25
MACCCR Fuel Summit, September 2011 Mitchell D. Smooke and Alessandro Gomez Department of Mechanical Engineering and Materials Science Yale University, New Haven, CT 065208286 Computational and Experimental Study of the Structure of Diffusion Flames of Jet Fuel and its Surrogates at Pressures up to 40 atm

Computational and Experimental Study of the Structure of ...€¦ · OO Z st = 1+ sY FF /Y OO −1 Mixture Fraction (Conserved Scalar) StoichiometricMixture Fraction . MACCCR Fuel

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Computational and Experimental Study of the Structure of ...€¦ · OO Z st = 1+ sY FF /Y OO −1 Mixture Fraction (Conserved Scalar) StoichiometricMixture Fraction . MACCCR Fuel

MACCCR Fuel Summit, September 2011

Mitchell D. Smooke and Alessandro Gomez 

Department of Mechanical Engineering and Materials ScienceYale University, New Haven, CT 06520‐8286

Computational and Experimental Study of the Structure of Diffusion Flames of Jet Fuel and its

Surrogates at Pressures up to 40 atm

Page 2: Computational and Experimental Study of the Structure of ...€¦ · OO Z st = 1+ sY FF /Y OO −1 Mixture Fraction (Conserved Scalar) StoichiometricMixture Fraction . MACCCR Fuel

MACCCR Fuel Summit, September 2011

Laminar Flames with Complex Chemistry

Broad objectives: probing diffusion flames as flow reactors to study – the chemistry of critical jet fuel components and/or surrogate(s)

– soot formation under conditions of incipient sooting

– all of the above at high pressures

and develop data base for validation of chemical   appropriate kinetic mechanisms

Page 3: Computational and Experimental Study of the Structure of ...€¦ · OO Z st = 1+ sY FF /Y OO −1 Mixture Fraction (Conserved Scalar) StoichiometricMixture Fraction . MACCCR Fuel

MACCCR Fuel Summit, September 2011

Approach• One‐dimensional counterflow flame • Use baseline (methane/ethylene) flame as a “controlled” flow 

reactor providing a fixed time‐temperature baseline and constant stoichiometric mixture fraction

• Add O(1000) ppm liquid fuel (JP8, surrogate, surrogate components)

Page 4: Computational and Experimental Study of the Structure of ...€¦ · OO Z st = 1+ sY FF /Y OO −1 Mixture Fraction (Conserved Scalar) StoichiometricMixture Fraction . MACCCR Fuel

MACCCR Fuel Summit, September 2011

Type 1 Flame  Zst < 0.5

fuel

oxidizerflame

stagnationplane

Z =sYF − (YO −YOO )

sYFF + YOO

Zst = 1+ sYFF / YOO( )−1

Mixture Fraction (Conserved Scalar)

Z=0

Z=1

ZST < 0.5

mass fraction

Stoichiometric Mixture Fraction 

Page 5: Computational and Experimental Study of the Structure of ...€¦ · OO Z st = 1+ sY FF /Y OO −1 Mixture Fraction (Conserved Scalar) StoichiometricMixture Fraction . MACCCR Fuel

MACCCR Fuel Summit, September 2011

Z=0

Z=1

ZST > 0.5

mass fraction

fuel

oxidizer

flame

stagnationplane

Type 2 Flame  Zst > 0.5

Z =sYF − (YO −YOO )

sYFF + YOO

Zst = 1+ sYFF / YOO( )−1

Mixture Fraction (Conserved Scalar)

Stoichiometric Mixture Fraction 

Page 6: Computational and Experimental Study of the Structure of ...€¦ · OO Z st = 1+ sY FF /Y OO −1 Mixture Fraction (Conserved Scalar) StoichiometricMixture Fraction . MACCCR Fuel

MACCCR Fuel Summit, September 2011

• Methane based

• Max. Temp= 2150K 

• Strain Rate≈ 160 s‐1

• Stoich. mixture fraction Zf= 0.79

• Fixed temperature profile

• Flame on fuel side of stagnation plane

Non‐sooting Flame Set

GSP

Fuel

Oxidizer

Flame

• Ethylene based

• Max. Temp= 2050K

• Strain Rate≈ 95 s‐1

• Zf= 0.19

• Fixed temperature profile

• Flame on oxidizer side of stagnation plane

Incipient Sooting Flame Set

GSP

Fuel

Oxidizer

Flame

Selection of Flames Spanning a Broad Range of Conditions

Page 7: Computational and Experimental Study of the Structure of ...€¦ · OO Z st = 1+ sY FF /Y OO −1 Mixture Fraction (Conserved Scalar) StoichiometricMixture Fraction . MACCCR Fuel

MACCCR Fuel Summit, September 2011

Experimental ConditionsCH4

Baseline

CH4

+Toluene

CH4

+Iso-Octane

CH4

+ Decane

CH4

+Princeton-3

C2H4

Baseline

C2H4

+Toluene

C2H4

+Iso-Octane

C2H4

+Decane

C2H4

+Princeton-3

Fuel

Sid

e

Molar Composition

N2 0.897 0.899 0.900 0.901 0.906 0.728 0.730 0.731 0.733 0.739CH4 0.103 0.100 0.099 0.098 0.092C2H4 0.272 0.268 0.267 0.266 0.257

C2H6 Impurities < 30ppm < 30ppm < 30ppm < 30ppm < 30ppm 270ppm 270ppm 270ppm 270ppm 270ppm

Toluene 440 ppm 439 ppm 865 ppm 865 ppmIso-Octane 599 ppm 598 ppm 1177 ppm 1176 ppm

n-Decane 774 ppm 773 ppm 1525 ppm 1521 ppm

Mass Flux(g/(cm2·min)

2.8 2.87 2.90 2.93 3.11 1.62 1.65 1.66 1.67 1.73

Temperature (K) 435

Oxi

dize

r sid

e

Molar Composition

N2 0.227 0.227 0.227 0.227 0.227 0.814 0.814 0.814 0.814 0.814O2 0.773 0.773 0.773 0.773 0.773 0.186 0.186 0.186 0.186 0.186

Mass Flux(g/(cm2·min)

3.19 3.29 3.33 3.37 3.61 1.89 1.91 1.91 1.92 1.95

Temperature (K) 380

Strain Rate (s-1) 154 158 160 161 171 94 95 95 95 98

zf 0.79 0.19

Page 8: Computational and Experimental Study of the Structure of ...€¦ · OO Z st = 1+ sY FF /Y OO −1 Mixture Fraction (Conserved Scalar) StoichiometricMixture Fraction . MACCCR Fuel

MACCCR Fuel Summit, September 2011

• Methane based

• Max. Temp= 2150K 

• Strain Rate≈ 160 s‐1

• Stoich. mixture fraction Zf= 0.79

• Fixed temperature profile

• Flame on fuel side of stagnation plane

Non‐sooting Flame Set

GSP

Fuel

Oxidizer

Flame

• Ethylene based

• Max. Temp= 2050K

• Strain Rate≈ 95 s‐1

• Zf= 0.19

• Fixed temperature profile

• Flame on oxidizer side of stagnation plane

Incipient Sooting Flame Set

GSP

Fuel

Oxidizer

Flame

Selection of Flames Spanning a Broad Range of Conditions

Page 9: Computational and Experimental Study of the Structure of ...€¦ · OO Z st = 1+ sY FF /Y OO −1 Mixture Fraction (Conserved Scalar) StoichiometricMixture Fraction . MACCCR Fuel

MACCCR Fuel Summit, September 2011

Black symbols: baseline flame (no dopant)Open symbols: single-component flameFull symbols: flame doped with Princeton-3

a) Decane 865ppmb) Iso-Octane 1180ppmc) Toluene 1525ppmd) Princeton-3: a)+b)+c)

1000 K

Doped Ethylene Flames: General Structure, C1-C2s

C1‐C2s

No dopant synergy

Page 10: Computational and Experimental Study of the Structure of ...€¦ · OO Z st = 1+ sY FF /Y OO −1 Mixture Fraction (Conserved Scalar) StoichiometricMixture Fraction . MACCCR Fuel

MACCCR Fuel Summit, September 2011

Iso-Octane- main source of C3 and C4 speciesDecane- contributes to C3 and C5 species

Toluene- main source of extra BenzeneIso-Octane- also contributes through C3 species

Doped Ethylene Flames: General Structure, C3-C6s

Page 11: Computational and Experimental Study of the Structure of ...€¦ · OO Z st = 1+ sY FF /Y OO −1 Mixture Fraction (Conserved Scalar) StoichiometricMixture Fraction . MACCCR Fuel

MACCCR Fuel Summit, September 2011

C3-C4 species from alkanes cracking contribute to aromatic growthSurrogate mixture generates typical compounds in jet fuel

Doped Ethylene Flames: Aromatic Growth

Page 12: Computational and Experimental Study of the Structure of ...€¦ · OO Z st = 1+ sY FF /Y OO −1 Mixture Fraction (Conserved Scalar) StoichiometricMixture Fraction . MACCCR Fuel

MACCCR Fuel Summit, September 2011

• Methane based

• Max. Temp= 2150K 

• Strain Rate≈ 160 s‐1

• Stoich. mixture fraction Zf= 0.79

• Fixed temperature profile

• Flame on fuel side of stagnation plane

Non‐sooting Flame Set

GSP

Fuel

Oxidizer

Flame

• Ethylene based

• Max. Temp= 2050K

• Strain Rate≈ 95 s‐1

• Zf= 0.19

• Fixed temperature profile

• Flame on oxidizer side of stagnation plane

Incipient Sooting Flame Set

GSP

Fuel

Oxidizer

Flame

Selection of Flames Spanning a Broad Range of Conditions

Page 13: Computational and Experimental Study of the Structure of ...€¦ · OO Z st = 1+ sY FF /Y OO −1 Mixture Fraction (Conserved Scalar) StoichiometricMixture Fraction . MACCCR Fuel

MACCCR Fuel Summit, September 2011

Black symbols: baseline flame (no dopant)Open symbols: single-component flameFull symbols: flame doped with Princeton-3

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10Z, mm

ppm Toluene

Iso‐Octane

Decane

Toluene

Iso‐Octane

Decane

a) Decane 775ppmb) Iso-Octane 600ppmc) Toluene 440ppm

Princeton-3: a)+b)+c)

Doped Methane Flames: General Structure

1000 K

Interaction Effects between Surrogate Components at

“Low” Temperatures

Page 14: Computational and Experimental Study of the Structure of ...€¦ · OO Z st = 1+ sY FF /Y OO −1 Mixture Fraction (Conserved Scalar) StoichiometricMixture Fraction . MACCCR Fuel

MACCCR Fuel Summit, September 2011

Methane Flames: Low Temperature Chemistry and Interactions

Concentration levels low-temperature chemistry is active in decane and iso-octane, but weak in toluene

Profile shifts low-temperature chemistry is delayed for iso-octane but accelerated for decane and toluene through component interactions

Open symbols: single-component dopingFull symbols: surrogate doping

Page 15: Computational and Experimental Study of the Structure of ...€¦ · OO Z st = 1+ sY FF /Y OO −1 Mixture Fraction (Conserved Scalar) StoichiometricMixture Fraction . MACCCR Fuel

MACCCR Fuel Summit, September 2011

Low Temperature Synergistic effects on Aromatic growth

Open symbols: single-component dopingFull symbols: surrogate doping

Page 16: Computational and Experimental Study of the Structure of ...€¦ · OO Z st = 1+ sY FF /Y OO −1 Mixture Fraction (Conserved Scalar) StoichiometricMixture Fraction . MACCCR Fuel

MACCCR Fuel Summit, September 2011

Principal Observations

• Experimental testbed for to account for diffusive-reactive effects and test/validate kinetic mechanism in flames

• Application to Princeton-3 surrogate and its components• Incipiently sooting flame (low-Zf flame ethylene baseline)

– No interaction effects in components decomposition at low temperature

– Synergistic effects for aromatic growth • Nonsooting flame (high-Zf flame methane baseline)

– Interaction effects in component decomposition at low (?)temperatures in surrogate

– Synergistic effects for aromatic growth

Page 17: Computational and Experimental Study of the Structure of ...€¦ · OO Z st = 1+ sY FF /Y OO −1 Mixture Fraction (Conserved Scalar) StoichiometricMixture Fraction . MACCCR Fuel

MACCCR Fuel Summit, September 2011

High‐Pressure CounterflowFlames

Page 18: Computational and Experimental Study of the Structure of ...€¦ · OO Z st = 1+ sY FF /Y OO −1 Mixture Fraction (Conserved Scalar) StoichiometricMixture Fraction . MACCCR Fuel

MACCCR Fuel Summit, September 2011

Critical Scaling

Flow Laminarity

Buoyancy/inertia

Re =Udν

< Recr ≈ 2,300

Counterflow

Coflow

Figura and Gomez, CNF to appear

Burner separation

Strain rateFlame height

Page 19: Computational and Experimental Study of the Structure of ...€¦ · OO Z st = 1+ sY FF /Y OO −1 Mixture Fraction (Conserved Scalar) StoichiometricMixture Fraction . MACCCR Fuel

MACCCR Fuel Summit, September 2011

Critical Scaling (cont’ed)• Spatial resolution challenges:

• Mixing layer thickness decreases with p‐1/2

Where α and a are the thermal diffusivity and the strain rate, respectively.

• Use of He as inert to maintain laminar conditions, avoid buoyancy instabilities and preserve reasonable spatial resolution for flame probing.

δ T

δ T0 ≈

αa

a0

α 0

∝p0⋅ a0

p⋅ a

Page 20: Computational and Experimental Study of the Structure of ...€¦ · OO Z st = 1+ sY FF /Y OO −1 Mixture Fraction (Conserved Scalar) StoichiometricMixture Fraction . MACCCR Fuel

MACCCR Fuel Summit, September 2011

Experimental system

• Pressure chamber can operate at up to 40 atm.• Counterflow combustor, 7 mm inlet diameter, mounted on vertical translational stage, can stabilize blue flat flame at 30 atm.

20 cm

Pressure chamber Counter flow combustor

12 cm

Page 21: Computational and Experimental Study of the Structure of ...€¦ · OO Z st = 1+ sY FF /Y OO −1 Mixture Fraction (Conserved Scalar) StoichiometricMixture Fraction . MACCCR Fuel

MACCCR Fuel Summit, September 2011

7.1mm

(a)

(b)

(c)

a) high shroud flow‐ YFF  = 0.335, Zst = 0.4, a = 40/s,     P = 30 atm; 

b) low shroud flow‐ YFF  = 0.33, Zst = 0.41, a = 30/s,      P = 18 atm; 

c) wrinkled flame with same conditions as in b) but with the (heavier) oxidizer stream being fed from the top and high shroud flow.

•Helium in shrouds suppresses the peripheral soot (that is massively produced at elevated pressures) under still laminar conditions.

•Flat fames are stabilized when the heavier (oxidizer) mixture is injected from the bottom under buoyancy‐stable conditions. 

Using Helium as Inert

Page 22: Computational and Experimental Study of the Structure of ...€¦ · OO Z st = 1+ sY FF /Y OO −1 Mixture Fraction (Conserved Scalar) StoichiometricMixture Fraction . MACCCR Fuel

MACCCR Fuel Summit, September 2011

High Pressure Scaling (Exp)

Rescaled T scans with Thin Filament pyrometry up to 30 atm

δdiff =Dtherm

ap0

p

Characteristic diffusionlength

Reduced temperature

)()(

BCMax

BCred TT

TTT−−

=

Page 23: Computational and Experimental Study of the Structure of ...€¦ · OO Z st = 1+ sY FF /Y OO −1 Mixture Fraction (Conserved Scalar) StoichiometricMixture Fraction . MACCCR Fuel

MACCCR Fuel Summit, September 2011

Domain of Operation

Black : N2‐diluted flames

Ad: adiabatic limit

Rec: critical Reynolds 

SR: spatial resolution

Helium as inert extends the operability at higher pressuresthicker flames delayed turbulent transition 

Page 24: Computational and Experimental Study of the Structure of ...€¦ · OO Z st = 1+ sY FF /Y OO −1 Mixture Fraction (Conserved Scalar) StoichiometricMixture Fraction . MACCCR Fuel

MACCCR Fuel Summit, September 2011

Conclusions• We established scaling laws to stabilize high-pressure steady

laminar counterflow flames with well characterized boundaryconditions

• We validated the scaling by stabilizing steady non-sooting orincipiently sooting flames at pressures up to 30 atm usingHelium as inert in the high-pressure range.

Current Activity

• We have adapted the burner to gas sampling forsubsequent GC-MS analysis.

• We are developing a high spatial resolution“thermophoretic” sampling technique, using fine wiresto probe thin flames at high pressures.

• Funding permitting, we will adapt the rig to doping bysurrogate components.

Page 25: Computational and Experimental Study of the Structure of ...€¦ · OO Z st = 1+ sY FF /Y OO −1 Mixture Fraction (Conserved Scalar) StoichiometricMixture Fraction . MACCCR Fuel

MACCCR Fuel Summit, September 2011

Publications acknowledging AFOSR support

1. Jahangirian, S., McEnally, C. S., and Gomez, A., Combust. Flame 156:1799-1809 (2009). 2. Tosatto, L., Mantia, B. L., Bufferand, H., Duchaine, P., and Gomez, A. Proc. Combust. Inst., 32 (2009) 1319–1326. 3. Bufferand, H., Tosatto, L., Mantia, B. L., Smooke, M. D., and Gomez, A., Combust. Flame 156:339-356 (2009). 4. Figura, L. and Gomez, A., “Laminar Counterflow Steady Diffusion Flames under High Pressure (P ≤ 30 Bar) Conditions,”

to appear in Combust. Flame.5. Tosatto, L., Bennett B.A.V., D., and Smooke, M. D., Comb. Theory and Modelling, 15, (2011).6. Tosatto, L., Lu, T., Bennett, B. A. V., and Smooke, M. D., Comb. and Flame, 158, (2011). 7. Carbone, F. and Gomez A., in preparation8. Carbone, F. and Gomez A., in preparation

Research supported by the Air Force Office of Scientific Research (Grant # FA9550-06-1-0018, Dr. Julian Tishkoff, Program Manager) and partially supported

by NSF (Grant #CBET-0651906, Dr. Arvind Atreya, Program Director).

Postdoc: Francesco CarboneGraduate students: Lorenzo Figura, Luca TosattoVisiting students: Hugo Bufferand, Saeed Jahangirian, Patrick DuchaineCollaborators: Beth Bennett (Yale), Charles Mc Enally (Yale), Eliseo

Ranzi’s group (Milan)

Acknowledgements