36
Marco Cecchini Laboratoire d’Ingénierie des Fonctions Moléculaires ISIS (UMR7006), Faculté de Chimie Université de Strasbourg Computational Approaches to Protein-Ligand Binding

Computational Approaches to Protein-Ligand Bindinginfochim.u-strasbg.fr › CS3_2016 › Conferences › ChemInfo_2016.CECCHINI.pdfMarco Cecchini Laboratoire d’Ingénierie des Fonctions

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Marco CecchiniLaboratoire d’Ingénierie des Fonctions Moléculaires !

    ISIS (UMR7006), Faculté de Chimie!Université de Strasbourg

    Computational Approaches to Protein-Ligand Binding

  • Lab d’Ingénierie des Fonctions Moléculaires

    Joel Montalvo-Acosta

  • Outline

    • Protein-ligand binding!

    • Computational approaches to ligand-binding affinity!

    • Provide a classification of methods based on stat mech!

    • Results on a host-guest system

  • Protein-Ligand Binding

    Buch, Giorgino & De Fabritiis, PNAS (2011)

  • Ligand Binding Affinity

    P + L ↵ PL

    10

    �510

    �210

    110

    4

    0

    0.2

    0.4

    0.6

    0.8

    1

    A

    B

    Initial concentration

    MolarFraction

    µM < nM < pM

    ligand potency (Kd)

    [L] = Kdwhen

    [PL][PL] + [P ]

    =12

    Kd = 1/Keq =[P ][L][PL]

  • Isothermal Titration Calorimetry

  • Canonical Approach

    Keq � �µ�b � QL, QP , QPL

    exp

    ✓��µ

    �b

    kT

    ◆=

    CPL (C�)

    CP CL= KeqC

    Chemical thermodynamics

    F (N,V, T ) = �kT lnQ

    µ(V, T ) =✓

    @F

    @N

    V,T

    = �kT✓

    @ lnQ@N

    V,T

    Classical Statistical Mechanics

  • Chemical Potentials

    µi,v(V, T ) = �kT ln��

    2�mkTh2

    � 32 V

    N

    �+

    �kT ln��

    �8�2kT

    h2

    � 32 �

    IXIY IZ

    �+

    �kT3n�6�

    j=1

    ln��

    kT

    h�j

    ��+

    �De

    In the limit of RRHO/BO & in vacuum

    µi(V, T ) = µi,v(V, T ) + Wbulk(X0)

    McQuarrie, Statistical Mechanics, New York: Harper & Row, 1976

  • 1. Absolute Chemical Potentials

    P + L ↵ PL

    µ�i (T ) = µ�i,v(T ) + Wbulk(X0)

  • Grand Canonical Approach

    µ�i (T ) = �kT ln✓Qi(p, T )

    V

    exp

    ✓��µ

    �b

    kT

    ◆=

    (QPL/VPL)(QP /VP ) (QL/VL)

    = Keq

    Qi(p, T ) ⇡QN,1QN,0

    @ infinite dilution

    Hill, Cooperativity Theory in Biochemistry, Springer Verlag 1985

    Keq =QN,LP /QN,P

    (QN,L/QN,0)/VL

    & small ligand

  • 2. Ligand Partitioning

    Lfree � Lbound

    Keq =QL(P )

    (QL/VL)

  • Rigorous Approach

    Keq =

    Rsite dL

    RdX exp (��U)R

    bulk dL � (rL � r⇤)R

    dX exp (��U)

    Keq =QL(P )

    (QL/VL)

    µi(V, T ) = µi,v(V, T ) + Wbulk(X0)1. Absolute Chemical Potentials

    2. Ligand Partitioning

  • Double Decoupling

    Jorgensen et al, J Chem Phys (1988) Gilson et al, Biophys J (1997)

    Keq =

    Rsite dL

    RdX exp (��U1)R

    bulk dL � (rL � r⇤)R

    dX exp (��U0)⇥

    Rbulk dL � (rL � r

    ⇤)

    RdX exp (��U0)R

    bulk dL � (rL � r⇤)R

    dX exp (��U1)

    Keq =QL(P )

    (QL/VL)

    Solution

    Gas phase

  • Alchemical RouteKeq = QL(P )(QL/VL)

    Solution

    Gas phase

    �F = �kT ln�e��(U1�U0)

    U0FEP

  • …with Restraints

    Gumbart, Chipot & Roux, J Chem Theory Comput (2013)

    Keq =�

    site dL�

    dX exp (��U1)�site dL

    �dX exp [�� (U1 + uc)]

    ��

    site dL�

    dX exp [�� (U1 + uc)]�site dL

    �dX exp [�� (U1 + uc + uo)]

    ��

    site dL�

    dX exp [�� (U1 + uc + uo)]�site dL

    �dX exp [�� (U1 + uc + uo + up)]

    ��

    site dL�

    dX exp [�� (U1 + uc + uo + up)]�bulk dL � (rL � r�)

    �dX exp [�� (U0 + uc + uo + up)]

    ��

    bulk dL � (rL � r�)

    �dX exp [�� (U0 + uc + uo + up)]�

    bulk dL � (rL � r�)�

    dX exp [�� (U0 + uc + uo)]�

    �bulk dL � (rL � r

    �)�

    dX exp [�� (U0 + uc + uo)]]�bulk dL � (rL � r�)

    �dX exp [�� (U0 + uc)]

    ��

    bulk dL � (rL � r�)

    �dX exp [�� (U0 + uc)]]�

    bulk dL � (rL � r�)�

    dX exp [�� (U1 + uc)]�

    �bulk dL � (rL � r

    �)�

    dX exp [�� (U1 + uc)]]�bulk dL � (rL � r�)

    �dX exp [�� (U1)]

    Uc, Uo, Up!conformational, orientational &

    positional restraints

    2 alchemical transformations

  • Rigorous Methods

  • End-points Approach

  • MM/PBSA

    Kollman et al, Acc Chem Res (2000)

    Solution

    Gas phase

    µi(V, T ) = µi,v(V, T ) + Wbulk(X0)

  • MM/PBSAµi(V, T ) = µi,v(V, T ) + Wbulk(X0)

    MM/PBSA assumptions

    By separating out enthalpy vs entropy contributionsµi(V, T ) = (3n� 3) kT �De,v � TSi(V ) + Wsolv

    Wsolv � GPBSA1.�De,v = hUi �

    X 12kT2.

    µi(V, T ) =32nikT + hUi + hGPBSAi � TSi(V )

    implicit solvent

    Force Field

  • MM/PBSA (HOWTO)

    µi

    (V, T ) = 32nikT + Ebond + Eelec + EvdW + Gpol + Gnp � TSi(V )

    •Run explicit-water MD for P, L & PL!•Extract sampling & compute ensemble

    averages of both the internal energy in a vacuum & the solvation free energy!

    •Evaluate the configurational entropy at standard state (1M) by statistical mechanics formulas & NMA

  • Linear Interaction Energy (LIE)

    Åqvist, Medina & Samuelsson, Protein Eng (1994)

    Solution

    Gas phaseKeq =

    QL(P )(QL/VL)

  • LIEKeq =QL(P )

    (QL/VL)

    �µ�b = �kT log ⇣ + Wsite �Wbulk

    q = qtr

    qrot

    qvib

    qelec

    In the limit of RRHO & rigid ligands:

    Keq =qCM

    qrock

    e��Wsite

    (qtr

    /V ) qrot

    e��Wbulk

    �µ�b =12

    hhUelecl/s isite � hUelecl/s ibulk

    i+ ↵

    hhUvdwl/s isite � hUvdwl/s ibulk

    i+ �

    Wnpi ⇡ ↵DUvdWl/s

    EW pol

    i

    =12

    DUelec

    l/s

    ELIE’s assumptions

    1. 2.

  • LIE (HOWTO)

    • Run two explicit-water MD for L & PL!• Compute ensemble averages of the

    electrostatic & the Van Der Waals interaction energy of the ligand with the surroundings!

    • Assign appropriate β for your ligand(s)!• Determine α,γ by fitting on experiments

    �µ�b = �hhUelecl/s isite � hUelecl/s ibulk

    i+ ↵

    hhUvdwl/s isite � hUvdwl/s ibulk

    i+ �

    Guitiérrez-de-Terán & Åqvist, Computational Drug Discovery and Design (2012)

  • End-points Approach

  • Empirical Approach

    virtual High-Throughput Screening (vHTS)

  • Molecular DockingBUT to be fast…!•Bound State!•Rigid Receptor!•Flexible Ligand!•No/Implicit solvent!•Ligand Fitness by a

    Scoring Function

  • Force-Field Scoring

    �µ�b

    =protX

    i

    ligX

    j

    A

    ij

    r12ij

    � Bijr6ij

    + 332.0qi

    qj

    ✏ (rij

    ) rij

    !DOCK score:

    �µ�b

    =h⇣

    Uelecl/s

    site

    � 0i

    +h⇣

    Uvdwl/s

    site

    � 0i

    =protX

    i

    ligX

    j

    A

    ij

    r12ij

    � Bijr6ij

    +qi

    qj

    ✏ (rij

    ) rij

    !

    FF’s assumptions h. . . i = (. . . )⇣U

    elec

    l/s

    bulk=

    ⇣U

    vdw

    l/s

    bulk= 0

    NO sampling

    NO desolvation

  • Empirical Scoring�µ�b =X

    i

    Wi�µi

    �µ�b = �G0 + �Ghb�

    hbonds

    f (�R,��) +

    �Gio�

    io int.

    f (�R,��) +

    �Glipo�

    lipo cont.

    Alipo +

    �Garo�

    aro int.

    f (�R) + �Grot �Nrot

    Böhm’s score:

    FRESNO’s score:�µ�b = K + ↵ (HB) + � (LIPO) + � (ROT ) + � (BP ) + ✏ (DESOLV )

  • Montalvo-Acosta & Cecchini, Mol Inform (2016)

    Summary

  • Host-Guest SystemCucurbit-[7]-uril (CB7)

    −14.1

    −11.8

    −13.4

    Moghaddam et al, J Am Chem Soc (2011)

  • AUTODOCK

    LIEMM/PBSA

    FEP

    Benchmark

    Keq =�

    site dL�

    dX exp (��U1)�site dL

    �dX exp [�� (U1 + uc)]

    ��

    site dL�

    dX exp [�� (U1 + uc)]�site dL

    �dX exp [�� (U1 + uc + uo)]

    ��

    site dL�

    dX exp [�� (U1 + uc + uo)]�site dL

    �dX exp [�� (U1 + uc + uo + up)]

    ��

    site dL�

    dX exp [�� (U1 + uc + uo + up)]�bulk dL � (rL � r�)

    �dX exp [�� (U0 + uc + uo + up)]

    ��

    bulk dL � (rL � r�)

    �dX exp [�� (U0 + uc + uo + up)]�

    bulk dL � (rL � r�)�

    dX exp [�� (U0 + uc + uo)]�

    �bulk dL � (rL � r

    �)�

    dX exp [�� (U0 + uc + uo)]]�bulk dL � (rL � r�)

    �dX exp [�� (U0 + uc)]

    ��

    bulk dL � (rL � r�)

    �dX exp [�� (U0 + uc)]]�

    bulk dL � (rL � r�)�

    dX exp [�� (U1 + uc)]�

    �bulk dL � (rL � r

    �)�

    dX exp [�� (U1 + uc)]]�bulk dL � (rL � r�)

    �dX exp [�� (U1)]

    �µ�b =12

    ��Uelecl/s �site � �Uelecl/s �bulk

    �+

    ���Uvdwl/s �site � �Uvdwl/s �bulk

    �µ�b = Wvdwprot�

    i

    lig�

    j

    �Aijr12ij

    � Bijr6ij

    �+

    Wele

    prot�

    i

    lig�

    j

    �qiqj

    � (rij) rij

    �+

    Whbond

    prot�

    i

    lig�

    j

    �E (t)

    Cijr12ij

    � Dijr10ij

    �+

    Wsol

    prot�

    i

    lig�

    j

    (SiVj + SjVi) exp

    ��r2ij2�2

    µi(V, T ) =32nikT + hUi + hGPBSAi � TSi(V )

  • Binding Free Energy

    -16

    -14

    -12

    -10

    -8

    -6

    -4

    -16 -14 -12 -10 -8 -6 -4

    Exp

    erim

    enta

    l [kc

    al/m

    ol]

    Calculated [kcal/mol]

    FEPMM/PBSA

    LIEAUTODOCK

  • Accuracy/Efficiency y = 0.22 3p

    x

  • Take Home MessageOur statistical mechanics interpretation of protein-ligand binding:!• provides a useful classification of existing

    methods to the binding constant!• highlights their inherent approximations and

    provides guidelines for future development!• has allowed to quantify their performances

    (accuracy/efficiency) on a model host-guest system

    Montalvo-Acosta & Cecchini, Mol Inform (2016)

  • Acknowledgments

    Joel Montalvo-Acosta!!

    Nicolas Muzet (Sanofi)!Michael Schaefer (Novartis)

  • • Explicit-water MD simulations for three host-guest systems!

    • Initial coordinates for the complexes obtained from the Cambridge Structural Database!

    •Dodecahedron box with a layer of >14Å around the solute !

    •Force-Field parameters for the guests by CGenFF!

    •NPT @ 298K & 1atm!•Production runs of 20 ns with

    GROMACS 5.1 compiled with PLUMED plugin

    5073 atoms Simulation Setup