Computer and Structures SAP

Embed Size (px)

Citation preview

  • 8/20/2019 Computer and Structures SAP

    1/523

      CSI Analysis Reference Manual 

  • 8/20/2019 Computer and Structures SAP

    2/523

    CSI Analysis Reference Manual

    For SAP2000®, ETABS®, SAFE® and CSiBridge®

    ISO# GEN062708M1 Rev.11

    Berkeley, California, USA January 2014

  • 8/20/2019 Computer and Structures SAP

    3/523

    COPYRIGHT

    Copyright © Com puters & Structures, Inc., 1978-2014All rights reserved.

    The CSI Logo®, SAP2000®, ETABS®, SAFE®, CSiBridge®, and SAPFire® are

    registered trademarks of Com puters & Structures, Inc. Model-AliveTM

     and Watch

    & LearnTM

     are trademarks of Com puters & Structures, Inc. Windows® is a reg is-

    tered trademark of the Microsoft Cor poration. Adobe® and Acro bat® are reg is-

    tered trademarks of Adobe Systems Incor porated.

    The com puter programs SAP2000®, ETABS®, SAFE®, and CSiBridge® and all

    associated documentation are pro prietary and copyrighted products. Worldwiderights of ownership rest with Com puters & Structures, Inc. Unlicensed use of these

     programs or re production of documentation in any form, without prior written au-

    thorization from Com puters & Structures, Inc., is ex plicitly prohibited. No part of 

    this publication may be re produced or distributed in any form or by any means, or 

    stored in a data base or retrieval sys tem, with out the prior ex plicit written permis-

    sion of the publisher.

    Further information and copies of this documentation may be obtained from:

    Com puters & Structures, Inc.

    www.csiamerica.com

    [email protected] (for general information)

    sup [email protected] (for technical sup port)

  • 8/20/2019 Computer and Structures SAP

    4/523

    DISCLAIMER

    CONSID ER ABLE TIME, EF FORT AND EX PENSE HAVE GONEINTO THE DE VEL OP MENT AND TEST ING OF THIS SOFTWARE.

    HOWEVER, THE USER ACCEPTS AND UN DERSTANDS THAT

     NO WARRANTY IS EX PRESSED OR IMPLIED BY THE DE VEL-

    OPERS OR THE DISTRIBUTORS ON THE AC CURACY OR THE

    RELIABILITY OF THE PROGRAMS THESE PRODUCTS.

    THESE PROD UCTS ARE PRAC TI CAL AND POW ER FUL TOOLS

    FOR STRUC TURAL DE SIGN. HOWEVER, THE USER MUST EX -

    PLICITLY UNDERSTAND THE BASIC ASSUMPTIONS OF THE

    SOFTWARE MODELING, ANALYSIS, AND DESIGN ALGO-

    RITHMS AND COMPENSATE FOR THE AS PECTS THAT ARE

     NOT ADDRESSED.

    THE INFOR MATION PRODUCED BY THE SOFTWARE MUST BE

    CHECKED BY A QUALIFIED AND EXPERIENCED ENGI NEER.

    THE ENGI NEER MUST INDEPENDENTLY VERIFY THE RE-

    SULTS AND TAKE PROFESSIONAL RESPONSIBILITY FOR THE

    INFORMATION THAT IS USED.

  • 8/20/2019 Computer and Structures SAP

    5/523

     ACKNOWLEDGMENT

    Thanks are due to all of the numerous structural engineers, who over theyears have given valuable feed back that has contributed toward the en-

    hancement of this product to its current state.

    Special recognition is due Dr. Edward L. Wilson, Professor Emeritus,

    University of California at Berkeley, who was responsi ble for the con-

    ception and development of the original SAP series of programs and

    whose continued originality has produced many unique concepts that

    have been im plemented in this version.

  • 8/20/2019 Computer and Structures SAP

    6/523

    Table of Contents

    Chapter I Introduction 1Analysis Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

    Structural Analysis and Design . . . . . . . . . . . . . . . . . . . . . . 3

    About This Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    Topics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    Ty pographical Conventions . . . . . . . . . . . . . . . . . . . . . . . 4

    Bold for Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 4

    Bold for Variable Data. . . . . . . . . . . . . . . . . . . . . . . . 4

    Italics for Mathematical Variables . . . . . . . . . . . . . . . . . . 4

    Italics for Em phasis . . . . . . . . . . . . . . . . . . . . . . . . . 5Capitalized Names . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    Bibliographic References . . . . . . . . . . . . . . . . . . . . . . . . . 5

    Chapter II Ob jects and Elements 7

    Ob jects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    Ob jects and Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    Chapter III Coordinate Systems 11

    Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    Global Coordinate System . . . . . . . . . . . . . . . . . . . . . . . 12

    Upward and Horizontal Directions . . . . . . . . . . . . . . . . . . . 13

    Defining Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . 13

    Vector Cross Product . . . . . . . . . . . . . . . . . . . . . . . . 13

    Defining the Three Axes Using Two Vectors . . . . . . . . . . . 14

      i

  • 8/20/2019 Computer and Structures SAP

    7/523

    Local Coordinate Systems. . . . . . . . . . . . . . . . . . . . . . . . 14

    Alternate Coordinate Systems. . . . . . . . . . . . . . . . . . . . . . 16

    Cylindrical and Spherical Coordinates . . . . . . . . . . . . . . . . . 17

    Chapter IV Joints and Degrees of Free dom 21

    Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    Modeling Considerations . . . . . . . . . . . . . . . . . . . . . . . . 23

    Local Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . 24

    Advanced Local Coordinate System . . . . . . . . . . . . . . . . . . 24

    Reference Vectors . . . . . . . . . . . . . . . . . . . . . . . . . 25

    Defining the Axis Reference Vector . . . . . . . . . . . . . . . . 26

    Defining the Plane Reference Vector. . . . . . . . . . . . . . . . 26

    Determin ing the Local Axes from the Reference Vec tors . . . . . 27

    Joint Coordinate Angles . . . . . . . . . . . . . . . . . . . . . . 28

    Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

    Available and Unavailable Degrees of Free dom . . . . . . . . . . 31

    Restrained Degrees of Free dom . . . . . . . . . . . . . . . . . . 32

    Constrained Degrees of Freedom. . . . . . . . . . . . . . . . . . 32

    Mix ing Restraints and Constraints Not Recommended . . . . . . 32

    Active Degrees of Freedom . . . . . . . . . . . . . . . . . . . . 33

     Null Degrees of Freedom. . . . . . . . . . . . . . . . . . . . . . 34

    Restraint Sup ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

    Spring Sup ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

     Nonlinear Sup ports . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    Distributed Sup ports . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    Joint Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    Base Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    Masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

    Force Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

    Ground Dis placement Load . . . . . . . . . . . . . . . . . . . . . . . 42

    Restraint Dis placements . . . . . . . . . . . . . . . . . . . . . . 43

    Spring Dis placements . . . . . . . . . . . . . . . . . . . . . . . 44

    Link/Sup port Dis placements . . . . . . . . . . . . . . . . . . . . 45

    Generalized Dis placements . . . . . . . . . . . . . . . . . . . . . . . 45

    Degree of Freedom Out put . . . . . . . . . . . . . . . . . . . . . . . 46

    Assem bled Joint Mass Out put. . . . . . . . . . . . . . . . . . . . . . 47

    Dis placement Out put . . . . . . . . . . . . . . . . . . . . . . . . . . 47

    Force Out put . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

    Element Joint Force Out put . . . . . . . . . . . . . . . . . . . . . . . 48

    ii 

    CSI Analysis Reference Manual

  • 8/20/2019 Computer and Structures SAP

    8/523

    Chapter V Constraints and Welds 49

    Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    Body Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

    Joint Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . 51

    Local Coordinate System. . . . . . . . . . . . . . . . . . . . . . 51Constraint Equations . . . . . . . . . . . . . . . . . . . . . . . . 51

    Plane Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

    Dia phragm Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    Joint Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . 53

    Local Coordinate System. . . . . . . . . . . . . . . . . . . . . . 53

    Constraint Equations . . . . . . . . . . . . . . . . . . . . . . . . 54

    Plate Con straint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    Joint Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . 55

    Local Coordinate System. . . . . . . . . . . . . . . . . . . . . . 55

    Constraint Equations . . . . . . . . . . . . . . . . . . . . . . . . 55Axis Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    Rod Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    Joint Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . 57

    Local Coordinate System. . . . . . . . . . . . . . . . . . . . . . 57

    Constraint Equations . . . . . . . . . . . . . . . . . . . . . . . . 57

    Beam Constraint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

    Joint Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . 58

    Local Coordinate System. . . . . . . . . . . . . . . . . . . . . . 59

    Constraint Equations . . . . . . . . . . . . . . . . . . . . . . . . 59

    Equal Constraint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

    Joint Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . 60

    Local Coordinate System. . . . . . . . . . . . . . . . . . . . . . 60

    Selected Degrees of Free dom . . . . . . . . . . . . . . . . . . . 60

    Constraint Equations . . . . . . . . . . . . . . . . . . . . . . . . 60

    Local Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

    Joint Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . 61

     No Local Coordinate System . . . . . . . . . . . . . . . . . . . . 62

    Selected Degrees of Free dom . . . . . . . . . . . . . . . . . . . 62

    Constraint Equations . . . . . . . . . . . . . . . . . . . . . . . . 62Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

    Automatic Master Joints. . . . . . . . . . . . . . . . . . . . . . . . . 66

    Stiffness, Mass, and Loads . . . . . . . . . . . . . . . . . . . . . 66

    Local Coordinate Systems . . . . . . . . . . . . . . . . . . . . . 67

    Constraint Out put . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

      iii

    Table of Contents

  • 8/20/2019 Computer and Structures SAP

    9/523

    Chapter VI Material Properties 69

    Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

    Local Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . 70

    Stresses and Strains . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

    Isotro pic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . 73Uniaxial Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

    Orthotropic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . 75

    Anisotropic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . 75

    Tem perature-De pendent Properties . . . . . . . . . . . . . . . . . . . 76

    Element Material Tem perature . . . . . . . . . . . . . . . . . . . . . 77

    Mass Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

    Weight Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

    Material Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

    Modal Damping . . . . . . . . . . . . . . . . . . . . . . . . . . 79Viscous Pro portional Damping. . . . . . . . . . . . . . . . . . . 80

    Hysteretic Pro portional Damping . . . . . . . . . . . . . . . . . 80

     Nonlinear Material Behavior . . . . . . . . . . . . . . . . . . . . . . 80

    Tension and Com pression . . . . . . . . . . . . . . . . . . . . . 81

    Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

    Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

    Ap plication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

    Fric tion and Dilitational An gles . . . . . . . . . . . . . . . . . . 84

    Time-de pendent Properties . . . . . . . . . . . . . . . . . . . . . . . 85

    Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85Time-Integration Control . . . . . . . . . . . . . . . . . . . . . . 86

    Design-Type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

    Chapter VII The Frame Element 89

    Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

    Joint Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

    Insertion Points . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

    Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

    Local Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . 92

    Longitudinal Axis 1 . . . . . . . . . . . . . . . . . . . . . . . . 93

    Default Orientation . . . . . . . . . . . . . . . . . . . . . . . . . 93

    Coordinate Angle . . . . . . . . . . . . . . . . . . . . . . . . . . 94

    Advanced Local Coordinate System . . . . . . . . . . . . . . . . . . 94

    Reference Vector . . . . . . . . . . . . . . . . . . . . . . . . . . 96

    Determining Transverse Axes 2 and 3 . . . . . . . . . . . . . . . 97

    iv  

    CSI Analysis Reference Manual

  • 8/20/2019 Computer and Structures SAP

    10/523

    Section Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

    Local Coordinate System. . . . . . . . . . . . . . . . . . . . . . 99

    Material Properties . . . . . . . . . . . . . . . . . . . . . . . . . 99

    Geometric Properties and Section Stiffnesses. . . . . . . . . . . 100

    Shape Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

    Automatic Section Property Calculation . . . . . . . . . . . . . 102Section Property Data base Files. . . . . . . . . . . . . . . . . . 102

    Section-Designer Sections . . . . . . . . . . . . . . . . . . . . 102

    Additional Mass and Weight . . . . . . . . . . . . . . . . . . . 104

     Non-prismatic Sections . . . . . . . . . . . . . . . . . . . . . . 104

    Property Modifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

     Named Prop erty Sets . . . . . . . . . . . . . . . . . . . . . . . 108

    Insertion Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

    Local Axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

    End Offsets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

    Clear Length. . . . . . . . . . . . . . . . . . . . . . . . . . . . 113Rigid-end Factor . . . . . . . . . . . . . . . . . . . . . . . . . 113

    Effect upon Non-prismatic Elements . . . . . . . . . . . . . . . 114

    Effect upon Internal Force Out put . . . . . . . . . . . . . . . . 114

    Effect upon End Releases . . . . . . . . . . . . . . . . . . . . . 114

    End Releases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

    Unsta ble End Releases . . . . . . . . . . . . . . . . . . . . . . 116

    Effect of End Offsets . . . . . . . . . . . . . . . . . . . . . . . 116

     Named Prop erty Sets . . . . . . . . . . . . . . . . . . . . . . . 116

     Nonlinear Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 117

    Tension/Com pression Limits . . . . . . . . . . . . . . . . . . . 117

    Plastic Hinge . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

    Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

    Self-Weight Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

    Gravity Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

    Concentrated Span Load . . . . . . . . . . . . . . . . . . . . . . . . 119

    Distributed Span Load . . . . . . . . . . . . . . . . . . . . . . . . . 121

    Loaded Length . . . . . . . . . . . . . . . . . . . . . . . . . . 121

    Load Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

    Pro jected Loads . . . . . . . . . . . . . . . . . . . . . . . . . . 121Tem perature Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

    Strain Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

    Deformation Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

    Target-Force Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

    Internal Force Out put . . . . . . . . . . . . . . . . . . . . . . . . . 126

    Effect of End Offsets . . . . . . . . . . . . . . . . . . . . . . . 128

       v 

    Table of Contents

  • 8/20/2019 Computer and Structures SAP

    11/523

    Stress Out put . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

    Chapter VIII Frame Hinge Proper ties 131

    Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

    Hinge Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132Hinge Length . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

    Plastic Deformation Curve . . . . . . . . . . . . . . . . . . . . 134

    Scaling the Curve . . . . . . . . . . . . . . . . . . . . . . . . . 135

    Strength Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

    Cou pled P-M2-M3 Hinge . . . . . . . . . . . . . . . . . . . . . 136

    Fi ber P-M2-M3 Hinge . . . . . . . . . . . . . . . . . . . . . . 139

    Automatic, User-Defined, and Generated Properties . . . . . . . . . 139

    Automatic Hinge Properties . . . . . . . . . . . . . . . . . . . . . . 141

    Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

    Chapter IX The Cable Element 145

    Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

    Joint Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

    Undeformed Length . . . . . . . . . . . . . . . . . . . . . . . . . . 147

    Shape Calculator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

    Ca ble vs. Frame Elements. . . . . . . . . . . . . . . . . . . . . 149

     Num ber of Segments . . . . . . . . . . . . . . . . . . . . . . . 150

    Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . 150

    Local Coordinate System . . . . . . . . . . . . . . . . . . . . . . . 150

    Section Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

    Material Properties . . . . . . . . . . . . . . . . . . . . . . . . 151

    Geometric Properties and Section Stiffnesses. . . . . . . . . . . 152

    Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

    Self-Weight Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

    Gravity Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

    Distributed Span Load . . . . . . . . . . . . . . . . . . . . . . . . . 153

    Tem perature Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

    Strain and Deformation Load . . . . . . . . . . . . . . . . . . . . . 154

    Target-Force Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

     Nonlinear Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . 155

    Element Out put . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

    Chapter X The Shell Element 157

    Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

     vi 

    CSI Analysis Reference Manual

  • 8/20/2019 Computer and Structures SAP

    12/523

    Homogeneous . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

    Layered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

    Joint Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

    Shape Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . 160

    Edge Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

    De grees of Free dom . . . . . . . . . . . . . . . . . . . . . . . . . . 164

    Local Coordinate System . . . . . . . . . . . . . . . . . . . . . . . 164

     Normal Axis 3. . . . . . . . . . . . . . . . . . . . . . . . . . . 165

    Default Orientation . . . . . . . . . . . . . . . . . . . . . . . . 165

    Element Coordinate Angle . . . . . . . . . . . . . . . . . . . . 167

    Advanced Local Coordinate System. . . . . . . . . . . . . . . . . . 167

    Reference Vector . . . . . . . . . . . . . . . . . . . . . . . . . 167

    Determining Tangential Axes 1 and 2 . . . . . . . . . . . . . . 169

    Section Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

    Area Sec tion Type. . . . . . . . . . . . . . . . . . . . . . . . . 170Shell Sec tion Type . . . . . . . . . . . . . . . . . . . . . . . . 170

    Homogeneous Section Properties . . . . . . . . . . . . . . . . . 171

    Layered Section Property . . . . . . . . . . . . . . . . . . . . . 174

    Property Modifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

     Named Prop erty Sets . . . . . . . . . . . . . . . . . . . . . . . 182

    Joint Offsets and Thickness Overwrites . . . . . . . . . . . . . . . . 183

    Joint Offsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

    Effect of Joint Offsets on the Local Axes . . . . . . . . . . . . . 184

    Thickness Overwrites . . . . . . . . . . . . . . . . . . . . . . . 185

    Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

    Self-Weight Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

    Gravity Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

    Uniform Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

    Surface Pressure Load . . . . . . . . . . . . . . . . . . . . . . . . . 188

    Tem perature Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

    Strain Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

    Internal Force and Stress Out put. . . . . . . . . . . . . . . . . . . . 190

    Chapter XI The Plane Element 195

    Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

    Joint Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

    De grees of Free dom . . . . . . . . . . . . . . . . . . . . . . . . . . 197

    Local Coordinate System . . . . . . . . . . . . . . . . . . . . . . . 197

    Stresses and Strains . . . . . . . . . . . . . . . . . . . . . . . . . . 197

    Section Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

       vii

    Table of Contents

  • 8/20/2019 Computer and Structures SAP

    13/523

    Section Type . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

    Material Properties . . . . . . . . . . . . . . . . . . . . . . . . 199

    Material Angle . . . . . . . . . . . . . . . . . . . . . . . . . . 199

    Thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

    Incom pati ble Bending Modes . . . . . . . . . . . . . . . . . . . 200

    Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200Self-Weight Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

    Gravity Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

    Surface Pressure Load . . . . . . . . . . . . . . . . . . . . . . . . . 202

    Pore Pressure Load. . . . . . . . . . . . . . . . . . . . . . . . . . . 202

    Tem perature Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

    Stress Out put . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

    Chapter XII The Asolid Ele ment 205

    Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

    Joint Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

    Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . 207

    Local Coordinate System . . . . . . . . . . . . . . . . . . . . . . . 207

    Stresses and Strains . . . . . . . . . . . . . . . . . . . . . . . . . . 208

    Section Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

    Section Type . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

    Material Properties . . . . . . . . . . . . . . . . . . . . . . . . 209

    Material Angle . . . . . . . . . . . . . . . . . . . . . . . . . . 209

    Axis of Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . 210Arc and Thickness. . . . . . . . . . . . . . . . . . . . . . . . . 211

    Incom pati ble Bending Modes . . . . . . . . . . . . . . . . . . . 212

    Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

    Self-Weight Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

    Gravity Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

    Surface Pressure Load . . . . . . . . . . . . . . . . . . . . . . . . . 213

    Pore Pressure Load. . . . . . . . . . . . . . . . . . . . . . . . . . . 214

    Tem perature Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

    Rotate Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

    Stress Out put . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

    Chapter XIII The Solid Element 217

    Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

    Joint Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

    Degenerate Solids . . . . . . . . . . . . . . . . . . . . . . . . . 219

    Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . 220

     viii 

    CSI Analysis Reference Manual

  • 8/20/2019 Computer and Structures SAP

    14/523

    Local Coordinate System . . . . . . . . . . . . . . . . . . . . . . . 220

    Advanced Local Coordinate System. . . . . . . . . . . . . . . . . . 220

    Reference Vectors . . . . . . . . . . . . . . . . . . . . . . . . . 221

    Defining the Axis Reference Vector . . . . . . . . . . . . . . . 221

    Defining the Plane Reference Vector . . . . . . . . . . . . . . . 222

    De termining the Local Axes from the Reference Vec tors . . . . 223Element Coordinate Angles . . . . . . . . . . . . . . . . . . . . 223

    Stresses and Strains . . . . . . . . . . . . . . . . . . . . . . . . . . 226

    Solid Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

    Material Properties . . . . . . . . . . . . . . . . . . . . . . . . 226

    Material Angles . . . . . . . . . . . . . . . . . . . . . . . . . . 226

    Incom pati ble Bending Modes . . . . . . . . . . . . . . . . . . . 227

    Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

    Self-Weight Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

    Gravity Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

    Surface Pressure Load . . . . . . . . . . . . . . . . . . . . . . . . . 229

    Pore Pres sure Load. . . . . . . . . . . . . . . . . . . . . . . . . . . 229

    Tem perature Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

    Stress Out put . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

    Chapter XIV The Link/Support Element—Basic 231

    Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

    Joint Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

    Conversion from One-Joint Ob jects to Two-Joint Elements . . . 233Zero-Length Elements . . . . . . . . . . . . . . . . . . . . . . . . . 233

    De grees of Free dom . . . . . . . . . . . . . . . . . . . . . . . . . . 234

    Local Coordinate System . . . . . . . . . . . . . . . . . . . . . . . 234

    Longitudinal Axis 1 . . . . . . . . . . . . . . . . . . . . . . . . 235

    Default Orientation . . . . . . . . . . . . . . . . . . . . . . . . 235

    Coordinate Angle . . . . . . . . . . . . . . . . . . . . . . . . . 236

    Advanced Local Coordinate System. . . . . . . . . . . . . . . . . . 236

    Axis Reference Vector . . . . . . . . . . . . . . . . . . . . . . 237

    Plane Reference Vector . . . . . . . . . . . . . . . . . . . . . . 238

    Determining Transverse Axes 2 and 3 . . . . . . . . . . . . . . 239

    Internal Deformations . . . . . . . . . . . . . . . . . . . . . . . . . 240

    Link/Sup port Properties . . . . . . . . . . . . . . . . . . . . . . . . 243

    Local Coordinate System . . . . . . . . . . . . . . . . . . . . . 244

    Internal Spring Hinges . . . . . . . . . . . . . . . . . . . . . . 244

    Spring Force-Deformation Relationships . . . . . . . . . . . . . 246

    Element Internal Forces . . . . . . . . . . . . . . . . . . . . . . 247

    Uncou pled Linear Force-Deformation Relationships . . . . . . . 247

      ix 

    Table of Contents

  • 8/20/2019 Computer and Structures SAP

    15/523

    Types of Linear/Nonlinear Properties. . . . . . . . . . . . . . . 249

    Cou pled Linear Property . . . . . . . . . . . . . . . . . . . . . . . . 250

    Fixed Degrees of Free dom. . . . . . . . . . . . . . . . . . . . . . . 250

    Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

    Self-Weight Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

    Gravity Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

    Internal Force and Deformation Out put . . . . . . . . . . . . . . . . 253

    Chapter XV The Link/Support Element—Ad vanced 255

    Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

     Nonlinear Link/Sup port Properties . . . . . . . . . . . . . . . . . . 256

    Linear Effective Stiffness . . . . . . . . . . . . . . . . . . . . . . . 257

    Special Considerations for Modal Analyses . . . . . . . . . . . 257

    Linear Effective Damping . . . . . . . . . . . . . . . . . . . . . . . 258Ex ponential Maxwell Damper Property . . . . . . . . . . . . . . . . 259

    Bilinear Maxwell Damper Property . . . . . . . . . . . . . . . . . . 261

    Friction-Spring Damper Property . . . . . . . . . . . . . . . . . . . 262

    Gap Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

    Hook Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

    Multi-Linear Elasticity Property . . . . . . . . . . . . . . . . . . . . 267

    Wen Plasticity Property . . . . . . . . . . . . . . . . . . . . . . . . 268

    Multi-Linear Kinematic Plasticity Property . . . . . . . . . . . . . . 269

    Multi-Linear Takeda Plasticity Property. . . . . . . . . . . . . . . . 272Multi-Lin ear Pivot Hysteretic Plasticity Property . . . . . . . . . . . 272

    Hysteretic (Rub ber) Isolator Property . . . . . . . . . . . . . . . . . 274

    Friction-Pendulum Isolator Property. . . . . . . . . . . . . . . . . . 276

    Axial Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 276

    Shear Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 278

    Linear Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 280

    Dou ble-Acting Friction-Pendulum Isolator Property . . . . . . . . . 280

    Axial Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 281

    Shear Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 281

    Linear Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 282

    Tri ple-Pendulum Isolator Property. . . . . . . . . . . . . . . . . . . 282

    Axial Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 283

    Shear Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 284

    Linear Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 287

     Nonlinear Deformation Loads . . . . . . . . . . . . . . . . . . . . . 287

    Frequency-De pendent Link/Sup port Properties . . . . . . . . . . . . 289

     x  

    CSI Analysis Reference Manual

  • 8/20/2019 Computer and Structures SAP

    16/523

    Chapter XVI The Tendon Ob ject 291

    Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

    Geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

    Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

    Tendons Modeled as Loads or Elements. . . . . . . . . . . . . . . . 293Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

    De grees of Free dom . . . . . . . . . . . . . . . . . . . . . . . . . . 294

    Local Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . 295

    Base-line Local Coordinate System . . . . . . . . . . . . . . . . 295

     Natural Local Coordinate System . . . . . . . . . . . . . . . . . 295

    Section Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

    Material Properties . . . . . . . . . . . . . . . . . . . . . . . . 296

    Geometric Properties and Section Stiffnesses. . . . . . . . . . . 296

    Tension/Com pression Limits . . . . . . . . . . . . . . . . . . . . . 297Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

    Prestress Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

    Self-Weight Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

    Gravity Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

    Tem perature Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

    Strain Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

    Deformation Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

    Target-Force Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

    Internal Force Out put . . . . . . . . . . . . . . . . . . . . . . . . . 302

    Chapter XVII Load Patterns 303

    Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

    Load Patterns, Load Cases, and Load Com binations . . . . . . . . . 305

    Defining Load Patterns . . . . . . . . . . . . . . . . . . . . . . . . 305

    Coordinate Systems and Load Com ponents . . . . . . . . . . . . . . 306

    Effect upon Large-Dis placements Analysis. . . . . . . . . . . . 306

    Force Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

    Ground Dis placement Load . . . . . . . . . . . . . . . . . . . . . . 307Self-Weight Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

    Gravity Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

    Concentrated Span Load . . . . . . . . . . . . . . . . . . . . . . . . 309

    Distributed Span Load . . . . . . . . . . . . . . . . . . . . . . . . . 309

    Tendon Prestress Load . . . . . . . . . . . . . . . . . . . . . . . . . 309

    Uniform Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

       xi

    Table of Contents

  • 8/20/2019 Computer and Structures SAP

    17/523

    Surface Pressure Load . . . . . . . . . . . . . . . . . . . . . . . . . 310

    Pore Pressure Load. . . . . . . . . . . . . . . . . . . . . . . . . . . 310

    Tem perature Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

    Strain Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

    Deformation Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

    Target-Force Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

    Rotate Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

    Joint Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

    Mass Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

    Mass from Specified Load Patterns . . . . . . . . . . . . . . . . 317

     Negative Mass. . . . . . . . . . . . . . . . . . . . . . . . . . . 318

    Multi ple Mass Sources . . . . . . . . . . . . . . . . . . . . . . 318

    Automated Lateral Loads . . . . . . . . . . . . . . . . . . . . . 320

    Acceleration Loads. . . . . . . . . . . . . . . . . . . . . . . . . . . 320

    Chapter XVIII Load Cases 323

    Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

    Load Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

    Types of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

    Sequence of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 326

    Running Load Cases . . . . . . . . . . . . . . . . . . . . . . . . . . 327

    Linear and Nonlinear Load Cases . . . . . . . . . . . . . . . . . . . 328

    Linear Static Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 329

    Multi-Step Static Analysis . . . . . . . . . . . . . . . . . . . . . . . 330

    Linear Buckling Analysis . . . . . . . . . . . . . . . . . . . . . . . 331

    Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

    Load Com binations (Com bos) . . . . . . . . . . . . . . . . . . . . . 333

    Contributing Cases . . . . . . . . . . . . . . . . . . . . . . . . 333

    Types of Com bos . . . . . . . . . . . . . . . . . . . . . . . . . 334

    Exam ples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

    Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . 336

    Additional Considerations. . . . . . . . . . . . . . . . . . . . . 339

    Equation Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339Accessing the Assem bled Stiffness and Mass Matrices . . . . . . . . 340

    Chapter XIX Modal Anal ysis 341

    Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

    Eigenvector Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 342

     Num ber of Modes . . . . . . . . . . . . . . . . . . . . . . . . . 343

     xii 

    CSI Analysis Reference Manual

  • 8/20/2019 Computer and Structures SAP

    18/523

    Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . 344

    Automatic Shifting . . . . . . . . . . . . . . . . . . . . . . . . 345

    Convergence Tolerance . . . . . . . . . . . . . . . . . . . . . . 345

    Static-Correction Modes . . . . . . . . . . . . . . . . . . . . . 346

    Ritz-Vector Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 348

     Num ber of Modes . . . . . . . . . . . . . . . . . . . . . . . . . 349Starting Load Vectors . . . . . . . . . . . . . . . . . . . . . . . 349

     Num ber of Generation Cycles. . . . . . . . . . . . . . . . . . . 351

    Modal Analysis Out put . . . . . . . . . . . . . . . . . . . . . . . . 351

    Periods and Frequencies . . . . . . . . . . . . . . . . . . . . . 352

    Partici pation Factors . . . . . . . . . . . . . . . . . . . . . . . 352

    Partici pating Mass Ratios . . . . . . . . . . . . . . . . . . . . . 353

    Static and Dynamic Load Partici pation Ratios . . . . . . . . . . 354

    Chapter XX Response-Spectrum Anal ysis 359

    Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

    Local Coordinate System . . . . . . . . . . . . . . . . . . . . . . . 361

    Response-Spectrum Function . . . . . . . . . . . . . . . . . . . . . 361

    Damping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

    Modal Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

    Modal Com bination . . . . . . . . . . . . . . . . . . . . . . . . . . 364

    Periodic and Rigid Response . . . . . . . . . . . . . . . . . . . 364

    CQC Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

    GMC Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

    SRSS Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 366Absolute Sum Method . . . . . . . . . . . . . . . . . . . . . . 367

     NRC Ten-Percent Method . . . . . . . . . . . . . . . . . . . . 367

     NRC Dou ble-Sum Method . . . . . . . . . . . . . . . . . . . . 367

    Directional Com bination . . . . . . . . . . . . . . . . . . . . . . . . 367

    SRSS Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

    CQC3 Method. . . . . . . . . . . . . . . . . . . . . . . . . . . 368

    Absolute Sum Method . . . . . . . . . . . . . . . . . . . . . . 369

    Response-Spectrum Analysis Out put . . . . . . . . . . . . . . . . . 370

    Damping and Accelerations . . . . . . . . . . . . . . . . . . . . 370

    Modal Am plitudes. . . . . . . . . . . . . . . . . . . . . . . . . 370

    Base Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . 371

    Chapter XXI Linear Time-History Anal ysis 373

    Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

    Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

    Defining the Spatial Load Vectors . . . . . . . . . . . . . . . . 375

       xiii

    Table of Contents

  • 8/20/2019 Computer and Structures SAP

    19/523

    Defining the Time Functions . . . . . . . . . . . . . . . . . . . 376

    Initial Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

    Time Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

    Modal Time-History Analysis . . . . . . . . . . . . . . . . . . . . . 379

    Modal Damping . . . . . . . . . . . . . . . . . . . . . . . . . . 380

    Direct-Integration Time-History Analysis . . . . . . . . . . . . . . . 381

    Time Integration Parameters . . . . . . . . . . . . . . . . . . . 382

    Damping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

    Chapter XXII Geometric Nonlinearity 385

    Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

     Nonlinear Load Cases . . . . . . . . . . . . . . . . . . . . . . . . . 387

    The P-Delta Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

    P-Delta Forces in the Frame Element . . . . . . . . . . . . . . . 391

    P-Delta Forces in the Link/Sup port Element . . . . . . . . . . . 394

    Other Elements . . . . . . . . . . . . . . . . . . . . . . . . . . 395

    Initial P-Delta Analysis . . . . . . . . . . . . . . . . . . . . . . . . 395

    Building Structures . . . . . . . . . . . . . . . . . . . . . . . . 396

    Ca ble Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 398

    Guyed Towers. . . . . . . . . . . . . . . . . . . . . . . . . . . 398

    Large Dis placements . . . . . . . . . . . . . . . . . . . . . . . . . . 398

    Ap plications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

    Initial Large-Dis placement Analysis . . . . . . . . . . . . . . . 399

    Chapter XXIII Nonlinear Static Anal ysis 401

    Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

     Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

    Im portant Considerations . . . . . . . . . . . . . . . . . . . . . . . 403

    Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

    Load Ap plication Control . . . . . . . . . . . . . . . . . . . . . . . 404

    Load Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

    Dis placement Control . . . . . . . . . . . . . . . . . . . . . . . 405

    Initial Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

    Out put Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

    Saving Multi ple Steps . . . . . . . . . . . . . . . . . . . . . . . 407

     Nonlinear Solution Control . . . . . . . . . . . . . . . . . . . . . . 409

    Maximum Total Steps . . . . . . . . . . . . . . . . . . . . . . . 410

    Max imum Null (Zero) Steps . . . . . . . . . . . . . . . . . . . 410

    Maximum Iterations Per Step . . . . . . . . . . . . . . . . . . . 410

    Iteration Convergence Tolerance . . . . . . . . . . . . . . . . . 411

     xiv  

    CSI Analysis Reference Manual

  • 8/20/2019 Computer and Structures SAP

    20/523

    Event-to-Event Iteration Control . . . . . . . . . . . . . . . . . 411

    Hinge Unloading Method . . . . . . . . . . . . . . . . . . . . . . . 411

    Unload Entire Structure . . . . . . . . . . . . . . . . . . . . . . 412

    Ap ply Local Redistri bution . . . . . . . . . . . . . . . . . . . . 413

    Restart Using Secant Stiffness . . . . . . . . . . . . . . . . . . 413

    Static Pushover Analysis. . . . . . . . . . . . . . . . . . . . . . . . 414Staged Construction . . . . . . . . . . . . . . . . . . . . . . . . . . 416

    Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

    Changing Section Properties . . . . . . . . . . . . . . . . . . . 419

    Out put Steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

    Exam ple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

    Target-Force Iteration . . . . . . . . . . . . . . . . . . . . . . . . . 421

    Chapter XXIV Nonlinear Time-History Anal ysis 425

    Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426 Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

    Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

    Initial Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

    Time Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

     Nonlinear Modal Time-History Analysis (FNA) . . . . . . . . . . . 429

    Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 429

    Link/Sup port Effective Stiffness . . . . . . . . . . . . . . . . . 430

    Mode Su per position . . . . . . . . . . . . . . . . . . . . . . . . 430

    Modal Damping . . . . . . . . . . . . . . . . . . . . . . . . . . 432

    Iterative Solution . . . . . . . . . . . . . . . . . . . . . . . . . 433

    Static Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

     Nonlinear Direct-Integration Time-History Analysis . . . . . . . . . 436

    Time Integration Parameters . . . . . . . . . . . . . . . . . . . 436

     Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436

    Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 437

    Damping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

    Iterative Solution . . . . . . . . . . . . . . . . . . . . . . . . . 438

    Chapter XXV Frequency-Domain Anal yses 441Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

    Harmonic Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

    Frequency Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

    Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

    Sources of Damping. . . . . . . . . . . . . . . . . . . . . . . . 444

    Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

       xv 

    Table of Contents

  • 8/20/2019 Computer and Structures SAP

    21/523

    Defining the Spatial Load Vectors . . . . . . . . . . . . . . . . 446

    Frequency Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

    Steady-State Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 447

    Exam ple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448

    Power-Spectral-Density Analysis . . . . . . . . . . . . . . . . . . . 449

    Exam ple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

    Chapter XXVI Moving-Load Anal ysis 453

    Overview for CSiBridge . . . . . . . . . . . . . . . . . . . . . . . . 454

    Moving-Load Analysis in SAP2000 . . . . . . . . . . . . . . . . . . 455

    Bridge Modeler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

    Moving-Load Analysis Procedure . . . . . . . . . . . . . . . . . . . 456

    Lanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458

    Centerline and Direction . . . . . . . . . . . . . . . . . . . . . 458Eccentricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458

    Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459

    Interior and Exterior Edges . . . . . . . . . . . . . . . . . . . . 459

    Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 459

    In fluence Lines and Surfaces . . . . . . . . . . . . . . . . . . . . . 460

    Vehicle Live Loads . . . . . . . . . . . . . . . . . . . . . . . . . . 462

    Direction of Loading . . . . . . . . . . . . . . . . . . . . . . . 462

    Distri bution of Loads . . . . . . . . . . . . . . . . . . . . . . . 462

    Axle Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462

    Uniform Loads . . . . . . . . . . . . . . . . . . . . . . . . . . 463Minimum Edge Distances . . . . . . . . . . . . . . . . . . . . . 463

    Restricting a Ve hicle to the Lane Length . . . . . . . . . . . . . 463

    Ap plication of Loads to the Influence Surface . . . . . . . . . . 463

    Length Effects. . . . . . . . . . . . . . . . . . . . . . . . . . . 465

    Ap pli cation of Loads in Multi-Step Analysis . . . . . . . . . . . 466

    General Vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

    Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

    Moving the Vehicle . . . . . . . . . . . . . . . . . . . . . . . . 468

    Vehicle Response Com ponents . . . . . . . . . . . . . . . . . . . . 469

    Su perstructure (Span) Moment . . . . . . . . . . . . . . . . . . 469 Negative Su perstructure (Span) Moment . . . . . . . . . . . . . 470

    Reactions at Interior Sup ports . . . . . . . . . . . . . . . . . . 471

    Standard Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

    Vehicle Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

    Moving-Load Load Cases . . . . . . . . . . . . . . . . . . . . . . . 479

    Exam ple 1 — AASHTO HS Loading. . . . . . . . . . . . . . . 480

    Exam ple 2 — AASHTO HL Loading. . . . . . . . . . . . . . . 482

     xvi 

    CSI Analysis Reference Manual

  • 8/20/2019 Computer and Structures SAP

    22/523

    Ex am ple 3 — Caltrans Permit Loading . . . . . . . . . . . . . . 483

    Ex am ple 4 — Re stricted Caltrans Per mit Load ing . . . . . . . . 485

    Exam ple 5 — Eurocode Characteristic Load Model 1 . . . . . . 486

    Moving Load Response Control . . . . . . . . . . . . . . . . . . . . 488

    Bridge Response Groups . . . . . . . . . . . . . . . . . . . . . 488

    Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . 489Influence Line Tolerance . . . . . . . . . . . . . . . . . . . . . 489

    Exact and Quick Response Calculation . . . . . . . . . . . . . . 489

    Step-By-Step Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 490

    Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

    Static Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . 491

    Time-History Analysis . . . . . . . . . . . . . . . . . . . . . . 492

    Enveloping and Load Com binations . . . . . . . . . . . . . . . 492

    Com putational Considerations . . . . . . . . . . . . . . . . . . . . . 493

    Chapter XXVII References 495

       xvii

    Table of Contents

  • 8/20/2019 Computer and Structures SAP

    23/523

    C h a p t e r  I

    Introduction

    SAP2000, ETABS, SAFE, and CSiBridge are software packages from Com puters

    and Structures, Inc. for structural analy sis and design. Each package is a fully inte-

    grated system for modeling, analyzing, designing, and optimizing structures of a

     particular type:

    • SAP2000 for general structures, including stadiums, towers, industrial plants,

    offshore structures, piping systems, buildings, dams, soils, machine parts and

    many others

    • ETABS for building structures

    • SAFE for floor slabs and base mats

    • CSiBridge for bridge structures

    At the heart of each of these soft ware packages is a common anal ysis en gine, re -

    ferred to throughout this manual as SAPfire. This engine is the latest and most pow-erful version of the well-known SAP series of structural analy sis programs. The

     pur pose of this manual is to describe the features of the SAPfire analy sis engine.

    Throughout this manual reference may be made to the program SAP2000, although

    it often ap plies equally to ETABS, SAFE, and CSiBridge. Not all features de-

    scribed will ac tu ally be available in ev ery level of each pro gram.

      1

  • 8/20/2019 Computer and Structures SAP

    24/523

     Analysis Features

    The SAPfire analysis engine offers the following features:

    • Static and dynamic analysis

    • Linear and nonlinear analysis

    • Dynamic seismic analysis and static push over analysis

    • Vehicle live-load analysis for bridges

    • Geometric nonlinearity, including P-delta and large-dis placement effects

    • Staged (incremental) construction

    • Creep, shrinkage, and aging effects

    • Buckling analysis

    • Steady-state and power-spec tral-density analysis

    • Frame and shell structural elements, including beam-column, truss, mem brane,

    and plate behavior 

    • Ca ble and Tendon elements

    • Two-dimensional plane and axisymmetric solid elements

    • Three-dimensional solid elements

    •  Nonlinear link and sup port elements

    Frequency-de pendent link and sup port properties• Multi ple coordinate systems

    • Many types of constraints

    • A wide variety of loading options

    • Alpha-numeric la bels

    • Large ca pacity

    • Highly efficient and sta ble solution algorithms

    These fea tures, and many more, make CSI product the state-of-the-art for structuralanal ysis. Note that not all of these features may be available in every level of 

    SAP2000, ETABS, SAFE, and CSiBridge.

    2  Analysis Features

    CSI Analysis Reference Manual

  • 8/20/2019 Computer and Structures SAP

    25/523

    Structural Analysis and Design

    The following general steps are required to analyze and design a structure using

    SAP2000, ETABS, SAFE, and CSiBridge:

    1. Create or modify a model that numerically defines the geometry, properties,loading, and analysis parameters for the structure

    2. Perform an analysis of the model

    3. Review the re sults of the analysis

    4. Check and optimize the design of the structure

    This is usu ally an iterative pro cess that may involve sev eral cycles of the above se-

    quence of steps. All of these steps can be performed seamlessly using the SAP2000,

    ETABS, SAFE, and CSiBridge graph ical user inter faces.

     About This Manual

    This manual describes the theoretical concepts behind the modeling and analysis

    features offered by the SAPfire analysis engine that underlies the various structural

    analy sis and design software packages from Com puters and Structures, Inc. The

    graphi cal user in ter face and the design features are described in separate manu als

    for each program.

    It is im perative that you read this manual and understand the assumptions and pro-

    cedures used by these software packages be fore attempting to use the analysis fea-

    tures.

    Throughout this manual reference may be made to the program SAP2000, although

    it often ap plies equally to ETABS, SAFE, and CSiBridge. Not all features de-

    scribed will ac tu ally be available in ev ery level of each pro gram.

    Topics

    Each Chapter of this manual is divided into topics and subtopics. All Chap ters be-

    gin with a list of topics covered. These are divided into two groups:

    • Basic topics — recommended reading for all users

    Structural Analysis and Design 3

    Chapter I Introduction

  • 8/20/2019 Computer and Structures SAP

    26/523

    • Advanced topics — for users with specialized needs, and for all users as they

     become more familiar with the program.

    Following the list of topics is an Overview which provides a summary of the Chap-

    ter. Reading the Overview for every Chapter will acquaint you with the full scope

    of the program.

    Typographical Conventions

    Throughout this manual the following ty pographic conventions are used.

    Bold for Definitions

    Bold roman type (e.g., example) is used whenever a new term or concept is de-

    fined. For exam ple:

    The global coordinate system is a three-dimensional, right-handed, rectangu-

    lar coordinate system.

    This sentence begins the definition of the global coordinate system.

    Bold for Variable Data

    Bold roman type (e.g., example) is used to represent variable data items for which

    you must specify values when defining a structural model and its analysis. For ex-

    am ple:

    The Frame element coordinate angle, ang, is used to define element orienta-

    tions that are different from the default orientation.

    Thus you will need to sup ply a numeric value for the variable ang if it is different

    from its default value of zero.

    Italics for Mathematical Variables Normal italic type (e.g., exam ple) is used for scalar mathematical variables, and

     bold italic type (e.g., exam ple) is used for vectors and matrices. If a vari able data

    item is used in an equation, bold roman type is used as discussed above. For exam-

     ple:

     0  da < db   L

    4  Typographical Conventions

    CSI Analysis Reference Manual

  • 8/20/2019 Computer and Structures SAP

    27/523

    Here da and db are variables that you specify, and L is a length cal culated by the

     program.

    Italics for Emphasis

     Normal italic type (e.g., exam ple) is used to em phasize an im portant point, or for the title of a book, manual, or journal.

    Capitalized Names

    Capi talized names (e.g., Exam ple) are used for cer tain parts of the model and its

    analysis which have special meaning to SAP2000. Some exam ples:

    Frame element

    Dia phragm Constraint

    Frame Section

    Load Pat tern

    Common en ti ties, such as “joint” or “element” are not capi talized.

    Bibliographic References

    References are indicated throughout this manual by giving the name of theauthor(s) and the date of publication, using parentheses. For exam ple:

    See Wilson and Tetsuji (1983).

    It has been demonstrated (Wilson, Yuan, and Dickens, 1982) that …

    All biblio graphic references are listed in al pha beti cal or der in Chapter “Refer-

    ences” (page 495).

    Bibliographic References 5

    Chapter I Introduction

  • 8/20/2019 Computer and Structures SAP

    28/5236  Bibliographic References

    CSI Analysis Reference Manual

  • 8/20/2019 Computer and Structures SAP

    29/523

    C h a p t e r  II

    Objects and Elements

    The physical structural mem bers in a structural model are represented by ob jects.

    Using the graphical user in terface, you “draw” the geometry of an ob ject, then “as-

    sign” properties and loads to the ob ject to com pletely define the model of the physi-

    cal mem ber. For analy sis pur poses, SAP2000 converts each ob ject into one or more

    elements.

    Basic Topics for All Users

    • Objects

    • Ob jects and Elements

    • Groups

    ObjectsThe following ob ject types are available, listed in order of geometrical dimension:

    • Point ob jects, of two types:

     –  Joint ob jects: These are automati cally created at the corners or ends of all

    other types of ob jects below, and they can be ex plicitly added to represent

    sup ports or to capture other localized behavior.

    Objects 7

  • 8/20/2019 Computer and Structures SAP

    30/523

     –  Grounded (one-joint) link/support ob jects: Used to model special sup-

     port behavior such as isolators, dampers, gaps, multi-linear springs, and

    more.

    • Line ob jects, of four types

     – 

    Frame ob jects: Used to model beams, columns, braces, and trusses –  Cable ob jects: Used to model slender ca bles under self weight and tension

     –  Tendon ob jects: Used to prestressing tendons within other ob jects

     –  Connecting (two-joint) link/support ob jects: Used to model special

    mem ber behavior such as isolators, dampers, gaps, multi-linear springs,

    and more. Unlike frame, ca ble, and tendon ob jects, connecting link ob jects

    can have zero length.

    • Area ob jects: Shell elements (plate, mem brane, and full-shell) used to model

    walls, floors, and other thin-walled mem bers; as well as two-dimensional sol-ids (plane-stress, plane-strain, and axisymmetric solids).

    • Solid ob jects: Used to model three-dimensional solids.

    As a general rule, the geometry of the ob ject should correspond to that of the physi-

    cal mem ber. This sim plifies the visualization of the model and helps with the de-

    sign process.

    Ob jects and Elements

    If you have ex perience using traditional finite element programs, including earlier 

    versions of SAP2000, ETABS, and SAFE, you are proba bly used to meshing phys-

    ical models into smaller finite elements for analysis pur poses. Ob ject-based model-

    ing largely eliminates the need for doing this.

    For users who are new to finite-element modeling, the ob ject-based concept should

    seem perfectly natural.

    When you run an analy sis, SAP2000 automatically converts your ob ject-based

    model into an element-based model that is used for analysis. This element-basedmodel is called the analy sis model, and it con sists of tradi tional finite elements and

     joints (nodes). Results of the analysis are re ported back on the ob ject-based model.

    You have control over how the meshing is performed, such as the degree of refine-

    ment, and how to handle the connections between intersecting ob jects. You also

    have the option to manually mesh the model, resulting in a one-to-one correspon-

    dence between ob jects and elements.

    CSI Analysis Reference Manual

    8  Ob jects and Elements

  • 8/20/2019 Computer and Structures SAP

    31/523

    In this manual, the term “element” will be used more often than “ob ject”, since

    what is described herein is the finite-element analy sis portion of the program that

    operates on the element-based analysis model. However, it should be clear that the

     prop erties de scribed here for elements are ac tually assigned in the interface to the

    ob jects, and the conversion to analysis elements is automatic.

    One specific case to be aware of is that both one-joint (grounded) link/sup port ob-

     jects and two-joint (connecting) link/support ob jects are always converted into

    two-joint link/support elements. For the two-joint ob jects, the conversion to ele-

    ments is direct. For the one-joint ob jects, a new joint is created at the same location

    and is fully restrained. The generated two-joint link/support element is of zero

    length, with its original joint connected to the structure and the new joint connected

    to ground by restraints.

    GroupsA group is a named collection of ob jects that you define. For each group, you must

     provide a unique name, then select the ob jects that are to be part of the group. You

    can include ob jects of any type or types in a group. Each ob ject may be part of one

    of more groups. All ob jects are always part of the built-in group called “ALL”.

    Groups are used for many pur poses in the graphical user interface, including selec-

    tion, design optimization, defining section cuts, controlling out put, and more. In

    this manual, we are primarily interested in the use of groups for defining staged

    construction. See Topic “Staged Construction” (page 79) in Chapter “Nonlinear Static Analysis” for more information.

    Groups 9

    Chapter II Objects and Elements

  • 8/20/2019 Computer and Structures SAP

    32/52310  Groups

    CSI Analysis Reference Manual

  • 8/20/2019 Computer and Structures SAP

    33/523

    C h a p t e r  III

    Coordinate Systems

    Each struc ture may use many dif ferent coordinate systems to de scribe the location

    of points and the directions of loads, dis placement, internal forces, and stresses.

    Understanding these different coordinate systems is crucial to being able to prop-

    erly define the model and inter pret the results.

    Basic Topics for All Users

    • Overview

    • Global Coordinate System

    • Upward and Horizontal Directions

    • Defining Coordinate Systems

    • Local Coordinate Systems

     Advanced Topics

    • Alternate Coordinate Systems

    • Cylindrical and Spherical Coordinates

      11

  • 8/20/2019 Computer and Structures SAP

    34/523

    Overview 

    Coordinate systems are used to locate different parts of the structural model and to

    define the directions of loads, dis placements, internal forces, and stresses.

    All coordinate systems in the model are defined with respect to a single global coor-dinate system. Each part of the model (joint, element, or constraint) has its own lo-

    cal coordinate system. In addition, you may create alternate coordinate systems that

    are used to define locations and directions.

    All coordinate systems are three-dimensional, right-handed, rectangular (Carte-

    sian) systems. Vector cross products are used to define the local and alternate coor-

    dinate systems with respect to the global system.

    SAP2000 always assumes that Z is the vertical axis, with +Z being upward. The up-

    ward direction is used to help define local coordinate systems, although local coor-dinate systems themselves do not have an upward direc tion.

    The locations of points in a coordinate system may be specified using rectangular 

    or cylindrical coordinates. Likewise, directions in a coordinate system may be

    specified using rectangular, cylindrical, or spherical coordinate directions at a

     point.

    Global Coordinate System

    The global coordinate system is a three-dimensional, right-handed, rectangular 

    coordinate system. The three axes, denoted X, Y, and Z, are mutually per pendicular

    and satisfy the right-hand rule.

    Locations in the global coordinate system can be specified using the variables x, y,

    and z. A vector in the global coordinate system can be specified by giving the loca-

    tions of two points, a pair of angles, or by specifying a coordinate direction. Coor-

    dinate directions are indicated using the values X, Y, and Z. For exam ple, +Xdefines a vector parallel to and directed along the positive X axis. The sign is re-

    quired.

    All other coordinate systems in the model are ultimately de fined with respect to the

    global coordinate system, either directly or indirectly. Likewise, all joint coordi-

    nates are ultimately converted to global X, Y, and Z coordinates, regardless of how

    they were speci fied.

    12  Overview 

    CSI Analysis Reference Manual

  • 8/20/2019 Computer and Structures SAP

    35/523

    Upward and Horizontal Directions

    SAP2000 always assumes that Z is the vertical axis, with +Z being upward. Local

    coordinate systems for joints, elements, and ground-acceleration loading are de-

    fined with respect to this upward direction. Self-weight loading always acts down-

    ward, in the –Z direction.

    The X-Y plane is horizontal. The primary horizontal direction is +X. Angles in the

    horizontal plane are measured from the positive half of the X axis, with positive an-

    gles ap pearing counterclockwise when you are looking down at the X-Y plane.

    If you prefer to work with a different upward direction, you can define an alternate

    coordinate system for that pur pose.

    Defining Coordinate SystemsEach coordinate system to be defined must have an origin and a set of three,

    mutually- perpendicular axes that satisfy the right-hand rule.

    The origin is defined by sim ply specifying three coordinates in the global coordi-

    nate system.

    The axes are de fined as vectors using the concepts of vector alge bra. A fundamental

    knowledge of the vec tor cross product operation is very helpful in clearly under-

    standing how co ordinate system axes are defined.

     Vector Cross Product

    A vector may be defined by two points. It has length, direction, and location in

    space. For the pur poses of defining coordinate axes, only the direction is im portant.

    Hence any two vectors that are parallel and have the same sense (i.e., pointing the

    same way) may be consid ered to be the same vector.

    Any two vectors, V i  and V 

     j , that are not par allel to each other define a plane that is

     parallel to them both. The location of this plane is not im portant here, only its orien-tation. The cross product of V 

    i  and V 

     j  defines a third vector, V 

    k , that is per pendicular

    to them both, and hence normal to the plane. The cross product is written as:

    V k  = V i   V  j 

    Upward and Horizontal Directions 13

    Chapter III Coordinate Systems

  • 8/20/2019 Computer and Structures SAP

    36/523

    The length of V k  is not im portant here. The side of the V 

    i -V 

     j  plane to which V 

    k  points

    is determined by the right-hand rule: The vector V k  points toward you if the acute

    angle (less than 180°) from V i  to V 

     j  ap pears counterclockwise.

    Thus the sign of the cross product de pends upon the order of the operands:

    V  j   V i  = – V i   V  j 

    Defining the Three Axes Using Two Vectors

    A right-handed coordinate system R-S-T can be represented by the three mutually-

      perpendicular vectors V r , V 

     s, and V 

    t , respectively, that satisfy the relationship:

    V t  = V r   V  s

    This coordinate system can be defined by specifying two non- parallel vectors:

    • An axis ref erence vec tor, V a, that is parallel to axis R 

    • A plane ref erence vec tor, V  p, that is parallel to plane R-S, and points toward the

     positive-S side of the R axis

    The axes are then de fined as:

    V r  = V a

    V t  = V r   V  p

    V  s = V t   V r 

     Note that V  p can be any convenient vector parallel to the R-S plane; it does not have

    to be parallel to the S axis. This is illustrated in Figure 1 (page 15).

    Local Coordinate Systems

    Each part (joint, element, or constraint) of the structural model has its own local co-

    ordinate system used to define the properties, loads, and response for that part. Theaxes of the local coordinate systems are denoted 1, 2, and 3. In general, the local co-

    ordinate systems may vary from joint to joint, element to element, and constraint to

    constraint.

    There is no preferred upward direction for a local coordinate system. However, the

    upward +Z direction is used to define the default joint and element local coordinate

    systems with respect to the global or any alter nate coor di nate system.

    14  Local Coordinate Systems

    CSI Analysis Reference Manual

  • 8/20/2019 Computer and Structures SAP

    37/523

    The joint local 1-2-3 coordinate system is normally the same as the global X-Y-Z

    coordinate system. However, you may define any ar bitrary orientation for a joint

    local coordinate system by specifying two reference vectors and/or three angles of 

    rotation.

    For the Frame, Area (Shell, Plane, and Asolid), and Link/Sup port elements, one of 

    the element lo cal axes is deter mined by the geometry of the individual ele ment.

    You may define the orientation of the remaining two axes by specify ing a single

    reference vector and/or a single angle of ro tation. The exception to this is one-joint

    or zero-length Link/Sup port elements, which require that you first specify the lo-

    cal-1 (ax ial) axis.

    The Solid element local 1-2-3 coordinate system is normally the same as the global

    X-Y-Z coordinate system. However, you may define any ar bitrary orientation for a

    solid local coordinate system by specifying two reference vectors and/or three an-

    gles of rotation.

    The local coordinate system for a Body, Dia phragm, Plate, Beam, or Rod Con-

    straint is normally determined automatically from the geometry or mass distri bu-

    tion of the constraint. Optionally, you may specify one local axis for any Dia-

    Local Coordinate Systems 15

    Chapter III Coordinate Systems

    V   is parallel to R axisaV   is parallel to R-S plane p

    V  = V r aV  = V  x V t r p V   = V  x V s t r 

    Y

    Z

    Global

    Plane R-S

    V r 

    V t 

    V s

    V a

    V  p

    Cube is shown for visualization purposes

    Figure 1

     Determining an R-S-T Coordinate System from Reference Vectors V a and V  p

  • 8/20/2019 Computer and Structures SAP

    38/523

     phragm, Plate, Beam, or Rod Constraint (but not for the Body Constraint); the re-

    maining two axes are determined auto matically.

    The local co or di nate system for an Equal Constraint may be ar bi trarily speci fied;

     by default it is the global coordinate system. The Local Constraint does not have its

    own local coordinate system.

    For more information:

    • See Topic “Local Coordinate System” (page 24) in Chapter “Joints and De-

    grees of Freedom.”

    • See Topic “Local Coordinate System” (page 92) in Chap ter “The Frame Ele-

    ment.”

    • See Topic “Local Coordinate System” (page 164) in Chapter “The Shell Ele-

    ment.”

    • See Topic “Local Coordinate System” (page 197) in Chapter “The Plane Ele-

    ment.”

    • See Topic “Local Coordinate System” (page 207) in Chapter “The Asolid Ele-

    ment.”

    • See Topic “Local Coordinate System” (page 220) in Chapter “The Solid Ele-

    ment.”

    • See Topic “Local Coordinate System” (page 233) in Chapter “The Link/Sup-

     port Element—Basic.”

    • See Chapter “Constraints and Welds (page 49).”

     Alternate Coordinate Systems

    You may define alternate coordinate systems that can be used for locating the

     joints; for defining local coordinate systems for joints, elements, and constraints;

    and as a reference for defining other properties and loads. The axes of the alternate

    coordinate systems are denoted X, Y, and Z.

    The global co or di nate system and all alter nate systems are called fixed coordinate

    systems, since they ap ply to the whole structural model, not just to individual parts

    as do the local coor di nate systems. Each fixed coor di nate system may be used in

    rectangular, cylindrical or spherical form.

    Asso ci ated with each fixed coor dinate system is a grid system used to locate ob jects

    in the graphical user interface. Grids have no meaning in the analy sis model.

    16  Alternate Coordinate Systems

    CSI Analysis Reference Manual

  • 8/20/2019 Computer and Structures SAP

    39/523

    Each alternate coordinate system is defined by specifying the location of the origin

    and the orientation of the axes with respect to the global coordinate system. You

    need:

    • The global X, Y, and Z coordinates of the new origin

    • The three angles (in degrees) used to rotate from the global coordinate systemto the new system

    Cylindrical and Spherical Coordinates

    The location of points in the global or an alternate coordinate system may be speci-

    fied using polar coordinates instead of rectangular X-Y-Z coordinates. Polar coor-

    dinates include cylindrical CR-CA-CZ coordinates and spherical SB-SA-SR coor-

    dinates. See Figure 2 (page 19) for the definition of the polar coordinate systems.

    Polar co ordinate systems are always defined with respect to a rectangular X-Y-Z

    system.

    The coordinates CR, CZ, and SR are lineal and are specified in length units. The co-

    or di nates CA, SB, and SA are angular and are speci fied in de grees.

    Locations are specified in cylindrical  coordinates using the variables cr, ca, and cz.

    These are related to the rectangular coordinates as:

    cr x y= +2 2

    cay

    x= tan

    -1

    cz z=

    Locations are specified in spherical  coordinates using the variables sb, sa, and sr.

    These are related to the rectangular coordinates as:

    sb

    x y

    z= tan

    +-12 2

    say

    x= tan

    -1

    sr x y z= + +2 2 2

    Cylindrical and Spherical Coordinates 17

    Chapter III Coordinate Systems

  • 8/20/2019 Computer and Structures SAP

    40/523

    A vector in a fixed coordinate system can be specified by giving the locations of 

    two points or by specifying a coordinate direction at a single point P . Coordinate

    directions are tangential to the coordinate curves at point P . A positive coordinate

    direction indicates the direction of increasing coordinate value at that point.

    Cylindrical coordinate directions are indicated using the values CR, CA, andCZ. Spherical coordinate directions are indicated using the values SB, SA, andSR. The sign is required. See Figure 2 (page 19).

    The cylindrical and spherical coordinate directions are not constant but vary with

    angular position. The coordinate directions do not change with the lineal coordi-

    nates. For exam ple, +SR defines a vector directed from the origin to point P .

     Note that the coordinates Z and CZ are identical, as are the corresponding coordi-

    nate directions. Similarly, the coordinates CA and SA and their corresponding co-

    ordinate directions are identical.

    18  Cylindrical and Spherical Coordinates

    CSI Analysis Reference Manual

  • 8/20/2019 Computer and Structures SAP

    41/523Cylindrical and Spherical Coordinates 19

    Chapter III Coordinate Systems

    CylindricalCoordinates

    SphericalCoordinates

    X

    Y

    Z, CZ

    ca

    cr 

    cz

    X

    Y

    Z

    sa

    sb

    sr 

    +CR

    +CA

    +CZ

    +SB

    +SA

    +SR

    Cubes are shown for visualization purposes

    Figure 2

    Cylindrical and Spherical Coordinates and Coordinate Directions

  • 8/20/2019 Computer and Structures SAP

    42/52320  Cylindrical and Spherical Coordinates

    CSI Analysis Reference Manual

  • 8/20/2019 Computer and Structures SAP

    43/523

    C h a p t e r  IV 

     Joints and Degrees of Freedom

    The joints play a fundamental role in the analysis of any structure. Joints are the

     points of connection between the elements, and they are the primary locations in

    the structure at which the dis placements are known or are to be determined. The

    dis placement com ponents (translations and rotations) at the joints are called the de-

    grees of freedom.

    This Chapter describes joint properties, degrees of freedom, loads, and out put. Ad-

    ditional information about joints and degrees of freedom is given in Chapter “Con-

    straints and Welds” (page 49).

    Basic Topics for All Users

    • Overview

    • Modeling Considerations

    • Local Coordinate System

    • Degrees of Freedom

    • Restraint Supports

    • Spring Sup ports

    • Joint Reactions

    • Base Reactions

      21

  • 8/20/2019 Computer and Structures SAP

    44/523

    • Masses

    • Force Load

    • Degree of Freedom Out put

    • Assem bled Joint Mass Out put

    • Dis placement Out put

    • Force Out put

     Advanced Topics

    • Advanced Local Coordinate System

    •  Nonlinear Sup ports

    • Distributed Supports

    • Ground Dis placement Load

    • Generalized Displacements

    • Element Joint Force Output

    Overview 

    Joints, also known as nodal points or nodes, are a fun da mental part of every struc-

    tural model. Joints perform a variety of functions:

    • All ele ments are connected to the struc ture (and hence to each other) at the joints

    • The structure is sup ported at the joints using Restraints and/or Springs

    • Rigid- body behavior and symmetry conditions can be specified using Con-

    straints that ap ply to the joints

    • Concentrated loads may be ap plied at the joints

    • Lumped (con centrated) masses and rotational inertia may be placed at the

     joints

    • All loads and masses ap plied to the elements are ac tu ally trans ferred to the

     joints

    • Joints are the primary locations in the structure at which the dis placements are

    known (the sup ports) or are to be determined

    All of these functions are discussed in this Chapter except for the Constraints,

    which are described in Chapter “Constraints and Welds” (page 49).

    22  Overview 

    CSI Analysis Reference Manual

  • 8/20/2019 Computer and Structures SAP

    45/523

    Joints in the analysis model correspond to point ob jects in the structural-ob ject

    model. Using the SAP2000, ETABS, SAFE, or CSiBridge graphical user interface,

     joints (points) are au to matically created at the ends of each Line ob ject and at the

    corners of each Area and Solid ob ject. Joints may also be defined inde pendently of 

    any ob ject.

    Automatic meshing of ob jects will create additional joints corresponding to any el-

    ements that are cre ated.

    Joints may themselves be considered as elements. Each joint may have its own lo-

    cal coordinate system for defining the degrees of freedom, restraints, joint proper-

    ties, and loads; and for inter preting joint out put. In most cases, however, the global

    X-Y-Z coordinate system is used as the local coordinate system for all joints in the

    model. Joints act inde pendently of each other unless connected by other elements.

    There are six dis placement degrees of free dom at every joint — three transla tions

    and three rotations. These dis placement com ponents are aligned along the local co-

    ordinate system of each joint.

    Joints may be loaded directly by concentrated loads or indirectly by ground dis-

     placements acting though Restraints, spring sup ports, or one-joint (grounded)

    Link/Sup port objects.

    Dis placements (translations and rotations) are produced at every joint. Reaction

    forces and moments acting at each sup ported joint are also produced.

    For more information, see Chapter “Constraints and Welds” (page 49).

    Modeling Considerations

    The location of the joints and elements is critical in determining the accuracy of the

    structural model. Some of the factors that you need to consider when defining the

    elements, and hence the joints, for the structure are:

    • The number of elements should be sufficient to describe the geometry of the

    structure. For straight lines and edges, one element is adequate. For curves andcurved surfaces, one element should be used for every arc of 15° or less.

    • Element boundaries, and hence joints, should be located at points, lines, and

    surfaces of discontinuity:

     –  Structural boundaries, e.g., corners and edges

     –  Changes in material properties

    Modeling Considerations 23

    Chapter IV Joints and Degrees of Freedom

  • 8/20/2019 Computer and Structures SAP

    46/523

     –  Changes in thickness and other geometric properties

     –  Sup port points (Restraints and Springs)

     –  Points of ap pli cation of concentrated loads, ex cept that Frame elements

    may have concentrated loads ap plied within their spans

    • In regions having large stress gradients, i.e., where the stresses are chang ingrapidly, an Area- or Solid-element mesh should be refined using small ele-

    ments and closely-spaced joints. This may require changing the mesh after one

    or more preliminary analyses.

    • More that one element should be used to model the length of any span for 

    which dy namic be havior is im portant. This is required because the mass is al-

    ways lumped at the joints, even if it is contributed by the elements.

    Local Coordinate SystemEach joint has its own joint local coordinate system used to define the degrees of 

    freedom, Restraints, properties, and loads at the joint; and for inter preting joint out-

     put. The axes of the joint local coordinate system are denoted 1, 2, and 3. By default

    these axes are identical to the global X, Y, and Z axes, respec tively. Both systems

    are right-handed coordinate systems.

    The default local coordinate system is adequate for most situations. However, for 

    certain modeling pur poses it may be useful to use different local coordinate sys-

    tems at some or all of the joints. This is described in the next topic.

    For more information:

    • See Topic “Upward and Horizontal Directions” (page 13) in Chapter “Coordi-

    nate Systems.”

    • See Topic “Advanced Local Coordinate System” (page 24) in this Chapter.

     Advanced Local Coordinate System

    By default, the joint local 1-2-3 coordinate system is identical to the global X-Y-Z

    coordinate system, as described in the previous topic. However, it may be neces-

    sary to use different local coordi nate sys tems at some or all joints in the following

    cases:

    • Skewed Restraints (sup ports) are present

    • Constraints are used to im pose rotational symmetry

    24  Local Coordinate System

    CSI Analysis Reference Manual

  • 8/20/2019 Computer and Structures SAP

    47/523

    • Constraints are used to im pose symmetry about a plane that is not parallel to