Concrete Super Structure Report

Embed Size (px)

Citation preview

  • 7/29/2019 Concrete Super Structure Report

    1/43

    AppraisalSuperStructure

    Design(Above

    GroundWorks)

    ENB471DesignofConcrete

    StructuresandFoundations

    Consultants

    AmandaCarroll 06373658

    ChungHooi 06903258PhuongPham 06364942

    TshingLiew 06911072

    MarkMendoza 05756596

    TimothyWood 06876668

    GeoStructConsultants

  • 7/29/2019 Concrete Super Structure Report

    2/43

    2

    TableofContentsExecutiveSummary....................................................................................................................................... 4

    1.0Introduction............................................................................................................................................ 5

    2.0DesignPhilosophy................................................................................................................................... 6

    2.1AssumptionsMade............................................................................................................................. 6

    2.2GravityLoadBearingElementsandLateralLoadResistingFrames................................................... 6

    2.2.1LayoutReasoning&Considerations............................................................................................ 6

    3.0ComparativeAnalysis.............................................................................................................................. 8

    3.1DesignConsiderations......................................................................................................................... 8

    3.2GroundFloor..................................................................................................................................... 10

    3.2.1BandBeamandSlab.................................................................................................................. 10

    3.2.2BeamandSlab............................................................................................................................ 10

    3.2.3Ribbed(Waffle)Slab.................................................................................................................. 11

    3.3Recommendations............................................................................................................................ 11

    3.4TypicalFloorPlateforLevels1to3.................................................................................................. 12

    3.4.1FlatPlate.................................................................................................................................... 12

    3.4.2FlatSlab...................................................................................................................................... 12

    3.4.3Recommendation....................................................................................................................... 13

    3.5PlantRoomSlab................................................................................................................................ 13

    3.5.1Recommendation....................................................................................................................... 13

    4.0BuildingLoadings.................................................................................................................................. 15

    4.1VerticalLoads.................................................................................................................................... 15

    4.2WindLoads........................................................................................................................................ 16

    4.3EarthquakeLoads.............................................................................................................................. 17

    5.0DetailedStructureDesign..................................................................................................................... 18

    5.1Post Tension..................................................................................................................................... 18

    5.2ReinforcedConcrete......................................................................................................................... 20

    5.2.1SlabSupportSystem.................................................................................................................. 20

    5.2.2DistributionofMoments(Slab)................................................................................................. 21

    5.2.3BendingMoments&ShearForces(Beams).............................................................................. 21

    5.2.4ReinforcementRequirements.................................................................................................... 21

    5.2.5ReinforcementDetails............................................................................................................... 21

  • 7/29/2019 Concrete Super Structure Report

    3/43

    3

    6.0 ColumnandCoreWallLoads............................................................................................................... 22

    6.1CoreWallDesign............................................................................................................................... 22

    6.2ColumnDesign.................................................................................................................................. 24

    7.0CostEstimations.................................................................................................................................... 30

    7.1FoundationsConcreteFormWork................................................................................................. 30

    7.2ExternalWallandFoundations......................................................................................................... 30

    7.3Costs.................................................................................................................................................. 30

    7.3.1Parking....................................................................................................................................... 30

    7.3.2ExternalWalls............................................................................................................................ 30

    7.3.3ConcreteWork........................................................................................................................... 31

    8.0References............................................................................................................................................ 32

    9.0Appendices............................................................................................................................................ 33

    9.1Appendix1DesignLayout.............................................................................................................. 34

    9.2Appendix2ComparativeAnalysis.................................................................................................. 35

    9.3Appendix3BuildingLoads............................................................................................................. 36

    9.4Appendix4DetailedStructuralDesign.......................................................................................... 37

    9.4.1Appendix4.1 Posttensioned................................................................................................ 38

    9.4.2Appendix4.2 ReinforcedConcrete....................................................................................... 39

    9.5Appendix5LoadbearingDesign................................................................................................... 40

    9.5.1Appendix5.1 Corewall......................................................................................................... 41

    9.5.2 Appendix5.2 Column............................................................................................................. 42

    9.6Appendix6CostEstimation........................................................................................................... 43

  • 7/29/2019 Concrete Super Structure Report

    4/43

    4

    ExecutiveSummaryGeoStructconsultinghasreceivedandreviewedNewsteadDevelopmentsproposeddesignofthenew

    building located at 26 Commercial Road Newstead as Requested. Since then, a professional substructural analysis report (Below ground works) has been submitted highlighting recommendations,

    accurateCostestimationsanddesignsoffoundation,retentionsystems,andslabspecifications.

    Hence, in following this up, GeoStruct has prepared a professional superstructural analysis report

    (abovegroundworks)whichhas improvedandmadenecessary changes to thepreviously submitted

    substructuralanalysis.

    Ultimately,thissuperstructurereportconsistsof:

    a design philosophy report which highlights appropriate layouts of vertical load bearingelementscompatiblewiththearchitecturalscheme,

    acomparativestudy for the floors thatthroughoutthebuilding,various loads thatwillexertuponthebuilding,

    detailsof structuraldesigns including support systemsanddistributionofmoments for slabsandbeams,

    detailsandrequirementsforreinforcement, columnandreinforcementspecificsanddesign,and anaccurateoverallcostestimation

  • 7/29/2019 Concrete Super Structure Report

    5/43

    5

    1.0Introduction

    TheprincipalsofGeoStructConsultantshavereviewedabriefgiventothecompanybyNewstead

    Developmentsforthedesignofthenewoffice/commercialbuildingat26CommercialRoadNewstead,

    andarerequiringthefollowinginorderforthecompanytoprepareafullsubmissiontoNewstead

    Developments.

    Thesuperstructurereportiscontainedwithin.Thesubstructurereportisincludedinaseparatebinder.

  • 7/29/2019 Concrete Super Structure Report

    6/43

    6

    2.0DesignPhilosophy

    In addition to the design of the superstructure, the design philosophy report will be used to helpillustrateandpointoutvariouslocationsofbothgravityloadbearingelementsandlateralloadresisting

    frameandreasonsbehindthechoicesandconsiderationsmade.

    2.1AssumptionsMade

    Variousassumptionsmadeduringthedesignandplanningofgravityloadbearingelementsandlateral

    loadresistingframesassumedthat:

    Standardsareperfectlyreliable, columnpositioningwerethesamethroughOfficelevels(levels13), thebuildingwouldalwaysbeusedforitsintendedpurpose,and Thetransferbeamsareconsistentintermsofsize

    2.2GravityLoadBearingElementsandLateralLoadResistingFrames

    Basedonthearchitecturalscheme,appropriatelocationsofthevertical loadbearingelementssuchas

    thebeamshasbeenindentifiedforthegroundfloorandcanbeseeninAppendix1usingacolourcoding

    system; beams have been indentified in pink. Other vertical load bearing elements and lateral load

    resistingframessuchascolumnsandshear/corewallscanalsobeseen inAppendix1astheytooare

    colourcodedandcanbeindentifiedusingtheledgedofcolourcodesshowninontheillustration.

    Inadditiontothis,moreaccuratedrawingarrangementsillustratingtheschematicdesignsforthefloor

    platesshowingthelocationofloadbearingelementssuchasbeams,columnsandwallscanalsobeseeninAppendix1,whichillustratestheseelementsinasectionalviewfromSouthtoNorthandEasttoWest

    ofthebuilding.

    2.2.1LayoutReasoning&Considerations

    Reasons for the placement of beams suggest the nature of the columns that exist in the provided

    architectural scheme. In this case for the above groundworks, it canbedivided into three sections

    wherefloorshaddifferentstructurallayoutsanddesign.Thesethreesectionsincludethegroundfloor,

    theplantroomandofficefloors(levels13).

    In termsof theground floor,beamswereplaceswherenecessarydependingon the locationsof the

    columnsandshear/corewalls thatexistedonboth thebasementandground floor levelsthemselves.

    Thesebeamswillnotonlyprovide the support for theconcrete slabs,but in somecases support for

    thosewhereopeningssuchasexhaustventsandwherecantileversystemsexist.Othercasesforwhere

    beamshavebeenadoptedsuggesttheinconsistencyofcolumnlocationsbetweenvariousfloors;hence

    transfer beams are used. One example highlighted in pink can be seen in Appendix 1 in between

    sections57andH Xnexttothe bikehanging lockers.Considerationsandreasons forthenecessary

    adoptionofawiderbeam located illustrated inAppendix1betweensections59,MNhighlights the

    presenceofacantileversupportsystem.

  • 7/29/2019 Concrete Super Structure Report

    7/43

    7

    Intermsoftheofficefloorsandtheplantroomhowever,investigationsfoundthatflatslabswithdrop

    panelsand flatplateswere sufficientenough tomeet thedesignandasa result these systemswere

    adoptedandcanbeseen inAppendix1 illustrated inpurple.Nevertheless it isrecommendedthatflat

    platesshouldbeadopted.Reasons foradoptingsuchasystemsuggestthatthatnotonlyworkssince

    manyofthecolumnsfromlevels13alignandthattheplantroomdoesnotholdsignificantweight,but

    itisalsomorecosteffectiveintermsofmaterialsusedoverbeamsandusingflatslabswithdroppanels.

    Intermsof lateralloadresistingframes,theadoptionofashearwall isnecessarytotakelateral loads.

    Nevertheless,using corewallswillhelp tremendously in resisting lateral loads suchaswind.Reasons

    suggestingthishighlightsthefactthatthetherearetwocoresinthebuildingthatrunthroughalllevels

    of thebuilding anddown into the lowestbasement. This creates a backbone sort of idea for the

    buildingandwillgreatlyenhanceitslateralloadresistingcapabilities.

  • 7/29/2019 Concrete Super Structure Report

    8/43

    8

    3.0ComparativeAnalysisDesigningandselectingofslabsystemsisaprocesswherearchitectural,structuralandconstruction

    considerationsandinputsareneededtobefulfilled.Thisprocesswillneedtobeundertakenrepeatedlyuntileachareaissatisfiedthenafinalanddetaileddesigncanbeproduced.

    Inthisreportaconceptualdesignofthefloorsystemsisrequestedwhichwillincludethepurposeof

    eachfloorinconjunctionwiththespaceandusagerequirementsprovidedbytheclient,the

    architecturalappearanceandthestandardofquality(CCAA,2003).

    Sincethisreportisintheconceptualdesignphaseanumberofalternativeschemeshavebeen

    evaluatedandcompared.Theseincludepreliminarymembersizingandfloorthicknessestocreatea

    moreaccuratecostestimateofthebuilding.

    3.1DesignConsiderations

    Asstatedbrieflyabovesomedesignconsiderationfromarchitectural,structuralandconstructionareas

    areneededtobetakenintoconsideration.Thedesignoverallneedstofulfillarchitecturaldesign

    philosophy,fulfillstructuraltestsandbeconstructedefficiently.Thesespecificdesignconsiderationsare

    listedinTable1.

    Architectural Structural Construction

    1. Generale.g.spacerequirements&

    appearance

    1. Strength 1. Generale.g.constructionmethod

    2. FloorzoneThickness 2. Deflection 2. Formwork3. Services 3. Cantilevers 3. Reinforcement4. Penetrations 4. Vibration 4. Joints

    5. CrackControlTable1DesignConsiderations (CCAA,2003)

    Anotherdesignconsiderationistheproposedspansizesoftheslabswhichwillberequiredcomponent

    todeterminetheslabthicknessforeachfloor.Themaximumspansizeisapprox8.74mandthisvalue

    willbeusedasworstcasetodeterminetheslabthickness.

    Anotherdesignconsiderationistodeterminewhichconcretestrengtheningtechniquewillbe

    implemented.Thetwooptionsarereinforcedconcreteandprestressedorinthiscaseposttension

    concrete.Theaimsofbothtechniquesaretostrengthentheweaknessofconcretewhichisitstensile

    strength.Reinforcedconcreteachievesthisbysimplypouringconcreteoverrebarandsteelmeshes.

    Whereasposttensionconcreteusesamoresophisticatedmethodwhereconcreteispouredovera

  • 7/29/2019 Concrete Super Structure Report

    9/43

    9

    steeltendonandoncetheconcretehasgainedstrengthbutbeforetheserviceloadsareapplied,the

    cablesarepulledtight,ortensioned,andanchoredagainsttheouteredgesoftheconcrete.

    Nonethelessposttensionedconcretehasmoreadvantagesoverreinforcedconcretewhendealingwith

    amultistoreybuilding.

    1. Usageofprestressedconcretetranslatestominimalconstructioncostsascomparedtotheusageofreinforcedconcrete

    2. Prestressedconcretemakesuseofthinnerslabs,thenthefloorthicknesssavingscanbetransformedintoadditionalfloors

    3. Usageofprestressedconcreteoftentranslatestoanincreasedfloorspaceinestablishments4. Areabletospangreaterdistanceswithminimalslabthicknesses

    Duetotheattractiveadvantagesofposttensionedconcreteslabstheyarehighlyrecommendedtobeusedespeciallyinhigherlevels.

  • 7/29/2019 Concrete Super Structure Report

    10/43

    Twoma

    structurlargelo

    constru

    constru

    floorsy

    1.2.3.

    Thissys

    parallel,

    spannin

    shallow

    Thissys

    framing

    verytra

    resistla

    3.2Grou

    orconsider

    alandconstdbearingc

    tionconsid

    tingthegro

    temsforth

    Band Beam

    BeamandS

    Ribbed(waf

    3.2.1Band

    emaccordiwideshallo

    gtransverse

    bandbeam

    3.2.2Bea

    emisaccor

    intocolumn

    ditionalsyst

    eralloads.

    dFloorationsaret

    ruction.

    Thepacitydue

    rationtake

    undfloorm

    groundflo

    andSlab

    lab

    fle)Slab

    Beamandgto

    Cemen

    beams(k

    lybetween

    carryingall

    andSlabingtoCem

    sandsuppo

    em.Therela

    kenintoco

    major

    structhearchitec

    nisthefact

    eanstherei

    rare:

    Slabt&

    Concret

    ownasban

    theband.T

    loadsfrom

    Fig

    ent&Concr

    rtingslabss

    tivelydeep

    sideration

    tural

    considurallayout

    thatdueto

    potentialf

    Associatio

    dbeamsor

    hefloorslab

    heslabsee

    re1Band

    (CCAA,

    teAssociati

    panningbet

    eamsprovi

    hendesign

    ration

    is

    thfthebuildi

    helocation

    rsavingsec

    of

    Australi

    hickenedsl

    isdesigned

    inFigure1

    beamands

    003)

    onofAustr

    weentheb

    deastiffflo

    ingthegrou

    factthattgseeninA

    andeaseof

    onomically.

    (2003)cobbands)wi

    asacontin

    .

    lab

    lia(2003)

    amsseeni

    orcapableo

    ndfloorsyst

    e

    ground

    flppendix1.T

    accessibility

    Thethreep

    sistsof

    ase

    ththefloor

    ousslab,wi

    onsistsofb

    ntheabove

    flongspans

    1

    em:

    orneedsahe

    ofthe

    roposed

    riesof

    slab

    ththe

    ams

    figure.Itis

    andableto

  • 7/29/2019 Concrete Super Structure Report

    11/43

    Ribbed

    spaced

    asribbe

    Figure2

    Afterco

    istheb

    450mm

    Associa

    theupp

    aswell

    Themaj

    largedu

    onthe

    Itisalso

    InAppe

    number

    reinforc

    Reinforground

    3.2.3Ribb

    loorsaccor

    ibsareusu

    dslaborat

    below.

    3.3Reco

    mparingthe

    ndbeaman

    withbeam

    ionofAustr

    erfloors.Th

    sthebeam

    orreasons

    ctsarediffi

    roundfloor.

    recommen

    dix1,locat

    ofvarietyo

    edconcrete

    edconcreteloorandno

    d(Waffle)ingtoCem

    llysupporte

    oway

    ribb

    mendat

    advantages

    dslabsyste

    idthof120

    alia(2003)

    eother

    reas

    beingofsh

    hybandbe

    ulttohandl

    Ribbedsla

    edthatmix

    ionswherer

    nthedimen

    inthisarea

    isalso

    mor

    ttheupper

    Slabnt&Concr

    ddirectlyb

    edsystem

    k

    Fig

    ionsanddisadv

    mwithasla

    0mm,which

    raphsinAp

    onsare

    the

    allownatur

    amslabwas

    e.Thisisan

    werentch

    turesofpos

    einforcedsl

    sionsofslab

    duetoitssi

    cost

    effect

    levels.

    teAssociati

    columns.T

    ownas

    aw

    re2Ribb

    (CCAA,

    ntagesinA

    thickness

    exceedsth

    endix2. Iti

    implicityof

    creatingm

    notchosen

    issuewitha

    osenbecau

    ttensionan

    absareused

    sizes.This

    plermeth

    ivein

    terms

    onofAustra

    eyareeith

    affleslab.

    dslab

    003)

    pendix2,t

    f200mma

    recommen

    smorethan

    formwork

    oreroomun

    wasthefac

    chitectural

    eofthehig

    dreinforced

    aredueto

    ouldmean

    dofstrengt

    oflabor,

    eq

    lia(2003)c

    roneway

    hisfloorsy

    efloorslab

    datotalthi

    dationfrom

    adequatet

    eaningsavi

    derthefloo

    thatpenetr

    esignwher

    formwork

    slabsareu

    thislocation

    itwillbeea

    heningand

    ipmentand

    onsistsofe

    panningsys

    temcan

    be

    systemreco

    ckness(slab

    Cement&

    handlethe

    ngsin

    constr

    r.

    ationstheb

    elargeduct

    costsandlo

    edfortheg

    havingani

    iertoconst

    constructio

    materials

    si

    1

    ually

    temsknown

    seenin

    mmended

    +beam)of

    oncrete

    loadsfrom

    uctioncost

    eamsfor

    arelocated

    firerating

    roundfloor.

    crease

    uct

    ofconcret

    nceitson

    .

    .

  • 7/29/2019 Concrete Super Structure Report

    12/43

    Duetot

    each

    flodetermi

    needm

    Aflatpl

    loadbe

    Accordi

    flooris

    easyto

    ceilingo

    Aflatsl

    walls(d

    affectsshowni

    3.4Typi

    hearchitect

    orcanbedeneifparticu

    stcolumns

    3.4.1Flat

    te(showni

    ringwalls.

    gtoCemen

    uniformor

    construct.T

    rinabulkh

    3.4.2Flat

    bisaone

    oppanels)(

    fpunchingnFigure4.

    alFlooruralplansfo

    termine

    for

    larfloorsys

    tobealigne

    latenFigure3)i

    t&Concret

    nearunifor

    efloorallo

    ad.

    labayortwo

    Cement&

    hearand

    b

    lateforrlevelsone

    structural

    cemsarean

    dverticallyt

    saone ort

    eAssociatio

    mthickness

    sgreatflex

    Fig

    aysystem

    oncreteAss

    ndingstres

    evels1ttothreesee

    lculations.

    ptionofch

    obeecono

    owaysyst

    ofAustrali

    withaflats

    ibilityforlo

    re3Flat

    (CCAA,

    iththickeni

    ciationof

    estherefor

    3ninAppen

    hese

    architoiceforexa

    icallyconsi

    emusuallys

    (2003)the

    ffitwhichr

    atinghorizo

    late

    003)

    ngsinthesl

    ustralia,20

    athinner

    s

    ix1thesup

    cturaldrawpleflatpla

    dered.

    upporteddi

    principalf

    equiresonly

    ntalservice

    batthecol

    3).Thesed

    labcanbeu

    erimposede

    ings

    are

    alsteandflatsl

    rectlyoncol

    atureofthe

    simpleform

    saboveasu

    umnsandlo

    oppanelsr

    sed.An

    exa

    1

    adloadsof

    usedtoabssystems

    umnsor

    flatplate

    workandis

    spended

    adbearing

    ducethe

    pleis

  • 7/29/2019 Concrete Super Structure Report

    13/43

    Bothflo

    formwo

    afteran

    system

    services

    Noneth

    needed

    thisbec

    andoth

    Ithasb

    impose

    Accordi

    building

    impose

    smaller

    thisleve

    Thesam

    platean

    foram

    heavilyi

    3.4.3Reco

    orsystems

    rkandhave

    alyzingand

    ouldbeth

    ofthefloor

    lessevent

    tobeunder

    omesaniss

    eradvantag

    endecided

    loadas3k

    3.5Plant

    gtothearc

    sandwillst

    loadonthi

    inareaand

    lwillbestr

    3.5.1Reco

    etypesoffl

    dflatslab.

    recosteffe

    nfluencedb

    mendati

    remoretha

    nobeamsu

    omparingt

    flatplateo

    s.

    oughthefl

    takentoens

    e.Post

    ten

    soverreinf

    thatapost

    a,asseeni

    RoomSlhitecturalpl

    remostof

    sfloorwillb

    asasmalle

    nglyinfluen

    mendati

    oorslabsys

    othdesigns

    ctiveandti

    ythestruct

    Fig

    (CC

    nnadequate

    nderthesla

    eadvantag

    nlybecause

    tplatesyst

    urethereis

    ionslabs

    fo

    orcedconcr

    ensiondesi

    nthegraph

    blansinAppe

    buildingsser

    emuchgrea

    ramountof

    cedbythes

    nemsrecom

    canbeused

    esavingon

    ralresultse

    re4Flats

    A,2003)

    tobeusedi

    whichmea

    esanddisad

    thedroppa

    misrecom

    nopunchin

    these

    level

    etewhichw

    nedslabwi

    inAppendix

    ndix1,thep

    vices(e.g.A

    terthanlev

    columns.Th

    tructuralre

    endedtob

    forthislev

    constructio

    speciallyin

    lab

    thebuildin

    nsmorehei

    vantagesin

    nelsinthefl

    endedam

    shearissue

    swill

    be

    use

    asexplained

    thaslabthi

    2,willbech

    lantroomis

    ircondition

    elsonetoth

    erefore,the

    ults.

    eusedaret

    lhowevera

    .However,

    hiscasewit

    gsconstruc

    ghtinbetw

    Appendix2

    atslabsyst

    oreintensiv

    s.Thishow

    dduetobet

    earlierinth

    knessof22

    osen.

    thetopflo

    exhausts,e

    ree.Levelf

    typeoffloo

    hesameasl

    flatplated

    thedesign

    hpunching

    ion. Botha

    enfloors.

    themostsui

    mmayinte

    estructural

    verisquick

    terconstruc

    issection.

    0mmwhen

    rofthedesi

    c).Therefor

    ur,howeve

    rslabsyste

    evelsoneto

    signshould

    sstatedear

    hear.Ifthe

    1

    esimpleto

    owever

    tablefloor

    ferewith

    analysisis

    torectifyif

    tioncosts

    akingthe

    red

    ethe

    ,ismuch

    usedfor

    three:flat

    stillbeused

    lieris

    flatplate

  • 7/29/2019 Concrete Super Structure Report

    14/43

    14

    designisdoesnotpassthestructuralcheckstheneitheraflatslabdesignbeusedorshear

    strengtheningofthecolumnsisimplemented.

    Ithasbeendecidedthataposttensiondesignedslabwithaslabthicknessof240mmwhentakingthe

    imposedloadas5kPa,asseeninthegraphinAppendix2,willbechosen.

  • 7/29/2019 Concrete Super Structure Report

    15/43

    15

    4.0BuildingLoadings

    4.1VerticalLoads

    VerticalLoadsonthebuildingconsistsofdeadandliveloads.Thesearerequiredinordertodesign

    structuralcomponentsofthebuilding.AS1170.1(AustralianStandards)mustbeusedinorderto

    determinethedeadandliveloadsonthebuilding.

    Deadloadsconsistoftheselfweightofthebuildingwhichisactionthatislikelytoactcontinuously

    throughoutthedesignworkinglifeandvariationsinmagnitudewithtimearesmallcomparedwiththe

    meanvalue.Italsoconsistsofimposedactionswhicharevariableactionsresultingfromtheintended

    useofoccupancyofthestructure.Liveloadsarequitesmallcomparedtodeadloadsastheyonly

    consistsofloadsthatareconstantlyonandoffsuchaspeopleenteringandexitingthestructure.

    ThedeadandliveloadswerecalculatedforeachlevelusedanExcelspreadsheetthatcanbeviewedinAppendix3.

    Fromthescaledfloorplansprovided,atotalof40columnswerecountedandatributaryareaforeach

    columnwascalculated.Theselfweight,superimposedloadandliveloadwerethendeterminedfrom

    thestandardsforeachcolumnandthetotalforeachwascalculatedinordertoobtainthedeadandlive

    loads.TheresultsobtainedfromthespreadsheetareshowninTables2and3below.

    Column TributaryArea Column TributaryArea Column TributaryArea Column TributaryArea

    1 14 11 48 21 54 31 61

    2 25 12 65 22 10 32 24

    3 24 13 47 23 16 33 324 24 14 47 24 11 34 62

    5 26 15 47 25 18 35 65

    6 22 16 59 26 28 36 30

    7 18 17 33 27 58 37 20

    8 39 18 50 28 116 38 43

    9 48 19 58 29 23 39 46

    10 48 20 50 30 26 40 19

    Table2:ColumnandTributaryArea

    Level G Q 1.2G+1.5Q

    PlantRoom 714840 200 858108

    Level3 565656 120 678967.2

    Level2 565656 120 678967.2

    Level1 565656 120 678967.2

    GroundLevel 627816 160 753619.2

    BasementB1 497280 100 596886

    Table3:DeadandLiveLoads

  • 7/29/2019 Concrete Super Structure Report

    16/43

    16

    4.2WindLoads

    Windanalysis isrequiredtobecompletedoutforthesuperstructureofthebuildingbeingdesignedto

    ensure that the core shear walls and columns can withstand the force produced by the wind. Tocalculate the lateral forceoneach floor,AS1170.2 (Australian Standards) is tobeused. Lateralwind

    loading iscalculatedatGroundLobby,FirstFloor,SecondFloorandThirdFloor.AnExcelspreadsheet

    wasusedtocalculatethelateralwindloadsandcanbefoundinAppendix3.

    Theheightofeach floor isthe firstbitof informationrequired forthewindanalysis.Theseareeasily

    obtainedfromthescaleddrawingsprovided.Followingtheprocedureoutlinedinthestandards,Vsit, can

    becalculatedusingthefollowingequationandinformation:

    Vdes, =Vr*Md*Mz,cat*Ms*Mt

    VRisfoundwithinsection3,Table3.1.BrisbaneisshowntobeinregionB.Calculatingforserviceability,V500isused.ThetableprovidesavalueofVR=57

    Mdisfoundwithinsection3.3.2.Avalueof0.95isusedforcalculatingshearforcesandbaseoverturningmoments.

    MSandMTarepresumedtobeavalueof1. Mz,catvalueisdeterminedbytable4.1(A).Withtheinformationprovided,itisknownthatwe

    areinTerraincategory3.TheMz,catvaluechangesforeachfloorlevel.Forheightvalues

    inbetweentheonesprovidedinthetable,alinearrelationshipisimplied.

    Usingtheinformationabove,Vsit,canbecalculatedby57*0.95*Mz,cat.Allresultsareshownwithinthe

    excelspreadsheetpreviouslymentioned.

    WindPressureisdeterminedbythefollowingformula:p=0.6*Vdes,^2*Cfig*Cdyn.Thefollowingareknown:

    air=1.2 Cdyn=1 AllKfactors=1

    Therefore,thewindpressurevalues(p)canbecalculatedforeachfloorandareshownintheexcel

    spreadsheet.

    ThenextstepoutlinedwithinthestandardsistocalculateCfig.TocalculateCfig,theCp,evaluesforboth

    thewindwardandleewarddirectionsneedtobedetermined.Thesevaluesareshownintables5.2(A)

    and5.2(B)respectively.Cp,eforwindwardis0.7and 0.5forleeward. Sincethewindwardwallisthe

    worstcasesituation,itisusedtocalculatethecriticalpressureforeachlevel.Combinedpressurefor

    eachlevelcanthenbecalculatedbymultiplyingcriticalpressurebycombinedCfig.Lateralforceoneach

    levelcanthenbecalculatedbymultiplyingthecombinedpressureofeachlevelbytheareaofthelevel.

    ThefinalsresultsareshowninTable4below:

  • 7/29/2019 Concrete Super Structure Report

    17/43

    17

    LevelP

    (kPa)LoadWidth(m) Length(m) A(m^2) PzAz(kN)

    GL 1.86 4.425 51 225.675 418.836341

    1stFloor 2.11 3.75 51 191.25 403.022593

    2ndFloor 2.33 3.75 51 191.25 445.418132

    3rdFloor 2.54 4.375 51 223.125 566.284281

    F=Sum(PzAz) 1833.56

    Table4:LateralForceonEachFloor,F

    4.3EarthquakeLoads

    Itisvitaltoconsiderearthquakeloadswhendesigningamultistoryconcretebuilding.Theearthquake

    loadingsdesignforthebuildingthatisbeingdesignedmustcomplywithAustralianStandards.More

    specifically,itmustcomplywithAS1170.42007:EarthquakeactionsinAustraliawhichisshown

    below.

    AS1170.42007:EarthquakeactionsinAustraliaSection2.2DesignProcedure

    (a)Importancelevel

    (b)Probabilityfactor(kp)&hazardfactor(Z)

    (c)Whetherdomesticstructure

    (d)Sitesubsoilclass

    (e)Earthquakedesigncategory(EDC)

    (f)DesigninaccordancewithSection5.

    TheearthquakeloadingswerecalculatedusingMicrosoftExcelandcanbeviewedintheAppendix3.

    Theimportancelevelwasdeterminedtobe2andtheprobabilityandhazardfactorsweredetermined

    fromtablesinAS1170.4.Theannualprobabilityofexceedance(P)was1/500sofromTable3.1itwas

    determinedtheprobabilityfactoris1.Fromtable3.2,theBrisbanehazardfactorwasdeterminedtobe

    0.05.

    ItwasassumedthatthesoilclassisBeRockbecausethecoresaresupportedbyrock.Thenextstepin

    thedesignprocedureistoperformtheEDCIIStaticCheck.Sincetheheightofthebuildingislessthan

    15meters,theFiformulamustbeused.ThecoefficientscanallbedeterminedusingAS1170.4except

    fortheseismicweightofthestructureateachlevelwhichiscalculatedusingthefollowingformula:Wi=

    Gi+ cQiwhere cis0.3.Thedeadandliveloadsarecalculatedinothersectionsofthereport.

    Fiiscalculatedforeachindividuallevelandarealladdedtogethertodeterminethebaseshearthat

    needstobedesignedfor.Thebaseshearforthisbuildingcametoatotalof1370.16kN.

  • 7/29/2019 Concrete Super Structure Report

    18/43

    5.0D5.1PoAs prev

    North/

    areX15

    Figure1d

    Afterdo

    tendon

    tailedS

    stTensi

    iouslydiscu

    estsideof

    andY15.

    esign

    ingsomeb

    profilecanb

    ructure

    nsed in Sect

    thebuilding

    siccalculati

    eseeninFi

    Design

    ion 3.3, a p

    .Thetwostr

    Fig

    ons,theini

    ure6.Fort

    Figu

    osttension

    ipsdesigne

    re5 Desig

    ialslabdep

    espreadsh

    re6 Tendo

    d slab wou

    forcanbe

    nStrips

    thwascalcu

    etcalculati

    nProfile

    ldbeanap

    visuallynot

    latedtobe

    ns,seeAp

    propriate ch

    dinFigure

    150mm.As

    endix4.1.

    1

    oice for th

    .Theirgrid

    ketchofth

  • 7/29/2019 Concrete Super Structure Report

    19/43

    Theve

    92mm.

    calcula

    Initially

    was to

    centers

    The Im

    Appen

    immedi

    theloa

    safety.

    Afterk

    dead l

    runthr

    The ou

    ultimat

    ofthe

    32M412. Large Mom Ultim PointUltim

    Shea Noa

    Due tointerfe

    additio

    ticalpoint

    These val

    ingthestr

    412.7dia

    highand

    .Thisroun

    mediate lo

    ix 4.1).H

    ate.Ifthe

    dsonthe

    owing the

    ad,superi

    ughthep

    tputs of t

    e,servicea

    eamareO

    aconcrete

    diastrandstdeflectio

    entCapaci

    ateBendin

    ofconcret

    ate Shear

    atTransfe

    ditionalrei

    there beience.For

    alstresse

    ofcontra

    ues assist

    ndsrequir

    standswe

    causedco

    ednumbe

    seswere

    wever, for

    true losses

    lab.Thusi

    spacingo

    posedde

    ogramSpa

    e progra

    ility,anda

    K,thefollo

    at2mcennis7.46m

    y=54kNm

    gStrength

    crushing

    Strength

    ris108kN.

    nforcemen

    g no addihedropp

    causedby

    lexturefor

    d in calc

    edandat

    eusedat

    cretecrus

    ralsocont

    alculatedt

    ease of c

    wereused

    effect,by

    the tendo

    ad load, liv

    ceGass.gave the

    ttransfer/

    ingsumm

    tres

    Mu)=35.

    ttransfer

    is 146kN;

    tisrequire

    tional reinneltherei

    thePTten

    span1is1

    lating the

    hatspacin

    1.13m. Ho

    hing. Ther

    ibutestot

    obe25.4

    lculations

    ,itwould

    usingthe

    ns, loadca

    e loadand

    action fo

    ogging.Af

    ariescanb

    kNm

    2551kNUltimate

    d.

    orcement,

    forcemen

    ons.

    04mm,spa

    drape he

    .

    ever the

    fore, the t

    eeaseof

    andthe l

    they were

    educethe

    roundedv

    ses can be

    prestressi

    ce for be

    ercheckin

    emade;

    it

    eliminatwouldstil

    n2and3i

    ights whic

    stress caus

    endons w

    onstructa

    ngterm l

    rounded

    JackingFo

    luesit isu

    found.Th

    gforces.

    ding, she

    gthatthe

    es

    the

    isslhaveeno

    s59mm,a

    h in turn

    ed from th

    re then sp

    ility.

    sseswere

    o 20% tot

    ceandin

    singahigh

    se load ca

    hesecases

    r and defl

    apacitiesa

    e

    of

    orthoghclearan

    1

    dspan4i

    assisted i

    e prestres

    aced at 2

    15.9%(se

    l and 10

    urnreduc

    erfactoro

    ses includ

    werethe

    ections fo

    ndstrengt

    gonal

    steecetoavoi

    l

  • 7/29/2019 Concrete Super Structure Report

    20/43

    5.2R

    Theslab

    ontop.

    inFigur

    waysla

    momen

    4.2(b).

    inforced

    5.2.1Slab

    willbesup

    hisexceed

    7.Thetwo

    sanddont

    tsandthis

    Concrete

    Fig

    upportSy

    ortedbyt

    thesugges

    waybandb

    deflectasm

    illrequire

    ure7Rein

    temowayband

    ionsfromS

    eamswillbe

    uch.Theyh

    omentresis

    forcedconc

    beams120

    ction3.3a

    attachedt

    avepotenti

    tingreinfor

    retetransfe

    mmwidea

    dAppendix

    twowaysl

    ltorsionalc

    ementinb

    rbeam

    nd250mmt

    2.Theanal

    abswhicha

    rackingdue

    thdirection

    hick,witha

    sedbeamis

    estrongert

    tothetwo

    sasshowni

    2

    00mmslab

    highlighted

    hanone

    aybending

    nAppendix

  • 7/29/2019 Concrete Super Structure Report

    21/43

    21

    5.2.2DistributionofMoments(Slab)

    Thebendingmoments,Mx*andMy*,are51kNmand35kNm,respectively.Thedistributionofmoments

    throughtheslabiscoveredinAppendix4.2(b).

    5.2.3BendingMoments&ShearForces(Beams)

    Themaximumnegativemomentis2743kNmatnode3oftheSpaceGassprintoutandtheshearforceat

    thatpointis1017kN.Themaximumpositivemomentis1870kNmatthepointwiththecolumnabove

    andtheshearforceatthispointis3912kN.ThespreadsheetandSpaceGassprintoutareshownin

    Appendix4.2.

    5.2.4ReinforcementRequirements

    Theslabthicknessis200mmandthebeamis1200mmwideand250mmdeep.Thecoverforfire

    resistanceof120minutesis50mmwhichisaccountedforinthecalculations.Themaximumdeflection

    was25.9mmatthegroundfloorcolumn.Creep,shrinkageandcrackingarealsotakenintoaccount. The

    reinforcementrequirementsareN12barsat110mmspacing(onelayer)forbothdirectionsintheslab,

    20N36barsat110mmspacing(twolayers)forthetopofthetransferslab,and20N30barsat110mm

    spacing(twolayers)forthebottomofthebandbeam. Themidspancalculationswereusedmostlyasa

    referenceandtodoublecheckthatthemaximumswereattheMax.Neg.MomentandMax.Pos.

    Moment.ThecalculationsanddrawingsareshowninAppendix4.2.

    5.2.5ReinforcementDetails

    TheseareshowninAppendix4.2.

  • 7/29/2019 Concrete Super Structure Report

    22/43

    22

    6.0Column

    and

    Core

    Wall

    Loads

    6.1CoreWallDesign

    CoreWallsareessentialinastructuralbuildingastheycontributetoholdingupthebuilding.Thereare

    twocorewallsperlevelinthebuildingthatisbeingdesigned,onearoundeachofthetwoelevatorson

    eachfloor.

    Tobeginthecorewalldesign,theareaofthecorewallandcentroidsneedtobecalculated.Thenext

    stepistoobtainallthelateralloadsforeachlevelwhichconsistsofwindandearthquakeloads.The

    baseshearandbasemomentscanthenbecalculated.Theresultsobtainedfromtheaboveprocedurecanbeseeninthetablebelow:

    Wind(AS1170.2) Earthquake(AS1170.4)

    HeightZ(m) WuE/N WuN/S EuE/W EuN/S

    Fx(kN) Fx(kN) Fx(kN)

    Fy

    (kN)

    Fx

    (kN) Fy(kN)

    16.35(L3) 466.35 566.28 623.7 187.11 187.11 623.7

    12.6(L2) 366.81 445.41 373.23 11.96 11.96 373.23

    8.85 (L1) 331.91 403.02 244.03 73.2 73.2 244.03

    5.1(G) 344.92 418.83 129.19 38.75 38.75 129.19BaseShear 1509.99 1833.54 1370.15 311.02 311.02 1370.15

    BaseMoment 16947.78 20573.6 17718.72 4055.4 4055.4 17718.72

    Table5:WindandEarthquakeValues

    Thefactorsthatneedtobeconsideredwhendesigningacorewallinclude:

    LocalDesignofCoreWalls DesignLoadPerMetreofWall,N* DesignAxialStrengthofWallPerMetre WorstCaseforShear WorstCaseforBending EstimateAsinBoundaryElements EstimateforRemainingVerticalReinforcement WorstCompressionStress WorstTensionStress

    Checksweredoneforeachcasewhenrequiredandthedesignpassedallchecks. Thefullcalculations

    canbeviewedinAppendix5.1.Figure8showsthegeneralshapeofthedesignedcorewallalongwithits

    boundaryelementsinthetopsection.

  • 7/29/2019 Concrete Super Structure Report

    23/43

    Figure8:CoreWallDesign

    2

  • 7/29/2019 Concrete Super Structure Report

    24/43

    6.2CoGeneral

    produce

    column

    andthe

    tother

    AS3600

    ofthec

    Themin

    thebuil

    lumnDe

    ly,columns

    dbywindo

    isminimum

    embedded

    offromfoo

    :2009Secti

    lumninthi

    Clause10.1.

    Clause10.5.Clause10.1.

    Clause10.6.

    Clause10.7.

    Clause10.7.

    Clause10.7.

    Clause10.6.

    Clause10.6.

    imumandu

    ing).

    ignpickupthe

    rearthquak

    attheroof

    einforcingb

    ting.

    n10:Desig

    project.Th

    3.2ShortCo

    2Radius

    of

    2Minimum

    2.2Squashl

    1Limitation

    3Confinem

    4Restraint

    2.3Decomp

    2.5Balance

    ltimatemo

    erticalload

    ,eventually

    ndmaximu

    arsofcolu

    nofColumn

    eClausesth

    lumn

    gyration

    bendingmo

    oad

    onlongitud

    nttotheco

    flongitudin

    ressionpoin

    point

    Figu

    entwereu

    oneachflo

    transferall

    matfooting

    n.Thecolu

    forStrengt

    isdesignus

    ment

    inalsteel

    re

    alreinforce

    t

    e9Colum

    edintheco

    orand,toge

    forcesdow

    level.Thel

    nsizehas

    andServic

    darelisted

    ent

    nLayout

    lumndesig

    therwitha

    tothefoot

    adiscarrie

    esignedto

    abilityare

    below:

    areatLeve

    ylateralfor

    ing.Theloa

    bybothth

    beconstant

    ostlyusedi

    l1(souther

    2

    ces

    inthe

    concrete

    alltheway

    nthedesig

    portionof

  • 7/29/2019 Concrete Super Structure Report

    25/43

    25

    Figure10SectionalElevationAlongGridX

    Basically,thematerialpropertiesusedare40MPaofcompressivestrength(fc)and500MPaofyield

    strength.Thecolumnsizeisassumedtobe500mmby500mmfortheloadcomputationoncolumnat

    grid3X(internal). Beforecheckingthecolumnsizewhetheritisadequateforthedesignbyusingthe

    ultimateloadandminimumandultimatemoment,thereareseveralelementsareneededfor

    determiningtheultimateload,forinstantbandbeamsize,slabthickness,deadandliveload.Thefull

    calculationsareprovidedinAppendix5.2.

    Firstofall,therearegoingtobetwodifferentcolumnsizeswhichisonefortheinternalandedge

    respectively.Fortheinternalcolumndesign,theloadoncolumnatgrid3xisperformedinthedesign

    aswellasthefollowingresultsareusedtoplotthestrengthlineforcolumnsectionormomentand

    interactiongraph.Theresultsusedtoplotthestrengthinteractioncurveareshownbelow:

    GL

    L1

    L2

    L3

    Plantlevel

    7500 7500 5954mm

    5100mm

    3 4 521

    7500mm 7500mm 7500mm7500mm

    3

    750mm3750mm

    3750mm

  • 7/29/2019 Concrete Super Structure Report

    26/43

    26

    Ultimateload,N* 3427kN

    Minimummoment,M*min 43kNm

    Squashload,Nuo 7898kN

    Purebendingmoment,Muo 176kNm

    Balancepoint,Nub 2619kN

    Balancepoint,Mub 552kNm

    Decompressionpoint,Nu 5311kN

    Decompressionpoint,Mu 420kNm

    Table6Strengthinteraction

    Belowistheresultofthestrengthinteractioncurve:

    GraphPoints Xaxis Yaxis

    SquashLoadPoint 0 7898

    DecompressionPoint(D) 420 5311

    BalancePoint(B) 552 2619

    PureBendingPoint 176 0

    Table7Strengthinteractionresults

  • 7/29/2019 Concrete Super Structure Report

    27/43

    Mb

    M*

    Nu

    Nu

    0.85

    N*

    Therefo

    which

    reinforc

    use12n

    momen

    second

    71.39

    71.39

    74

    44

    u 37

    3426.8

    re,theresul

    eanstheco

    ementbars

    umbersof

    t,M*iswith

    ryreinforce

    2 kN.m2 kN.m0 kN0 kN4 kN4 kN

    tofthestre

    lumnsizeis

    arealsoincl

    20barwhic

    inthestren

    mentisnot

    Figure11

    fromgraph

    0.85

    Tabl

    gthinterac

    adequatefo

    dedinthe

    histheprim

    thinteracti

    requiredini

    Columnst

    u>N* O

    7

    Colum

    ioncurves

    rtheminim

    esign,for5

    aryreinforc

    ndiagram

    nternalcolu

    engthdiagr

    strength

    owsthatth

    mbending

    00mmby50

    ementasw

    hereforeth

    mn.(RDH,p

    am

    ecolumnsiz

    moment.Fu

    0mmcolum

    llasusing5

    ereisincrea

    L.1)

    eiswithint

    rthermore,

    nsize,wea

    0mmcover,

    secolumnc

    2

    ecurve

    egoingto

    sincethe

    pacityby

  • 7/29/2019 Concrete Super Structure Report

    28/43

    28

    Figure12ColumnCrosssection

    Forcolumnatgrid5x,thefirstattemptwasusing500mmby300mmcolumnsize,duetotheMbisout

    oftheinteractioncurve;thereforefurtherincreasingcolumncapacityisrequiredbyincreasingcolumn

    sizeandreinforcement.ThefinalresultisshownbelowandthefullcalculationisprovidedinAppendix

    5.2.

    500mm

    500mm

    50mm

    12Y20

  • 7/29/2019 Concrete Super Structure Report

    29/43

    29

    Mb 590.7 kN.mM* 590.7 kN.mNu 8000 kN fromgraphNu 4800 kN0.85Nu 4080 kNN* 1756 kN 0.85 Nu

  • 7/29/2019 Concrete Super Structure Report

    30/43

    30

    7.0CostEstimations

    Initialestimatesofthetotalcostofthebuilding,forthepurposeofdeterminingthemaximumpossible

    designfeeisrequired.However,thispartoftheprojectdiscussesthesubstructuredesignsothetotal

    costsofallbelowgroundworksisgiveninthisreport.TherelevantRawlinsonextractsweretakenand

    putintoaMicrosoftExcelspreadsheetinordertodeterminethetotalsubstructurecosts.Thetotal

    costswascalculatedtobe$6,629,238.11(seeAppendix6)andtheprocesstodeterminethisfinal

    amountisshownbelow.

    7.1FoundationsConcreteFormWork

    ThefloorplansofeachlevelwereprintedoutinA3sizeandtheslabs,columnsandpilesoneachlevel

    werenotedandmeasured. Usingthedimensionsgivenonthefloorplans,ascalewasdeterminedso

    thedimensionsofstructuralcomponentscouldbemeasured.However,notalldimensionsweregiven

    soestimationsweremade.

    Thedepthandwidthofalltheslabs,columnsandpileswereobtainedandtheareasofeachwere

    calculated.Thevolumecouldthereforebecalculatedandthetotalvolumeofeachstructural

    componentcouldbecalculatedbymultiplyingthevolumebythenumberofeachcomponentthereare

    oneachlevel.Foreachlevel,thevolumesofallthestructuralcomponentswereaddedtogetherto

    determinetototalvolumeofconcreteneeded.

    7.2ExternalWallandFoundations

    Fortheexternalwall,theperimeterofthebuildingwasmeasuredanditwasapproximately200m.Thewallheightisgivenas2.9msotheareafortheexternalwallareacanbecalculatedtobe580meterssq.

    Stripfootingwascalculatedmultiplyingthedepthandwidthandcalculatingthetotalarea.Thetotal

    areaisthenmultipliedbythetotallengthofthestripfootingwhichis200mtoobtainatotalvolumeof

    210meterssq.Thedimensionsforthefoundationbeamsweretakentocalculateavolumeof0.3675

    meterscubedandthereare40beamssothetotalvolumeforfoundationbeamscanbecalculatedtobe

    14.7meterscubed.ThecostestimationExcelspreadsheetcanbeviewedinAppendix6.

    7.3Costs

    7.3.1Parking

    TherewillbetwolevelsofundergroundparkinginthismultistoreyconcretebuildingcalledB1andB2.

    Theareaforeachlevelwascalculatedtobeapproximately1500meterssqperlevel.Thereinforced

    concreteconstruction,includingdeskover,mechanicalventilation,firesprinklersandlandscapingtotop

    ofdeckforeachlevelis$1417.5persqmetersotheoverallcostsperlevelwascalculatedtobe$2126

    250.Thereforethetotalcostsforparkingconstructionis$4252500.Itisassumedthattheexcavation

    costsareincludedinthesecosts.

    7.3.2ExternalWalls

    Theareasoftheexternalwallswerecalculatedtobe580meterssqoneachlevelasmentionedbefore.

    Fortheinsituconcretewalls,25MPareinforcedconcretewallsformedinClass4formworkand

  • 7/29/2019 Concrete Super Structure Report

    31/43

    31

    reinforcedattherateof100kg/cummeterwereusedandtheywereselectedtobe150mmthick.The

    totalcostingfortheseinsituconcretewallscametoatotalof$852600forallfivelevels.Theformwork

    itselfdonetoonefaceinClass2costed$13746perlevelandthetotalcostingcametoatotalof$68

    730.Thisisreinforcedbyincreasingthewallthicknessby25mmforevery10kgrcum.

    Surfacefinishesandappliedfinisheswerethefinalstepsfortheseexternalwalls.Thewallsneedtobe

    acidetchedwhichinvolvesallowingthereactionofadilutesolutionofhydrochloricacidtotheconcrete

    surface,thenrinsingoffwithwater.Theacidchemicallyreactswiththesurface,dissolvingitand

    allowingitandotherwatersolublecontaminantstobewashedaway.Totalcostsforacidetchingcame

    to$104400.Cementrenderingtoonefacealsoneedstobecompletedandthiswillcostatotalof$130

    500.

    7.3.3ConcreteWork

    Concreteneedstobedeliveredtothesitebeforeanyworkcancommence.Todeterminehowmuchconcretewasneeded,thetotalvolumeofslabs,columnsandpilesperlevelwascalculated.Itwas

    determinedthatitwouldbemostcosteffectivetouse32MPaconcretewhichcosts$142percubic

    meter.Thereforethetotalcostingforconcreteneededatthesitecametoatotalof$372992.82.

    Thevolumeoffoundationbeamsandingroundstripfootingswerecalculatedintheexternalwalland

    foundationssectionabove.Thesevolumeswerethenjustmultipliedbythepricepercubicmeterof

    eachcomponentand25MPareinforcedconcretewasselectedasthiswouldbethemostcosteffective.

    Thetotalscostsoffoundationbeamscameto$2656.6andthetotalcostsforthestripfootingscameto

    $44820.

    Finally,theconcreteworkforsuspendedslabs,stairsandfillingmustbeaddressed.Itwasdecidedto

    use150mmthicksuspendedslabsthatcost$219percubicmeter.Thetotalcostsforalllevelscametoa

    totalof$492750asitwascalculatedthatthevolumeofeachslabisapproximately300meterscubed

    perlevel.Itwasassumedthatthevolumeofstairsforeachvolumeis50meterscubedandthepriceper

    cubicmeteris$265.Thereforethetotalcostsforstairscameto$92750forthewholebuilding.The

    piersneedfillingforthissubstructureandareonlyinthebottomtwobelowgroundlevels.Thetotal

    costsforthepierfillingcameto$176610.

  • 7/29/2019 Concrete Super Structure Report

    32/43

    32

    8.0References

    CementandConcreteAssociationofAustralia.2003.GuidetoLongSpanConcreteFloors.

    http://www.concrete.net.au/publications/pdf/Longspan%20Floors.pdf(accessedbetweenMay10andMay20,

    2011).

    AustralianStandards.2002.AS/NZS1170.1:2002.

    http://www.saiglobal.com.ezp01.library.qut.edu.au/online/Script/OpenDoc.asp?name=AS%2FNZS+1170%2E1%3A

    2002&path=http%3A%2F%2Fwww%2Esaiglobal%2Ecom%2FPDFTemp%2Fosu%2D2011%2D05%2D22%2F8638031

    145%2F1170%2E1%2D2002%28%2BA2%29%2Epdf&docn=AS926477837210 (accessedMay14,2011).

    AustralianStandards.2011.AS/NZS1170.2:2011.

    http://www.saiglobal.com.ezp01.library.qut.edu.au/online/Script/OpenDoc.asp?name=AS%2FNZS+1170%2E2%3A

    2011&path=http%3A%2F%2Fwww%2Esaiglobal%2Ecom%2FPDFTemp%2Fosu%2D2011%2D05%2D22%2F8638031

    145%2F1170%2E2%2D2011%2Epdf&docn=AS0733798054AT (accessedMay15,2011).

    AustralianStandards.2007.AS/NZS1170.4:2007.

    http://www.saiglobal.com.ezp01.library.qut.edu.au/online/Script/OpenDoc.asp?name=AS+1170%2E4%2D2007&p

    ath=http%3A%2F%2Fwww%2Esaiglobal%2Ecom%2FPDFTemp%2Fosu%2D2011%2D05%2D22%2F8638031145%2F

    1170%2E4%2D2007%2Epdf&docn=AS073378349XAT (accessedMay16,2011).

    AustralianStandards.2009.AS36002009.

    http://www.saiglobal.com.ezp01.library.qut.edu.au/online/Script/OpenDoc.asp?name=AS+1170%2E4%2D2007&p

    ath=http%3A%2F%2Fwww%2Esaiglobal%2Ecom%2FPDFTemp%2Fosu%2D2011%2D05%2D22%2F8638031145%2F

    1170%2E4%2D2007%2Epdf&docn=AS073378349XAT (accessedMay17,2011).

  • 7/29/2019 Concrete Super Structure Report

    33/43

    33

    9.0Appendices

  • 7/29/2019 Concrete Super Structure Report

    34/43

    34

    9.1Appendix1DesignLayout

  • 7/29/2019 Concrete Super Structure Report

    35/43

    35

    9.2Appendix2ComparativeAnalysis

  • 7/29/2019 Concrete Super Structure Report

    36/43

    36

    9.3Appendix3BuildingLoads

  • 7/29/2019 Concrete Super Structure Report

    37/43

    37

    9.4Appendix4DetailedStructuralDesign

  • 7/29/2019 Concrete Super Structure Report

    38/43

    38

    9.4.1Appendix4.1Posttensioned

  • 7/29/2019 Concrete Super Structure Report

    39/43

    39

    9.4.2Appendix4.2ReinforcedConcrete

  • 7/29/2019 Concrete Super Structure Report

    40/43

    40

    9.5Appendix5LoadbearingDesign

  • 7/29/2019 Concrete Super Structure Report

    41/43

    41

    9.5.1Appendix5.1Corewall

  • 7/29/2019 Concrete Super Structure Report

    42/43

    42

    9.5.2Appendix5.2Column

  • 7/29/2019 Concrete Super Structure Report

    43/43

    9.6Appendix6CostEstimation