177
Computer and Robot Vision II Chapter 15 Motion and Surface Structure from Time Varying Image Sequences Presented by: 傅傅傅 & 傅傅傅 0917 533843 [email protected] 傅傅傅傅 : 傅傅傅 傅傅

Computer and Robot Vision II

  • Upload
    eagan

  • View
    43

  • Download
    4

Embed Size (px)

DESCRIPTION

Computer and Robot Vision II. Chapter 15 Motion and Surface Structure from Time Varying Image Sequences. Presented by: 傅楸善 & 王林農 0917 533843 [email protected] 指導教授 : 傅楸善 博士. 15.1 Introduction. - PowerPoint PPT Presentation

Citation preview

Page 1: Computer and Robot Vision II

Computer and Robot Vision II

Chapter 15Motion and Surface Structure from

Time Varying Image Sequences

Presented by: 傅楸善 & 王林農0917 533843

[email protected]指導教授 : 傅楸善 博士

Page 2: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.1 Introduction

Motion analysis involves estimating the relative motion of objects with respect to each other and the camera given two or more perspective projection images in a time sequence.

Page 3: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.1 Introduction (cont’)

Real-world applications:

industrial automation and inspection, robot assembly, autonomous vehicle navigation, biomedical engineering, remote sensing, general 3D-scene understanding

Page 4: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.1 Introduction (cont’)

object motion and surface structure recovery from: observed optic flow point correspondences

Page 5: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.2 The Fundamental Optic Flow Equation

(x, y, z): 3D point on moving rigid body (u, v): perspective projection on the image pla

ne f: camera constant (u, v): velocity of the point (u, v)

. .

Page 6: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.2 The Fundamental Optic Flow Equation (cont’)

take time derivatives of both sides

yields the fundamental optic flow equation:

y

x

z

f

v

u

yzzy

xzzx

z

f

v

u2

z

y

x

v

u

f

f

zv

u 0

0

1

.

.. .. .

.

.

.

.

.

Page 7: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.2 The Fundamental Optic Flow Equation (cont’)

general solution: (λ is a free variable)

f

v

u

v

u

f

z

z

y

x

0

.

.

.

.

.

Page 8: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.2.1 Translational Motion

Known: N-point optic flow field:

Unknown: corresponding unknown 3D points: all points moving with same but unknown velocity (x, y, z)

can be solved up to a multiplicative constant

Nnnnnn vuvu 1)},,,{(

. .

Nnnnn zyx 1)},,{(

. . .

Page 9: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.2.2 Focus of Expansion and Contraction

Known: 3D motion is translational one 2D projected point (u, v) has no motion:

thus translational motion is in a direction along the ray of sight

0vu. .

Page 10: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.2.2 Focus of Expansion and Contraction (cont’)

focus of expansion (FOE): if 3D point field moving toward camera

FOE: motion-field vectors radiate outward from that point

focus of contraction (FOC): if 3D point field moving away from camera

FOC: vectors radiate inward toward diametrically opposite point flow pattern of the motion field of a forward-moving observer

Page 11: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

Page 12: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.2.3 Moving Line Segment

Known: fixed distance between two unknown 3D points

translational motion with common velocity

(x, y, z) corresponding optic flow:

),,(),,,( 222111 zyxzyx

. . .

)()( 22221111 v,u,,vu,v,u,,vu

Page 13: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.2.3 Moving Line Segment (cont’)

Unknown: : two unknown 3D points

common velocity: (x, y, z)

),,(),,,( 222111 zyxzyx

. . .

Page 14: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.2.3 Moving Line Segment (cont’)

From the perspective projection equations:

From the optic flow equation:

Page 15: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.2.3 Moving Line Segment (cont’)

From the known length of the line segment:

The optic flow equation (15.9) permits us to obtain a least squares solution for z in terms of z1 and z2, from

Page 16: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.2.3 Moving Line Segment (cont’)

We obtain

Substituting this back into the equation, we can solve z2 in terms of z1:z2=kz1

Page 17: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.2.3 Moving Line Segment (cont’)

Substitute the relations for (x1, y1, z1) from equations into Eq.(15.10) to obtain

Hence:

Page 18: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.2.4 Optic Flow Acceleration Invariant

Since differentiating general solution in Sec 15.2 and s

olve for (x, y, z)

zf .

.. .. ..

f

v

u

f

zv

u

f

zv

u

f

z

z

y

x

0

2

0

..

..

..

..

..

.

.. .

.

Page 19: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

joke

Page 20: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.3 Rigid-Body Motion

Rigid-body motion: no relative motion of points w.r.t. (with respect to) one another

Rigid-body motion: points maintain fixed position relative to one another

Rigid-body motion: all points move with the body as a whole

Page 21: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.3 Rigid-Body Motion (cont’)

R(t): rotation matrix T(t): translation vector p(0): initial position of given point R(0)=I, T(0)=0 p(t): position of given point at time t

Page 22: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.3 Rigid-Body Motion (cont’)

Rigid-body motion in displacement vectors:

velocity vector: time derivative of its position:

)()0()()( tTptRtP

)()0()()( tTptRtP .. .

Page 23: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.3 Rigid-Body Motion (cont’)

Since

(a) translational-motion field under projection onto hemispherical surface only translational-component motion useful in determining scene structure

(b) rotational-motion field under projection onto hemispherical surface rotational-motion field provides no information about scene structure

)()()()()()()()(

)]()()[()0(11

1

tTtTtRtRtptRtRtp

tTtptRp

. . .

Page 24: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.3 Rigid-Body Motion (cont’)

Page 25: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.3 Rigid-Body Motion (cont’)

we can describe rigid-body motion in instantaneous velocity by

)()()()( tktpttp .

Page 26: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.3 Rigid-Body Motion (cont’)

: angular velocities in three axes : translational velocities in three axes from rigid-body-motion equation

zyx ,,

zyx kkk ,,

zyx

yxz

xzy

z

y

x

z

y

x

kxy

kzx

kyz

k

k

k

z

y

x

k

z

y

x

z

y

x

.

.

.

Page 27: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.3 Rigid-Body Motion (cont’)

and perspective projection equation

we can determine an expression for z:

f

v

u

f

z

z

y

x

.

zyx kuvf

zz )(

.

Page 28: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.3 Rigid-Body Motion (cont’)

after simplification

z

y

x

z

y

x

k

k

k

u

v

f

uv

f

uf

f

vf

f

uv

z

uz

u

z

fz

f

v

u

22

22

0

0

..

Page 29: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.3 Rigid-Body Motion (cont’)

image velocity: expressed as sum of translational field and rotational field

(x, y, z): 3D coordinate before rigid-body motion in displacement vectors

(x’, y’, z’): 3D coordinate after rigid-body motion in displacement vectors

: rotation angles in three axes : translation in three axes

),,( zyx ),,( zyx ttt

Page 30: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.3 Rigid-Body Motion (cont’)

Rigid-body motion in displacement vectors:

z

y

x

t

t

t

z

y

x

RRR

z

y

x

yxyxy

zxzyxzxzyxzy

zxzyxzxzyxzy

z

y

x

xyz

coscoscossinsin

sinsincossincoscoscossinsinsinsincos

sinsincossincossincoscossinsincoscos

)()()(

'

'

'

Page 31: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.3 Rigid-Body Motion (cont’)

motion in displacement vector and instantaneous velocity is different:

e.g. moon encircling earth instantaneous velocity: first order approximation of

displacement vector first order approximation: when small,

0sinsin,1cos,sin

Page 32: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.3 Rigid-Body Motion (cont’)

first order approximation: when time=1 thus x=(x’ - x)/1 first order approximation:

.

zzyyxxzzyyxx tktktk ,,,,,

zxy

yzx

xyz

z

y

x

xy

xz

yz

tyxz

txzy

tzyx

t

t

t

z

y

x

z

y

x

1

1

1

'

'

'

Page 33: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

joke

Page 34: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.4 Linear Algorithms for Motion and Surface Structure from Optic Flow

15.4.1 The Planar Patch Case : arbitrary object point on planar

patch at time t : central projective coordinates of p(t) o

nto image plane z= f

)]'(),(),([)( tztytxtp

)](),([ tvtu

]'),(),([)(

)(

)(

)()(

)(

)()(

ftvtuf

tztp

tz

tyftv

tz

txftu

Page 35: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.4.1 The Planar Patch Case

: instantaneous velocity of moving image point

: optic flow image point : instantaneous rotational angular

velocity : instantaneous translational velocity

)](),([ tvtu)](),([ tvtu

. .

)](),(),(),([ tvtutvtu . .

)(t

)(tk

Page 36: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.4.1 The Planar Patch Case (cont’)

unit vector n(t): orthogonal to moving planar patch rigid planar patch motion represented by rigid-moti

on constraint:

1)()'(

)()()()(

tptn

tktptwtp.

Page 37: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.4.1 The Planar Patch Case (cont’)

from above two equations:

Let

Rigid-motion constraint could be written as

pknpknpp

pknpp

)'('

0

0

0

' ,,

'

12

13

23

321

Page 38: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.4.1 The Planar Patch Case (cont’)

denote the 3 x 3 matrix by W and its three row vectors by

W: called planar motion parameter matrix since skew symmetric

'kn',',' 321

''' nkknWW

Page 39: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.4.1 The Planar Patch Case (cont’)

above equation can be written as

from perspective projection equations:

taking time derivatives of these equations we have

vzzv

uzzu

fy

x

v

u

f

z

y

x

z

y

x

W

z

y

x

1..

..

.

.

.

.

.

Page 40: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.4.1 The Planar Patch Case (cont’)

substitute equations into above equations:

from third row

substitute z to obtain optical flow-planar motion equation

v

u

f

v

u

v

u

f

f

v

u

f

zz

f

v

u

z

fz

vzzv

uzzu

32

1

3

3

2

1

'1

'

'

'

'

'

'

. .

. ..

.

.

.

.

Page 41: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.4.1 The Planar Patch Case (cont’)

we have 2N linear equations: n=1,…,N:

optic flow-planar motion recovery: first solve W then find

n

nn

n

n

n

v

u

f

v

u

v

u

f 32

1 '1

'

'

.

.

nk,,

Page 42: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.4.2 General Case Optic Flow-Motion Equation

1. set up optic flow-motion equation not involving depth information

2. solve it by using linear least-squares technique

Page 43: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.4.3 A Linear Algorithm for Solving Optic FlowMotion Equations

Page 44: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.5.4 Mode of Motion, Direction of Translation, and Surface Structure

mode of motion: whether translation k=0 or not direction of translation: direction of k surface structure: relative depth when k 0

Page 45: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.4.5 Linear Optic Flow-Motion Algorithm and Simulation Results

motion and shape recovery algorithms should answer three questions:

minimum number of points to compute motion and shape

what set of optic flow points violate rank assumption e.g. collinearity…

What’s the accuracy of estimated motion from noisy optic flow?

Page 46: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

joke

Page 47: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.5 The Two View-Linear Motion Algorithm

Page 48: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.5.1 Planar Patch Motion Recovery from Two Perspective Views: A Brief Review

Two View-Planar Motion Equation imaging geometry for two view-planar motion rigid planar patch in motion in half-space z< 0

Page 49: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

Page 50: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.5.1 Planar Patch Motion Recovery from Two Perspective Views: A Brief Review (cont’)

: arbitrary object point before motion : same object point after motion : central projective coordinates of

f : camera constant

),(),,(

)',,(

)',,(

2211

2222

1111

vuvu

zyxp

zyxp

21, pp

2

22

2

22

1

11

1

11

,

,

zyfvz

xfu

zyfvz

xfu

Page 51: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.5.1 Planar Patch Motion Recovery from Two Perspective Views: A Brief Review (cont’)

R0: 3 X 3 rotational matrix, R0’R0=I,|R0|=1

t0: 3 X 1 translational vector

n0: 3 X 1 normal vector

Page 52: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.5.1 Planar Patch Motion Recovery from Two Perspective Views: A Brief Review (cont’)

Rigid-body-motion equation relates p1 to p2 as follows:

planarity constrains p1 by

combining two equations produces planar rigid-body-motion-equation

10002

10

0102

)'(

1'

pntRp

pn

tpRp

Page 53: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.5.1 Planar Patch Motion Recovery from Two Perspective Views: A Brief Review (cont’)

Projecting the planar rigid-body motion onto the image plane z = f produces

Let the planar rigid –motion parameter matrix be defined by

Where bi, i=1,2,3, are three row vectors of B.

Page 54: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.5.1 Planar Patch Motion Recovery from Two Perspective Views: A Brief Review (cont’)

Then above equation could be written as

Page 55: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.5.1 Planar Patch Motion Recovery from Two Perspective Views: A Brief Review (cont’)

From above we derive the two view-planar motion equation

With the natural constraint

Page 56: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.5.1 Planar Patch Motion Recovery from Two Perspective Views: A Brief Review (cont’)

Now the planar motion recovery problem involves first solving the planar rigid-motion parameter matrix B and then estimating 000 and,, rtR

Page 57: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.5.2 General Curved Patch Motion Recovery from Two Perspective Views A Simplified Linear Algorithm

discard planar patch assumption, consider general curved patch

Page 58: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.5.3 Determining Translational Orientation

Page 59: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.5.4 Determining Mode of Motion and Relative Depths

Page 60: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.5.5 A Simplified Two View-Motion Linear Algorithm

Page 61: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.5.6 Discussion and Summary

when no noise appears: algorithm extremely accurate

when small noise appears: it works well except mode of motion incorrect

Page 62: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.6 Linear Algorithm for Motion and Structure from Three Orthographic Views

Ullman (1979) showed that for the orthographic case four-point correspondences over three views are sufficient to determine the motion and structure of the four-point rigid configuration

Page 63: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

Shimon Ullman, The Interpretation of Visual Motion

The MIT Press, Cambridge MA. 1979

Page 64: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.6 Linear Algorithm for Motion and Structure from Three Orthographic Views

to infer depth information: translation needed in perspective projection

to infer depth information: rotation useless in perspective projection

to infer depth information: rotation needed in orthographic projection

to infer depth information translation useless in orthographic projection

Page 65: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

Page 66: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.6.1 Problem Formulation

image plane stationary three orthographic views at time

(x, y, z): object-space coordinates of point P at t1

(x’, y’, z’): object-space coordinates of point P at t2

(x”, y”, z”): object-space coordinates of point P at t3

(u, v): image-space coordinates of P at t1

(u’, v’): image-space coordinates of P at t2

(u”, v”): image-space coordinates of P at t3

321 ,, ttt

Page 67: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.6.1 Problem Formulation (cont’)

: rotation matrix : translation vector

(x’, y’, z’)’ = R(x’, y’, z’)+Tr

(x”, y”, z”)” = S(x”, y”, z”)+Ts

1313

3333

)(,)(

)(,)(

sisrir

ijij

sTtT

sSrR

Page 68: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.6.1 Problem Formulation (cont’)

Known: four image-point correspondences

Unkown:

4,3,2,1),,,(

),(),,(

4,3,2,1),","()','(),(

izyx

TSTR

iuuuuuu

iii

sr

iiiiii

Page 69: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.6.1 Problem Formulation (cont’)

note that with orthographic projections

therefore it is obvious that tr3, ts3 can never be determined

we are trying to determine:

)","()","(

)','()','(

),(),(

yxvu

yxvu

yxvu

4,3,2,,2,1,,,, 1 izzittSR isiri

Page 70: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.6.2 Determining ),,,(),,,,(,, 32312313323123133333 ssssrrrrsr

Page 71: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.6.3 Solving a Unique Orthonormal Matrix R

Page 72: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.6.4 Linear Algorithm to Uniquely Solve R, s, a3

Page 73: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.6.5 Summary

Given two orthographic views, one cannot finitely determine the motion and structure of a rigid body, no matter how many point correspondences are used, as shown by Huang.

Page 74: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

Joke

Page 75: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.7 Developing a Highly Robust Estimator for General Regression

Page 76: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.7.1 Inability of the Classical Robust M-Estimator to Render High Robustness

Classical robust estimator, such as M-, L-, or R-estimator:

1. optimal or nearly optimal at assumed noise distribution

2. relatively small performance degradation with small number of outliers

3. larger deviations from assumed distribution do not cause catastrophe

MF-estimator with new property much stronger than property 3

relatively small performance degradation with larger deviations from assumed distribution

Page 77: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.7.2 Partially Modeling Log Likelihood Function by Using Heuristics

MF-estimator: robust regression more appropriate model-fitting

Page 78: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.7.3 Discussion

M-, L-, R and MF-estimator: all residual based

Page 79: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.7.4 MF-Estimator

MF-estimator: combine Bayes statistical decision rule with heuristics

Page 80: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.8 Optic Flow-Instantaneous Rigid-Motion Segmentation and Estimation

formulate optic flow-single rigid-motion estimation into general regression

Page 81: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.8.1 Single Rigid Motion

P(t): position vector of an object point at the time t

[X(t), Y(t)]: central projective coordinate of P(t)

)]'(),(),([)( tztytxtp

Page 82: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.8.1 Single Rigid Motion (cont’)

]'),(),([)(

)(

)(

)()(

)(

)()(

ftYtXf

tztp

tz

tyftY

tz

txftX

Page 83: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.8.1 Single Rigid Motion (cont’)

: noisy optic flow image point Instantaneous representation of the rigid motion is

described by

Instantaneous rotational angular velocity of rigid motion:

Instantaneous translational angular velocity of rigid motion:

)]'(),(),([)(

)]'(),(),([)(

)()()()(

)]}(),([)],(),({[

321

321

tktktktk

tttt

tktpttp

tvtutYtX

Page 84: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.8.1 Single Rigid Motion (cont’)

Differentiating above equation

where for simplicity the time variable t has been omitted

)'0,,()',,( vuf

zfYX

f

zp

Page 85: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.8.1 Single Rigid Motion (cont’)

Combine above two equations:

)'0,,()',,()',,( vuf

zfYX

f

zkfYX

f

z

Page 86: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.8.2 Multiple Rigid Motions

We turn the optic flow-multiple rigid –motion segmentation and estimation problem into a number of successive optic flow-single rigid-motion estimation problems.

Page 87: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

joke

Page 88: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.9 Experimental Protocol

Simulate simplest location estimation Simulate Optic flow-rigid-motion

segmentation and estimation

Page 89: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.9 Experimental Protocol (cont’)

Page 90: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.9 Experimental Protocol (cont’)

Page 91: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.9 Experimental Protocol (cont’)

Page 92: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.10 Motion and Surface Structure from Line Correspondences

Discussion concerns only the general rigid motion of straight-line structure

Page 93: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.10.1 Problem Formulation

Cartesian reference system-central projection

Page 94: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.10.1 Problem Formulation (cont’)

Page 95: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.10.1 Problem Formulation (cont’)

l: line in 3D space L: projection of the line on image plane z = f z = f : image frame : known plane line L is in; projective plane of l : set of lines in 3D space : lines moved by rigid motion (R’ , T’)’ at time t’ : lines moved by rigid motion (R” , T”)” at time t”

},...,{

},...,{

},...,{

""1

''1

1

k

k

k

ll

ll

ll

Page 96: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.10.1 Problem Formulation (cont’)

: projections of lines

; respective projective planes

}"{}{}{

}{}{}{

k1k1k1

k1k1k1

",...,,',...,',,...,

L",...,L",L',...,L',L,...,L

Page 97: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.10.1 Problem Formulation (cont’)

Known: K triples of line correspondences in three views

Unkown: rotations and translations: 3D lines

kiLLL iii ,...,1,"'

",',",' TTRR

Kili ,...,1,

Page 98: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.10.2 Solving Rotation Matrices R’, R” and Translations T’,R”

: the normals of the ith projective planes

Then

",',

",',

iii

iii nnn

0)""(

0)''(

0

"

'

TpRpn

TpRpn

pn

ti

ti

ti

Page 99: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.10.2 Solving Rotation Matrices R’, R” and Translations T’,R”

Above two equations define a unique three-dimensional line solution if and only if

2''

Rn

nRank

ti

ti

Page 100: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.10.3 Solving Three-Dimensional Line Structure

Once rotation martrices R’, R” and translations T’, T” are solved, each three-dimensional line li can be determined

Page 101: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.11 Multiple Rigid Motions from Two Perspective Views

15.11.1 Problem Statement imaging geometry for two-view-motion

Page 102: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

Page 103: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.11.1 Problem Statement

How many good point correspondences are needed in order to apply the nonlinear least-squares estimator?

Page 104: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.11.2 Simulated Experiments

Page 105: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.11.2 Simulated Experiments (cont’)

Page 106: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.11.2 Simulated Experiments (cont’)

Page 107: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.12 Rigid Motion from Three Orthographic Views

Page 108: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.12.1 Problem Formulation and Algorithm

same as Sec. 15.6, instead of linear algorithms, formulate model-fitting problem

Page 109: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.12.2 Simulated Experiments

Page 110: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.12.2 Simulated Experiments (cont’)

Page 111: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.12.2 Simulated Experiments (cont’)

Page 112: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.12.3 Further Research on the MF-Estimator

two problems to be solved for MF-estimator to be practically useful:

distance problem requirement for a good initial approximation

Page 113: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

difficulty of motion and shape recovery: ambiguity of displacement field

Fuh. Ph.D. Thesis, Fig 4.1

Page 114: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

Page 115: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.13 Literature Review

15.13.1 Inferring Motion and Surface Structure

Page 116: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.13.1 Inferring Motion and Surface Structure

classifications for methods of inferring 3D motion and shape use of individual sets of feature points use of local optic flow information about a single p

oint use of the entire optic flow field

Page 117: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.13.1 Inferring Motion and Surface Structure

Despite all the results obtained over the years, almost none of these inference techniques have been successfully applied to feature-point correspondences calculated from real imagery

Page 118: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

Joke

Page 119: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.13.2 Computing Optic Flow or Image-Point Correspondences

problem source contains abundant information occlusion boundaries specular points near a focus of expansion noise and digitization effects in image formation

Page 120: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.13.2 Computing Optic Flow or Image-Point Correspondences (cont’)

motion parallax: apparent relative motion between objects and observer

points in observer’s direction of translation remain relatively unchanged information available to a moving observer

Page 121: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

Page 122: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.13.2 Computing Optic Flow or Image-Point Correspondences (cont’)

impart time dimension to image data spatiotemporal image data block

Page 123: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

Page 124: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.13.2 Computing Optic Flow or Image-Point Correspondences (cont’)

motion field: assignment of vectors to image points representing motion

angular velocity of fixed scene: inversely proportional to distance pilot in straight-ahead level flight on an overcast day

Page 125: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

Page 126: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

Page 127: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.13.2 Computing Optic Flow or Image-Point Correspondences (cont’)

motion field of pilot looking straight ahead in motion direction

zero image velocity: at approach point and at infinity (along horizon)

Page 128: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

Page 129: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.13.2 Computing Optic Flow or Image-Point Correspondences (cont’)

motion field of pilot looking to the right in level flight

focus of expansion here: at infinity to the left focus of contraction here: at infinity to the righ

t of the figure

Page 130: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

Page 131: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

15.13.2 Computing Optic Flow or Image-Point Correspondences (cont’)

spatiotemporal image data acquired by a camera,- caption -

straight streaks at block top due to translating parallel to image plane

Page 132: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

Page 133: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

joke

Page 134: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

B.K.P. Horn, Robot Vision, The MIT Press, Cambridge, MA, 1986

Chapter 12 Motion Field & Optical Flow optic flow: apparent motion of brightness patt

erns during relative motion

Page 135: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

12.1 Motion Field

motion field: assigns velocity vector to each point in the image

Po: some point on the surface of an object

Pi: corresponding point in the image

vo: object point velocity relative to camera

vi: motion in corresponding image point

Page 136: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

12.1 Motion Field (cont’)

ri: distance between perspectivity center and image point

ro: distance between perspectivity center and object point

f’: camera constant z: depth axis, optic axis object point displacement causes correspondi

ng image point displacement

Page 137: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

12.1 Motion Field (cont’)

Page 138: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

12.1 Motion Field (cont’)

Velocities:

where ro and ri are related by

Page 139: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

12.1 Motion Field (cont’)

differentiation of this perspective projection equation yields

Page 140: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

joke

Page 141: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

12.2 Optical Flow

optical flow need not always correspond to the motion field

(a) perfectly uniform sphere rotating under constant illumination:

no optical flow, yet nonzero motion field (b) fixed sphere illuminated by moving light

source: nonzero optical flow, yet zero motion field

Page 142: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

Page 143: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

12.2 Optical Flow (cont’)

not easy to decide which P’ on contour C’ corresponds to P on C

Page 144: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

Page 145: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

12.2 Optical Flow (cont’)

optical flow: not uniquely determined by local information in changing

irradiance at time t at image point (x, y)

components of optical flow vector

Page 146: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

12.2 Optical Flow (cont’)

assumption: irradiance the same at time

fact: motion field continuous almost everywhere

Page 147: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

12.2 Optical Flow (cont’)

expand above equation in Taylor series

e: second- and higher-order terms in cancelling E( x, y, t), dividing through by

Page 148: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

12.2 Optical Flow (cont’)

which is actually just the expansion of the equation

abbreviations:

Page 149: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

12.2 Optical Flow (cont’)

we obtain optical flow constraint equation:

flow velocity (u, v): lies along straight line perpendicular to intensity gradient

Page 150: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

Page 151: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

12.2 Optical Flow (cont’)

rewrite constraint equation:

aperture problem: cannot determine optical flow along isobrightness contour

Page 152: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

12.3 Smoothness of the Optical Flow

motion field: usually varies smoothly in most parts of image

try to minimize a measure of departure from smoothness

Page 153: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

12.3 Smoothness of the Optical Flow (cont’)

error in optical flow constraint equation should be small

overall, to minimize

Page 154: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

12.3 Smoothness of the Optical Flow (cont’)

large if brightness measurements are accurate

small if brightness measurements are noisy

Page 155: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

12.4 Filling in Optical Flow Information

regions of uniform brightness: optical flow velocity cannot be found locally

brightness corners: reliable information is available

Page 156: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

12.5 Boundary Conditions

Well-posed problem: solution exists and is unique

partial differential equation: infinite number of solution unless with boundary

Page 157: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

joke

Page 158: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

12.6 The Discrete Case

first partial derivatives of u, v: can be estimated using difference

Page 159: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

Page 160: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

12.6 The Discrete Case (cont’)

measure of departure from smoothness:

error in optical flow constraint equation:

to seek set of values that minimize

Page 161: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

12.6 The Discrete Case (cont’)

dieffrentiating e with respect to

Page 162: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

12.6 The Discrete Case (cont’)

where are local average of u, v (9 neighbors? )

extremum occurs where the above derivatives of e are zero:

Page 163: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

12.6 The Discrete Case (cont’)

determinant of 2x2 coefficient matrix:

so that

Page 164: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

12.6 The Discrete Case (cont’)

suggests iterative scheme such as

new value of (u, v): average of surrounding values minus adjustment

Page 165: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

Page 166: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

12.6 The Discrete Case (cont’)

first derivatives estimated using first differences in 2x2x2 cube

Page 167: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

Page 168: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

12.6 The Discrete Case (cont’) consistent estimates of three first partial deriv

atives:

Page 169: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

12.6 The Discrete Case (cont’)

four successive synthetic images of rotating sphere

Page 170: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

Page 171: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

12.6 The Discrete Case (cont’)

estimated optical flow after 1, 4, 16, and 64 iterations

Page 172: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

Page 173: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

12.6 The Discrete Case (cont’)

(a) estimated optical flow after several more iterations

(b) computed motion field

Page 174: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

Page 175: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

12.7 Discontinuities in Optical Flow

discontinuities in optical flow: on silhouettes where occlusion occurs

Page 176: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

Joke

Page 177: Computer and Robot Vision II

DC & CV Lab.DC & CV Lab.CSIE NTU

Project due May 2

implementing Horn & Schunck optical flow estimation as above

synthetically translate lena.im one pixel to the right and downward

Try 10 1, 0.1, of