13
PH 212 07-24-2015 Physics 212 Exam-2 Solution NAME: _____________________________________ Write down your name also on the back of the package of sheets you turn in. SIGNATURE and ID: ___________________________ Return this hard copy exam together with your other answer sheets. Show all your procedures when giving the answers to the first 03 questions. For question 4 just provide the answer. 1. A solid, insulating sphere of radius a = 5 cm has a uniform charge density and a total charge Q. Concentric with this sphere there is a conducting spherical shell whose inner and outer radii are b = 20 cm and c =25 cm respectively. The electric field at a point 10 cm from the center is 3.6 x 10 3 N/C pointing radially inward, while the electric field at a point 50 cm from the center is 2 x 10 2 N/C pointing radially outward. b a c Insulator Conductor 1A (10 points) Calculate the charge Q in the insulating sphere. 1B (10 points) Calculate the charge q in on the inner surface of the shell. Calculate the charge q out on the outer surface of the shell. 1C (10 points) Calculate the electric potential difference V b - V a .

Conductor - Portland State University2015) PH... · A parallel plate capacitor with plate area A = 2.5 m2 and ... With the capacitor still connected to ... Which expression describes

Embed Size (px)

Citation preview

PH 212 07-24-2015

Physics 212 Exam-2

Solution NAME: _____________________________________

Write down your name also on the back of the package of sheets you turn in.

SIGNATURE and ID: ___________________________ Return this hard copy exam together with your other answer sheets.

Show all your procedures when giving the answers to the first 03 questions. For question 4 just provide the answer.

1. A solid, insulating sphere of radius a = 5 cm has a uniform charge density and a total

charge Q. Concentric with this sphere there is a conducting spherical shell whose inner and

outer radii are b = 20 cm and c =25 cm respectively.

The electric field at a point 10 cm from the center is 3.6 x 103 N/C pointing radially inward,

while the electric field at a point 50 cm from the center is 2 x 102 N/C pointing radially outward.

P b a

Q1= - 3 C

c

Insulator

Conductor

1A (10 points) Calculate the charge Q in the insulating sphere.

1B (10 points) Calculate the charge qin on the inner surface of the shell.

Calculate the charge qout on the outer surface of the shell.

1C (10 points) Calculate the electric potential difference Vb- Va.

2. A parallel plate capacitor with plate area A = 2.5 m2 and plate separation d = 3 mm is

connected to a 45 V battery.

2A Calculate the magnitude of the charge on each plate of the capacitor.

Calculate the electric field between the plates.

Calculate the energy stored in the capacitor.

45 V

A = 2.5 m2 d = 3 mm

+

With the capacitor still connected to the battery, a slab of plastic of dielectric K = 3.6 is placed between the plates of the capacitor.

2B Calculate the magnitude of the charge on each plate of the capacitor.

Calculate the electric field between the plates.

Calculate the energy stored in the capacitor.

45 V

A = 2.5 m2 d = 3 mm

K= 3.6

3. The figure shows the essentials of a mass spectrometer, which can be used to measure the mass of an ion.

An ion of mass m (to be measured) and charge q=1.6022 10-19 Coulomb is produced in the source S. The initially stationary ion is accelerated by the electric field due to a potential

difference (V=1000 Volts). The ion leaves S, passes through an aperture A, enters a chamber in which there exists a uniform magnetic field (B= 80 mT ) as indicated in the

figure, and strikes the detector at a point that lies at x =1.6254 m.

3A. (7.5 points) Calculate the electric potential difference between the points A and S (i.e. calculate VA – VS).

(VA – VS) = - 1000 Volts

(7.5 points Calculate the electric potential energy difference of the ion between A and S (i.e. calculate UA – US).

U = q ( V) = 1.6022 10-19 C (- 1000 Volts) = - 1.6022 10-16 Joules

3B. (15 points) Calculate the mass m of the individual ions; give your answer in atomic mass units ( 1 u = 1.66 10-27 kg).

Q1= - 3 C

A

S

1000 Volts

4. The figure below shows a parallel-plate capacitor. In what follows, assume for simplicity

that the electric field produced by the plates is equivalent to the electric field produced by

infinite plates charged uniformly all over their surface.

In the figures below, Q stands for the initial charge accumulated in the top plate, E is the

electric field in between the plates, and d is the distance between the plates.

4A (5 points) From left to right: While keeping the battery connected to the plates, an

external agent (not shown in the figure) increases the distance between the plates.

+ Ei Qi

2V - +

Ef 2V - di

Qf

df

At t=0 At t > 0

Which expression describes correctly what happens as the distance between the plates

is increased?

a) The electric field increases.

b) The energy stored in the capacitor decreases.

c) The magnitude of the charge in each plate increases.

d) The electric field remains constant.

e) All the expressions above are incorrect.

4B (5 points) In this case the capacitor is initially charged and then the battery is disconnected.

From left to right: an external agent (not shown in the figure) increases the distance between the plates.

Ei Qi

Ef di

Qf

df

At t=0 At t > 0

Which expression describes correctly what happens as the distance between the plates

is increased?

a) The electric potential between the plates decreases..

b) The electric potential energy stored in the capacitor decreases.

c) The magnitude of the charge in each plate decreases.

d) The electric field remains constant.

e) All the expressions above are incorrect.

  3A.  (b

     

    (o

      

  3B.  (    g

  

(7.5  pointsbetween the

  (VA – VS) = 

(7.5 points of the ion be

U  =  q ( V

(15 points) Cgive your an

s)  Calculatee points A an

‐ 1000 Volts

Calculate  thetween A an

V)   =  1.6022

Calculate theswer  in ato

e  the  elecnd S  (i.e. cal

he electric pnd S (i.e. calc

2 10‐19 C (‐ 1

e mass m of mic mass un

 

ctric  potentculate  VA –

potential enculate UA – U

1000 Volts) 

the individunits ( 1 u = 1.

tial  differeVS). 

ergy differeUS). 

 =  ‐ 1.6022

ual ions;  .66 10‐27 kg

ence 

ence 

10‐16  Joule

g). 

es 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Some helpful formulas:   nano mm = 10‐3 m

Centripetal force = m v2/ r

mass of electron:  9.109 x 10‐31  kg  

1 eV = 1.602  x 10‐19 J 

Coulomb's Law:  ur

qqF

2

12

04

1

,    where  

2

29

0 C

Nm1099.8

4

1

 

 

Electric field, along the z‐axis, due to a charge Q distributed uniformly along a thin ring of radius R.:

kR

QE ˆ

4

12/322

0

z

z

Electric field established by an infinite and uniformly charged sheet: E = /2o

Gauss' Law

= S

sdE

= q /o, where  q   is the net charge inside the Gaussian surface.

Potential energy difference 

UB - UA ≡ Wext (A ext

F B)  

                             Work done by the external force to take the particle from A to B at constant speed 

Definition of the Electric Potential 0

)()( 0

q

rWrV

qext

Electric potential difference 0

)(0

q

BAWVV

qext

AB

0q

AB UU

Potential difference  sdEVVB

AAB

Electric potential due to a point charge q:      

r

qV

04

1

 

Relationship between  E and V: Ex = - dV/dx

About capacitance 

  Q = C V 

  For a parallel‐plate capacitor C = Ao /d      

  U = CV2 / 2 = Q2 / 2 C 

       Capacitors connected in parallel Cequiv = C1 + C2 + C3  

        Capacitors connected in series 1/Cequiv = (1/C1) + (1/C2) +(1/C3)  

sincossin dCosd

MAGNETISM

BF

vq

F = force,  q = charge,  v = velocity,   B = magnetic field 

1 Tesla = 104 gauss  

rvB

x4 3

0

r

q

Magnetic field produced by a charge q that moves with velocity  v 

= L i         = Magnetic flux,  L = inductance,     i = current Inductive reactance XL = L

B

0 I

4

1

R Magnetic field at the center of a semi‐circle of radius "R" 

B 0 I4 R

Magnetic field at the center of an arc of angle f (in radians) and  

    radius   "R". 

B 0 I

2 r Magnetic field produced by a infinitely long wire at a distance "r" from it.

F

L 0

IaIb

2 d Force per unit length between two parallel long wires,

carrying currents Ia and Ib respectively, separated by a distance "d"

Faraday's Law t

,

where = Magnetic flux and = electromotive force

Definition of the magnetic dipole moment of a loop of area A, carrying a current I: = I A n

where A = area, I current, n = unit vector perpendicular to the loop