45
Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District 2006, Prentice Hall Organic Chemistry, 6 th Edition L. G. Wade, Jr.

Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District 2006, Prentice Hall Organic Chemistry, 6

Embed Size (px)

Citation preview

Page 1: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Compuestos Aromáticos

Jo BlackburnRichland College, Dallas, TX

Dallas County Community College District2006,Prentice Hall

Organic Chemistry, 6th EditionL. G. Wade, Jr.

Page 2: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 2

DESCUBRIMIENTO DE BENCENO

• Michael Faraday lo aisló en el 1825 y determinó su fórmula empírica (CH).

• Eilhard Mitscherlich lo sintetizó en el 1834 y determinó su F.M. C6H6.

• Otros compuestos con baja razón de C/H olían bien, por lo tanto se les llamó aromáticos.

=>

Page 3: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 3

Estructura Kekulé• La propuso Friedrich Kekulé en 1866. Los 3 dobles enlaces se alternan

con los 3 enlaces simples.

• No explica la existencia de un sólo isómero para el 1,2-dichlorobenceno.

CC

CC

C

C

H

H

HH

H

H

=>

Page 4: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 4

ESTRUCTURA KEKULÉ(PROBLEMAS, EXPLICACIONES Y ANTECEDENTES)

Cl

Cl

Cl

Cl

C C 1.397 A1.34A

1.48A

Page 5: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 5

ESTRUCTURA KEKULÉ(COMPORTAMIENTO QUÍMICO

ANORMAL)

+ Br2

Br

Br

+ Br2 NR

+

OH

OH

+ NR

KMnO4

KMnO4

Br2

CCl4

Br

Page 6: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 6

Estructura de ResonanciaLos 6 C tienen hibridación sp2 y tienen un

orbital p no hibridado perpendicular al anillo.

=>

Page 7: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 7

Estabilidad de Benceno

=>

Page 8: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 8

Anulenos

• Se pensó que todos los HC cíclicos conjugados eran aromáticos.

• Ciclobutadieno es tan reactivo que no se puede aislar porque dimeriza rápidamente.

• Cicloctatetraeno reacciona con Br2.

Page 9: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 9

Orbitales Moleculares de Benceno

• Interacción (solapamiento) de 6 orbitales p deben generar 6 orbitales moleculares.

• 3 enlazantes y 3 antienlazantes.

Page 10: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 10

Orbitales Moleculares de Benceno

=>

Page 11: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 11

Diagrana de Energía para Benceno

• Los seis electrones ocupan tres orbitales π enlazantes.

• Todos los orbitales enlazantes están completos formando una estructura extremadamente estable.

=>

Page 12: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 12

OM para Ciclobutadieno

=>

Page 13: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 13

Diagrama de Energía para Ciclobutadieno

• De acuerdo a la Regla de Hund.

• Este diradicalThis diradical would be very reactive.

=>

Page 14: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 14

Regla del Polígono El diagrama de energía de un anuleno tiene la misma

forma que el compuesto cíclico con uno de los vértices al fondo.

=>

Page 15: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 15

Requisitos de Aromaticidad

• Estructura cíclica con enlaces pi conjugados.• Cada átomo en el anillo debe tener un orbital p

no hibridado.• Los orbitales p deben interaccionar alrededor de

todo el anillo (estructura planar).• El compuesto es mucho más estable que su

análogo de cadena abierta. =>

Page 16: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 16

Anti- y No-aromático

• Compuestos Antiaromáticos son sistemas conjugados, cíclicos con solapamiento continuo de orbitales p alrededor del anillo, pero su energía es mayor que su análogo de cadena abierta.

• Compuestos No-aromáticos no tienen solapamiento continuo de orbitales p y pueden ser no planares.

=>

Page 17: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 17

Regla de Hückel

• Si el compuesto tiene solapamiento continuo de orbitales p alrededor del anillo y tiene (4N + 2) electrones, es aromático.

• Si el compuesto tiene solapamiento continuo de orbitales p alrededor del anillo y tiene (4N ) electrones, es antiaromático.

=>

Page 18: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 18

[N]Anulenos

• [4]Anuleno es antiaromático (4N e-’s)• [8]Anuleno debiera ser antiaromático, pero no es

planar, por lo tanto es no-aromático.• [10]Anuleno es aromático excepto para los isómeros

que son no planares.• Los anulenos más grandes 4N no son

antiaromáticos porque tienen la flexibilidad suficiente para ser no planares. =>

Page 19: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 19

MO Derivation of Hückel’s Rule

• Lowest energy MO has 2 electrons.• Each filled shell has 4 electrons.

=>

Page 20: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 20

Cyclopentadienyl Ions• The cation has an empty p orbital, 4 electrons, so antiaromatic.• The anion has a nonbonding pair of electrons in a p orbital, 6

e-’s, aromatic.

=>

Page 21: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 21

Acidity of Cyclopentadiene

pKa of cyclopentadiene is 16, much more acidic than other hydrocarbons.

=>

Page 22: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 22

Tropylium Ion

• The cycloheptatrienyl cation has 6 p electrons and an empty p orbital.

• Aromatic: more stable than open chain ion.

=>

H OH

H+ , H2O

H

+

Page 23: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 23

Dianion of [8]Annulene

• Cyclooctatetraene easily forms a -2 ion.• Ten electrons, continuous overlapping p

orbitals, so it is aromatic.

=>

Page 24: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 24

Pyridine• Heterocyclic aromatic compound.

• Nonbonding pair of electrons in sp2 orbital, so weak base, pKb = 8.8.

=>

Page 25: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 25

PyrroleAlso aromatic, but lone pair of electrons is

delocalized, so much weaker base.

=>

Page 26: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 26

Basic or Nonbasic?

NNPyrimidine has two basicnitrogens.

N N H Imidazole has one basicnitrogen and one nonbasic.

N

N

N

N

H

Purine?=>

Page 27: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 27

Other Heterocyclics

=>

Page 28: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 28

Fused Ring Hydrocarbons• Naphthalene

• Anthracene

• Phenanthrene

=>

Page 29: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 29

Reactivity of Polynuclear Hydrocarbons

As the number of aromatic rings increases, the resonance energy per ring decreases, so larger PAH’s will add Br2.

H Br

H BrH Br

Br

H

(mixture of cis and trans isomers) =>

Page 30: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 30

Larger Polynuclear Aromatic Hydrocarbons

• Formed in combustion (tobacco smoke).• Many are carcinogenic.• Epoxides form, combine with DNA base.

pyrene =>

Page 31: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 31

Allotropes of Carbon• Amorphous: small particles of graphite;

charcoal, soot, coal, carbon black.

• Diamond: a lattice of tetrahedral C’s.

• Graphite: layers of fused aromatic rings.

=>

Page 32: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 32

Diamond

• One giant molecule.• Tetrahedral carbons.• Sigma bonds, 1.54 Å.• Electrical insulator.

=>

Page 33: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 33

Graphite

• Planar layered structure.• Layer of fused benzene

rings, bonds: 1.415 Å.• Only van der Waals

forces between layers.• Conducts electrical

current parallel to layers.

=>

Page 34: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 34

Some New Allotropes

• Fullerenes: 5- and 6-membered rings arranged to form a “soccer ball” structure.

• Nanotubes: half of a C60 sphere fused to a cylinder of fused aromatic rings.

=>

Page 35: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 35

Fused Heterocyclic Compounds

Common in nature, synthesized for drugs.

=>

Page 36: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 36

Common Names of Benzene Derivatives

OH OCH3NH2CH3

phenol toluene aniline anisole

CH

CH2 C

O

CH3C

O

HC

O

OH

styrene acetophenone benzaldehyde benzoic acid=>

Page 37: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 37

Disubstituted BenzenesThe prefixes ortho-, meta-, and para- arecommonly used for the 1,2-, 1,3-, and 1,4-positions, respectively.

=>

Page 38: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 38

3 or More Substituents Use the smallest possible numbers, butthe carbon with a functional group is #1.

NO2

NO2

O2N

1,3,5-trinitrobenzene

NO2

NO2

O2N

OH

2,4,6-trinitrophenol

=>

Page 39: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 39

Common Names forDisubstituted Benzenes

CH3

CH3

CH3

CH3H3C

CH3

CO OH

OH

H3Cm-xylene mesitylene o-toluic acid p-cresol

=>

Page 40: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 40

Phenyl and Benzyl

Br

phenyl bromide

CH2Br

benzyl bromide

Phenyl indicates the benzene ringattachment. The benzyl group hasan additional carbon.

=>

Page 41: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 41

Physical Properties

• Melting points: More symmetrical than corresponding alkane, pack better into crystals, so higher melting points.

• Boiling points: Dependent on dipole moment, so ortho > meta > para, for disubstituted benzenes.

• Density: More dense than nonaromatics, less dense than water.

• Solubility: Generally insoluble in water. =>

Page 42: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 42

IR and NMR Spectroscopy

• C=C stretch absorption at 1600 cm-1.• sp2 C-H stretch just above 3000 cm-1.• 1H NMR at 7-8 for H’s on aromatic

ring.• 13C NMR at 120-150, similar to alkene

carbons.

=>

Page 43: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 43

Mass Spectrometry

=>

Page 44: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 44

UV Spectroscopy

=>

Page 45: Compuestos Aromáticos Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry, 6

Chapter 16 45

End of Chapter 16