 2

    18/29

    Differential Error)

    %oot +ean Square Error "%+SE#5

    +ean (solute Percentage Error "+PE#

    5

    67e = "66#

    Contd7.

    SK#e" 8

    [ ] 6??S9K#KdLe"LD

    "68#

    "6@#

  • 7/25/2019 Conference Ppt 2

    19/29

    R8S;LT 9N9LN

    Menerated in the +$L/KSC%IP$ enironment

    $he reference oltage "Vmpp# for randomly ta'en irradiance and

    temperature for the discussed PV system

    Irradiance is aried in the range of "6??06???# AKm8in a step of 8= AKm8.

    $he temperature is aried in the range of "8=0:=#?

    C in a step of 8?

    C.

    ?N data for training> ne,t 6? N data for testing and last 6?N is for

    alidation from the H?? samples

  • 7/25/2019 Conference Ppt 2

    20/29

    Case" 0 'C8-L9NN(

    Contd7.

    -ig.?. Target and Predicted using C8-L9NN

    ?/5 ?75 ?:5 ?@5 @555

    5.4

    0

    target & predicted of testing

    No. of samples

    magnitude(p

    .u)

    target

    predicted

  • 7/25/2019 Conference Ppt 2

    21/29

    Case" / 'T-L9NN(

    Contd7.

    -ig.@. Target and Predicted using T-L9NN

    ?/5 ?75 ?:5 ?@5 @55

    5

    5.4

    0

    target & predicted of testing

    No. of samples

    m

    agntue

    p.u

    target

    predicted

  • 7/25/2019 Conference Ppt 2

    22/29

    Case" 6 Comparison of different errors !etween C8-L9NN and

    TR-L9NN

    Contd7.

    -ig.A. error comparison !etween C8-L9NN and T-L9NN

    5 /5 75 :5 @5#5.54

    55.54

    5.0

    error during testing

    No. of samplesmagnitude(p.u

    )

    C8-L9NN

    T-L9NN

  • 7/25/2019 Conference Ppt 2

    23/29

    Case" 6 Comparison of different errors !etween C8-L9NN and

    TR-L9NN

    Contd7.

    -ig.05. RMS8 comparison !etween C8-L9NN and T-L9NN

    5 /5 75 :5 @55

    /

    7

    :x 05

    #6!"# $uring testing

    No. of samples

    magnitude(p.u

    )

    C8-L9NN

    T-L9NN

  • 7/25/2019 Conference Ppt 2

    24/29

    Case" 6 Comparison of different errors !etween C8-L9NN and

    TR-L9NN

    Contd7.

    -ig.00. M9P8 comparison !etween C8-L9NN and T-L9NN

    5 /5 75 :5 @5

    5

    5.0

    5./!AP# $uring testing

    No. of samplem

    agnitude

    (p.u

    )

    C8-L9NN

    T-L9NN

  • 7/25/2019 Conference Ppt 2

    25/29

    $ype of

    netor'

    !etor'

    structure

    !o. ofiteration

    intraining

    E,ecution time

    "ms#

    error

    !o. ofAeights

    to (eupdated

    CEFL!!

    80G06 :8? @?.;more

    68

    $%FL!!

    80H06 :8? 8:.8 less H

    C>MP9R$S>N &8T88N C8-L9NN 9N) T-L9NN

    );R$N= TB8

    TR9$N$N= PR>C8SS

    Contd7.

    C>NCL;S$>N 9N) -;T;R8 >R1

  • 7/25/2019 Conference Ppt 2

    26/29

    C>NCL;S$>N 9N) -;T;R8 >R1

    Compared to CEFL!!> $FL!! is)Very good technique to predict the output.

    +ore efficient

    Less erroneous

    Less computational comple,ity.+ore accurate

    $he future or's are)

    I# Implementation of control unit to find the duty cycle for the

    (oost conerter

    II#

  • 7/25/2019 Conference Ppt 2

    27/29

    %EFE%E!CES

    S. Premrudeepreechacharn> and !. Patanapirom. OSolar0array modelling

    and ma,imum poer point trac'ing using neural netor's.O> Poer $ech

    Conference Proceedings> 8??@ IEEE /ologna. Vol. 8. IEEE> 8??@.

    De-so Sera> $amas 2ere'es> %emus $eodorescu and Frede /laa(1erg.

    OImproed +PP$ algorithms for rapidly changing enironmental

    conditions.O Poer Electronics and +otion Control Conference> 8??G.EPE0PE+C 8??G. 68th International> pp. 6G6;06G6H. IEEE> 8??G.

    Fangrui Liu> ong 2ang> u Qhang and Shan,u Duan >OComparison of

    P&* and hill clim(ing +PP$ methods for grid0connected PV conerter.O>

    Industrial Electronics and pplications> 8??. ICIE 8??. @rd IEEE

    Conference on. IEEE> 8??. Qhou Ruesong>Song Daichun>+a ou1ie> Cheng Deshu. O$he simulation

    and design for +PP$ of PV system /ased on Incremental Conductance

    +ethod.O information engineering "ICIE#> ASE international conference

    on 8?6?. Vol. 8> IEEE> 8?6?.

  • 7/25/2019 Conference Ppt 2

    28/29

    $rishan Esram and Patric' L. Chapman> OComparison of photooltaic array

    ma,imum poer point trac'ing techniques.O IEEE transactions on energy

    conersion ec 88> no. 8 "8??:#) ;@H.

    +ummadi Veerachary> $omono(u Sen1yu and 2atsumi e-ato> O!eural0netor'0(ased ma,imum0poer0point trac'ing of coupled0inductor

    interleaed0(oost0conerter0supplied PV system using fu--y controller.O

    Industrial Electronics> IEEE $ransactions on =?> no. ; "8??@#) :;H0:=.

    $sai0Fu Au> Chien0 and u02ai Chen. O fu--y0logic0

    controlled single0stage conerter for PV0poered lighting systemapplications.O Industrial Electronics> IEEE $ransactions on ;:> no. 8 "8???#)

    8:08HG.

    Ci0Siang $u> and i0Tie Su. ODeelopment of generali-ed

    photooltaic model using +$L/KSI+LI!2.O In Proceedings of the

    orld congress on Engineering and computer science> ol. 8??> pp. 60G.8??.

    2. $.

  • 7/25/2019 Conference Ppt 2

    29/29

    TB9N1 ;