18
Computational Fluid Dynamics Applied to the Analysis of 10-mm Hydrocyclone Solids Separation Performance S. A. Grady, M. M. Abdullah, and G. D. Wesson Department of Chemical Engineering Florida A&M University/Florida State University College of Engineering

Computational Fluid Dynamics Applied to the Analysis of 10-mm Hydrocyclone Solids Separation Performance S. A. Grady, M. M. Abdullah, and G. D. Wesson

Embed Size (px)

Citation preview

Page 1: Computational Fluid Dynamics Applied to the Analysis of 10-mm Hydrocyclone Solids Separation Performance S. A. Grady, M. M. Abdullah, and G. D. Wesson

Computational Fluid Dynamics Applied to the Analysis of 10-mm Hydrocyclone Solids Separation

Performance

S. A. Grady, M. M. Abdullah, and G. D. Wesson

Department of Chemical Engineering Florida A&M University/Florida State University

College of Engineering

Page 2: Computational Fluid Dynamics Applied to the Analysis of 10-mm Hydrocyclone Solids Separation Performance S. A. Grady, M. M. Abdullah, and G. D. Wesson

Presentation Outline

Research Objectives Experimental Procedures Solution Details Results Conclusions Continued Work Acknowledgments

Page 3: Computational Fluid Dynamics Applied to the Analysis of 10-mm Hydrocyclone Solids Separation Performance S. A. Grady, M. M. Abdullah, and G. D. Wesson

Research Objectives Develop Flow Field Predictions for Reynolds

Stress Turbulence Model Comparison of Flow Field Properties for

Different Geometries

Validate Flow Field Prediction Solid Particle Motion

Apply Drop Break-up Model with Separation for Liquid/Liquid Systems

Page 4: Computational Fluid Dynamics Applied to the Analysis of 10-mm Hydrocyclone Solids Separation Performance S. A. Grady, M. M. Abdullah, and G. D. Wesson

Experimental Procedure

10-mm Geometry Develop Grid Establish Boundary Conditions Perform RSM Simulation Using

FLUENT Identify Appropriate Flow Structures

Page 5: Computational Fluid Dynamics Applied to the Analysis of 10-mm Hydrocyclone Solids Separation Performance S. A. Grady, M. M. Abdullah, and G. D. Wesson

3-D Cyclone Grid

Tangential Inlet Configuration

Volute Inlet Configuration

Page 6: Computational Fluid Dynamics Applied to the Analysis of 10-mm Hydrocyclone Solids Separation Performance S. A. Grady, M. M. Abdullah, and G. D. Wesson

Grid Information

Tangential Inlet Hexahedral and

Tetrahedral Cells 532,863 cells 1,095,577 faces

Volute Inlet Hexahedral Cell Type

175,506 cells 544,937faces

Page 7: Computational Fluid Dynamics Applied to the Analysis of 10-mm Hydrocyclone Solids Separation Performance S. A. Grady, M. M. Abdullah, and G. D. Wesson

Boundary Conditions

Flow Split Inlet Volumetric Flow Rate

Plug flow profile normal to inlet face

Page 8: Computational Fluid Dynamics Applied to the Analysis of 10-mm Hydrocyclone Solids Separation Performance S. A. Grady, M. M. Abdullah, and G. D. Wesson

Results

Velocity profilesVelocity vectorsCore properties

Page 9: Computational Fluid Dynamics Applied to the Analysis of 10-mm Hydrocyclone Solids Separation Performance S. A. Grady, M. M. Abdullah, and G. D. Wesson

Axial Velocity ProfilesAxial Velocity (L/D=4)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-0.005 -0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004 0.005

Position (m)

Ve

loc

ity

(m

/s)

volute tangential

Axial Velocity (L/D=3)

-1.5

-1

-0.5

0

0.5

1

1.5

-0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004

Position (m)V

elo

cit

y (

m/s

)volute tangential

Axial Velocity (L/D=2)

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.003 -0.002 -0.001 0 0.001 0.002 0.003

Position (m)

Ve

loc

ity

(m

/s)

volute tangential

Page 10: Computational Fluid Dynamics Applied to the Analysis of 10-mm Hydrocyclone Solids Separation Performance S. A. Grady, M. M. Abdullah, and G. D. Wesson

Tangential Velocity ProfilesTangential Velocity (L/D=4)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

-0.005 -0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004 0.005

Position (m)

Vel

oci

ty (

m/s

)

volute tangential

Tangential Velocity (l/D=3)

-2.5

-2

-1.5

-1

-0.5

0

-0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004

Position (m)

Vel

coit

y (m

/s)

volute tangential

Tangential Velocity (L/D=2)

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

-0.003 -0.002 -0.001 0 0.001 0.002 0.003

Position (m)

Vel

oci

ty (

m/s

)

volute tangential

Page 11: Computational Fluid Dynamics Applied to the Analysis of 10-mm Hydrocyclone Solids Separation Performance S. A. Grady, M. M. Abdullah, and G. D. Wesson

Velocity Vectors

Volute Inlet ConfigurationTangential Inlet Configuration

ZY

X

Velocity Vectors Colored By Axial Velocity (m/s)FLUENT 5.1 (3d, segregated, RSM)

Oct 25, 1999

8.29e+00

6.36e+00

4.43e+00

2.51e+00

5.82e-01

-1.34e+00

-3.27e+00

-5.20e+00

-7.12e+00

Z

Y X

Velocity Vectors Colored By Axial Velocity (m/s)FLUENT 5.1 (3d, segregated, RSM)

Oct 25, 1999

9.20e+00

7.14e+00

5.09e+00

3.03e+00

9.76e-01

-1.08e+00

-3.13e+00

-5.19e+00

-7.24e+00

Page 12: Computational Fluid Dynamics Applied to the Analysis of 10-mm Hydrocyclone Solids Separation Performance S. A. Grady, M. M. Abdullah, and G. D. Wesson

Turbulence Intensity

Z

Y X

Velocity Vectors Colored By Turbulence IntensityFLUENT 5.1 (3d, segregated, RSM)

Oct 25, 1999

2.06e+00

1.86e+00

1.66e+00

1.45e+00

1.25e+00

1.04e+00

8.41e-01

6.37e-01

4.33e-01

2.30e-01

2.58e-02

Z

Y X

Velocity Vectors Colored By Turbulence IntensityFLUENT 5.1 (3d, segregated, RSM)

Oct 25, 1999

2.06e+00

1.86e+00

1.66e+00

1.45e+00

1.25e+00

1.04e+00

8.41e-01

6.37e-01

4.33e-01

2.30e-01

2.58e-02

Page 13: Computational Fluid Dynamics Applied to the Analysis of 10-mm Hydrocyclone Solids Separation Performance S. A. Grady, M. M. Abdullah, and G. D. Wesson

Pressure Distribution

Z

Y X

Velocity Vectors Colored By Total Pressure (pascal)FLUENT 5.1 (3d, segregated, RSM)

Oct 25, 1999

5.54e+04

4.74e+04

3.94e+04

3.15e+04

2.35e+04

1.55e+04

7.47e+03

-5.18e+02

-8.51e+03

-1.65e+04

-2.45e+04

Z

Y X

Velocity Vectors Colored By Total Pressure (pascal)FLUENT 5.1 (3d, segregated, RSM)

Oct 25, 1999

5.54e+04

4.74e+04

3.94e+04

3.15e+04

2.35e+04

1.55e+04

7.47e+03

-5.18e+02

-8.51e+03

-1.65e+04

-2.45e+04

Page 14: Computational Fluid Dynamics Applied to the Analysis of 10-mm Hydrocyclone Solids Separation Performance S. A. Grady, M. M. Abdullah, and G. D. Wesson

Locus of Zero Axial Velocity

Z

Y X

Contours of Axial Velocity (m/s)FLUENT 5.1 (3d, segregated, RSM)

Oct 25, 1999

0.00e+00

0.00e+00

Z

Y X

Contours of Axial Velocity (m/s)FLUENT 5.1 (3d, segregated, RSM)

Oct 25, 1999

0.00e+00

0.00e+00

Page 15: Computational Fluid Dynamics Applied to the Analysis of 10-mm Hydrocyclone Solids Separation Performance S. A. Grady, M. M. Abdullah, and G. D. Wesson

Locus of Zero Tangential Velocity

Z

Y X

Contours of Tangential Velocity (m/s)FLUENT 5.1 (3d, segregated, RSM)

Oct 25, 1999

0.00e+00

0.00e+00

Page 16: Computational Fluid Dynamics Applied to the Analysis of 10-mm Hydrocyclone Solids Separation Performance S. A. Grady, M. M. Abdullah, and G. D. Wesson

Conclusions

Volute Inlet Configuration Provides Greater symmetry about the axis of symmetry Lower turbulence intensity

Reynolds Stress Model Predictions Provide

Page 17: Computational Fluid Dynamics Applied to the Analysis of 10-mm Hydrocyclone Solids Separation Performance S. A. Grady, M. M. Abdullah, and G. D. Wesson

Continued Work

Model Validation Based on Separation Principles Particle migration analysis Turbulence intensity based drop break-up

analysis

Model Validation Based on LDV Experiments

Page 18: Computational Fluid Dynamics Applied to the Analysis of 10-mm Hydrocyclone Solids Separation Performance S. A. Grady, M. M. Abdullah, and G. D. Wesson

Acknowledgements

FAMU/NASA Graduate Fellowship Program

Florida A&M University Foundation