12
Compressible flow From Wikipedia, the free encyclopedia Compressible flow (gas dynamics) is the branch of fluid mechanics that deals with flows having significant changes in fluid density. Gases, but not liquids, display such behavior. [1] To distinguish between compressible and incompressible flow in gases, the Mach number (the ratio of the speed of the flow to the speed of sound) must be greater than about 0.3 (since the density change is greater than 5%) before significant compressibility occurs. The study of compressible flow is relevant to highspeed aircraft, jet engines, gas pipelines, commercial applications such as abrasive blasting, and many other fields. Contents 1 History 2 Introductory Concepts 3 Mach Number and Sonic Flows 4 OneDimensional Flow 4.1 ConvergingDiverging Laval Nozzles 4.2 Maximum Achievable Velocity of a Gas 4.3 Isentropic Flow Mach Number Relationships 4.4 Achieving Supersonic Flow 4.5 NonIsentropic 1D Channel Flow of a Gas Normal Shock Waves 5 TwoDimensional Flow 5.1 Oblique Shock Waves 5.1.1 Shock Polar Diagram 5.1.2 Oblique Shock Reflection 5.1.2.1 Solid Boundary 5.1.2.2 Irregular Reflection 5.2 PrandtlMeyer Fans 5.2.1 PrandtlMeyer Expansion Fans 5.2.2 PrandtlMeyer Compression Fans 6 Applications 6.1 Supersonic Wind Tunnels 6.2 Supersonic Aircraft Inlets 6.3 Natural Gas Pipeline 7 See also 8 References 9 External links History

Compressible Flow - Wikipedia, The Free Encyclopedia

Embed Size (px)

DESCRIPTION

free

Citation preview

  • 4/24/2015 CompressibleflowWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Compressible_flow 1/12

    CompressibleflowFromWikipedia,thefreeencyclopedia

    Compressibleflow(gasdynamics)isthebranchoffluidmechanicsthatdealswithflowshavingsignificantchangesinfluiddensity.Gases,butnotliquids,displaysuchbehavior.[1]Todistinguishbetweencompressibleandincompressibleflowingases,theMachnumber(theratioofthespeedoftheflowtothespeedofsound)mustbegreaterthanabout0.3(sincethedensitychangeisgreaterthan5%)beforesignificantcompressibilityoccurs.Thestudyofcompressibleflowisrelevanttohighspeedaircraft,jetengines,gaspipelines,commercialapplicationssuchasabrasiveblasting,andmanyotherfields.

    Contents

    1History2IntroductoryConcepts3MachNumberandSonicFlows4OneDimensionalFlow

    4.1ConvergingDivergingLavalNozzles4.2MaximumAchievableVelocityofaGas4.3IsentropicFlowMachNumberRelationships4.4AchievingSupersonicFlow4.5NonIsentropic1DChannelFlowofaGasNormalShockWaves

    5TwoDimensionalFlow5.1ObliqueShockWaves

    5.1.1ShockPolarDiagram5.1.2ObliqueShockReflection

    5.1.2.1SolidBoundary5.1.2.2IrregularReflection

    5.2PrandtlMeyerFans5.2.1PrandtlMeyerExpansionFans5.2.2PrandtlMeyerCompressionFans

    6Applications6.1SupersonicWindTunnels6.2SupersonicAircraftInlets6.3NaturalGasPipeline

    7Seealso8References9Externallinks

    History

  • 4/24/2015 CompressibleflowWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Compressible_flow 2/12

    BreakdownofFluidMechanicsChart

    Thestudyofgasdynamicsisoftenassociatedwiththeflightofmodernhighspeedaircraftandatmosphericreentryofspaceexplorationvehicleshowever,itsoriginsliewithasimplermachine.Atthebeginningofthe19thcentury,investigationintothebehavioroffiredbulletsledtoimprovementintheaccuracyandcapabilitiesofgunsandartillery.[2]Asthecenturyprogressed,inventorssuchasGustafdeLavaladvancedthefield,whileresearcherssuchasErnstMachsoughttounderstandthephysicalphenomenoninvolvedthroughexperimentation.

    Atthebeginningofthe20thcentury,thefocusofgasdynamicsresearchshiftedtowhatwouldeventuallybecometheaerospaceindustry.LudwigPrandtlandhisstudentsproposedimportantconceptsrangingfromtheboundarylayertosupersonicshockwaves,supersonicwindtunnels,andsupersonicnozzledesign.[2]TheodorevonKrmn,astudentofPrandtl,continuedtoimprovetheunderstandingofsupersonicflow.Othernotablefigures(Meyer,Crocco,andShapiro)alsocontributedsignificantlytotheprinciplesconsideredfundamentaltothestudyofmoderngasdynamics.

    Accompanyingtheimprovedconceptualunderstandingofgasdynamicswasapublicmisconceptionthatthereexistedabarriertotheattainablespeedofaircraft,commonlyreferredtoasthesoundbarrier.Intruth,theonlybarrierthatexistedforsupersonicflightwasatechnologicalbarrier.Amongstotherfactors,conventionalairfoilssawadramaticincreaseindragcoefficientwhentheflowapproachedthespeedofsound.Overcomingthelargerdragproveddifficultwithcontemporarydesigns,thustheperceptionofasoundbarrier.However,aircraftdesignprogressedsufficientlytoproducetheBellX1A.PilotedbyChuckYeager,theX1AachievedsupersonicspeedinOctober1947.[3]Thisachievementpavedthewaytothefutureofmodernaircraft,missiles,andspacecraft.

    Historicallytwopathsofresearchhavebeenused,inordertofurthergasdynamicsknowledge.Experimentalgasdynamicscomesintheformofwindtunnelmodelexperimentsandshocktubeswiththeuseofopticaltechniquestodocumentthefindings.Computationalfluiddynamicsappliessupercomputingpowertoanalyzeavarietyofgeometriesandflowcharacteristics.Bothinternalandexternalflowscanbeevaluated.Althoughnotacompletesubstituteforexperimentalconfirmation,computationalgasdynamicsisaninexpensivealternativethatcontinuestoincreaseincapability.

    IntroductoryConcepts

    Thereareseveralassumptionsusedwhendevelopingcalculationsforcompressibleflow.Fluidsarecomposedofmolecules,whichmeansthatdifferentiatingbetweenallmoleculesinasystemmakescalculationsnearlyimpossible.However,thecontinuumassumptionstatesthatthedifferencesbetweenmoleculesisnegligibleandflowcanbeconsideredacontinuoussubstance.Thisassumptionspansoverabroadreachofmostofgasdynamicsonlywhenlookingatrarefiedgasdynamicsdoesthemotionofindependentmoleculesbecomeimportant.

    Thenextassumptionmadeisnoslipconditionwheretheflowvelocityatasolidsurfaceisequaltothevelocityofthesurface.Manytimesthetheflowatthesurfaceorwalliszero.Thenoslipconditionestablishesthattheflowisviscousandasaresultdevelopstheneedforaboundarylayer.

    Mostproblemsinincompressibleflowhavetwounknowns:pressureandvelocity.Theseunknownsweresolvedbyusingtheunderlyingprinciplesfromthecontinuityandlinearmomentumconservationequations.Incompressibleflowpressureandvelocityremainunknownbutdensityandtemperaturealsobecomeafactor.Thishintsattheneedfortwoadditionalequationsinordertosolve:equationofstateforgasandtheconservationofenergyequation.

    Thesetypesoffluiddynamicsquestionshavetwotypesofreferencesframes,thelagrangianandeulerian.Thelagrangianapproachfollowsaparticularparticleoragroupofparticlesoffixedidentity.Theeulerianreferenceframeisdifferentinthatitdoesnotmovewiththeparticles,ratheritisafixedframeorcontrolvolumethatfluidcanflowthrough.Sincecompressibleflowhasawiderangeoffieldsandpotentialproblemsbothframesareneededformoreindepthproblemanalysis.

  • 4/24/2015 CompressibleflowWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Compressible_flow 3/12

    MachNumberandSonicFlows

    Machnumber(M)isdefinedastheratioofthespeedofanobjecttothespeedofsound.Mcanrangefrom0to,butthisbroadrangeisbrokenupintoseveralflowregimes.Theseregimesaresubsonic,transonic,supersonic,hypersonic,andhypervelocityflow.Forinstance,inairatroomtemperature,thespeedofsoundisabout340m/s(760mph).ThefigurebelowillustratesthespectrumofMachnumberflowregimes.

    MachNumberFlowRegimes

    Asanobjectacceleratesfromsubsonictowardsupersonicspeed,certainregimesofwavephenomenaoccur.Toillustratethesechanges,thefigurebelowshowsastationarypoint(M=0)thatemitssymmetricsoundwaves.Onecanthinkofthispointasaboomboxfloatingintheairandprojectingsoundwavesinalldirections.Fromthisstationarypoint,theboomboxbeginstoacceleratetoasubsonicspeed.Astheboomboxaccelerates,thesoundwavesitcreatespileupinthedirectionofmotionandstretchoutintheoppositedirection.Whentheboomboxreachessonicspeed(M=1),itistravellingatthesamespeedasthesoundwavesitcreates.Therefore,aninfinitenumberofthesewavesstackupinthedirectionofmotiontoformashockwave.Uponachievingsupersonicflow,theboomboxleavesitspressurewavesbehind.Whenthisoccurs,thepressurewavescreateanangleknownastheMachwaveangle(orDopplerangle),:

    wherearepresentsthespeedofsoundinairandVrepresentsthevelocityoftheobject.AlthoughnamedforAustrianphysicistErnstMach,theseobliquewaveswereactuallyfirstdiscoveredbyChristianDoppler.

    ExplanationofSonicMotion

  • 4/24/2015 CompressibleflowWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Compressible_flow 4/12

    OneDimensionalFlow

    Onedimensional(1D)flowreferstotheflowofgasthroughaductorchannelinwhichtheflowparametersareassumedtochangesignificantlyalongonlyonespatialdimension,namely,theductlength.Inanalyzingthe1Dchannelflow,anumberofassumptionsaremade:

    Ratioofductlengthtowidth(L/D)isabout5(inordertoneglectfrictionandheattransfer),Steadyvs.UnsteadyFlow,Flowisisentropic(i.e.areversibleadiabaticprocess),Idealgaslaw(i.e.P=RT)

    ConvergingDivergingLavalNozzles

    Asthespeedofaflowacceleratesfromthesubsonictothesupersonicregime,thephysicsofnozzleanddiffuserflowsisaltered.Usingtheconservationlawsoffluiddynamicsandthermodynamics,thefollowingrelationshipforchannelflowisdeveloped(combinedmassandmomentumconservation):

    ,

    wheredPisthedifferentialchangeinpressure,MistheMachnumber,isthedensityofthegas,Visthevelocityoftheflow,Aistheareaoftheduct,anddAisthechangeinareaoftheduct.Thisequationstatesthat,forsubsonicflow,aconvergingduct(dA0)decreasesvelocityoftheflow.Forsupersonicflow,theoppositeoccursduetothechangeofsignof(1M2).Aconvergingduct(dA0)increasesthevelocityoftheflow.AtMach=1,aspecialcaseoccursinwhichtheductareamustbeeitheramaximumorminimum.Forpracticalpurposes,onlyaminimumareacanaccelerateflowstoMach1andbeyond.SeeTableofSubSupersonicDiffusersandNozzles.

    TableshowingthereversalinthephysicsofnozzlesanddiffuserswithchangingMachNumbers

    Therefore,toaccelerateaflowtoMach1,anozzlemustbedesignedtoconvergetoaminimumcrosssectionalareaandthenexpand.ThistypeofnozzletheconvergingdivergingnozzleiscalledadeLavalnozzleafterGustafdeLaval,whoinventedit.Assubsonicflowenterstheconvergingductandtheareadecreases,theflowaccelerates.Uponreachingtheminimumareaoftheduct,alsoknownasthethroatofthenozzle,theflowcanreachMach1.Ifthespeedoftheflowistocontinuetoincrease,itsdensitymustdecreaseinordertoobeyconservationofmass.Toachievethisdecreaseindensity,theflowmustexpand,andtodoso,theflowmustpassthroughadivergingduct.SeeimageofdeLavalNozzle.

  • 4/24/2015 CompressibleflowWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Compressible_flow 5/12

    NozzledeLavaldiagram

    MaximumAchievableVelocityofaGas

    Ultimately,becauseoftheenergyconservationlaw,agasislimitedtoacertainmaximumvelocitybasedonitsenergycontent.Themaximumvelocity,Vmax,thatagascanattainis:

    wherecpisthespecificheatofthegasandTtisthestagnationtemperatureoftheflow.

    IsentropicFlowMachNumberRelationships

    Usingconservationslawsandthermodynamics,anumberofrelationshipsoftheform

    canbeobtained,whereMistheMachnumberandistheratioofspecificheats(1.4forair).SeetableofIsentropicFlowMachNumberRelationships.

    IsentropicFlowRelationshipTable.Equationstorelatethefieldpropertiesinisentropicflow.

    AchievingSupersonicFlow

  • 4/24/2015 CompressibleflowWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Compressible_flow 6/12

    Aspreviouslymentioned,inorderforaflowtobecomesupersonic,itmustpassthroughaductwithaminimumarea,orsonicthroat.Additionally,anoverallpressureratio,Pb/Pt,ofapproximately2isneededtoattainMach1.OnceithasreachedMach1,theflowatthethroatissaidtobechoked.Becausechangesdownstreamcanonlymoveupstreamatsonicspeed,themassflowthroughthenozzlecannotbeaffectedbychangesindownstreamconditionsaftertheflowischoked.

    NonIsentropic1DChannelFlowofaGasNormalShockWaves

    Normalshockwavesareshockwavesthatareperpendiculartothelocalflowdirection.Theseshockwavesoccurwhenpressurewavesbuildupandcoalesceintoanextremelythinshockwavethatconvertsusefulenergyintoheat.Becausealossofenergyoccursoverthethinshockwave,theshockisconsiderednonisentropicandenthalpyincreasesacrosstheshock.Whenanalyzinganormalshockwave,onedimensional,steady,andadiabatic(stagnationtemperaturedoesnotchangeacrosstheshockwave)flowofaperfectgasisassumed.

    TheRankineHugoniotEquationsrelateconditionsbeforeandafteranormalshockwave.

    Normalshockwavescanoccurintworeferenceframes:thestandingnormalshockandthemovingshock.Theflowbeforeanormalshockwavemustbesupersonic,andtheflowafteranormalshockmustbesubsonic.TheRankineHugoniotequationsareusedtosolvefortheflowconditions.

    TwoDimensionalFlow

    Althoughonedimensionalflowcanbedirectlyanalyzed,itismerelyaspecializedcaseoftwodimensionalflow.Itfollowsthatoneofthedefiningphenomenaofonedimensionalflow,anormalshock,islikewiseonlyaspecialcaseofalargerclassofobliqueshocks.Further,thenamenormaliswithrespecttogeometryratherthanfrequencyofoccurrence.Obliqueshocksaremuchmorecommoninapplicationssuchas:aircraftinletdesign,objectsinsupersonicflight,and(atamorefundamentallevel)supersonicnozzlesanddiffusers.Dependingontheflowconditions,anobliqueshockcaneitherbeattachedtotheflowordetachedfromtheflowintheformofabowshock.

  • 4/24/2015 CompressibleflowWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Compressible_flow 7/12

    AttachedshockwaveshownonaX15Modelinasupersonicwindtunnel

    Bowshockexampleforabluntbody

    Diagramofobstruction

    Shockpolardiagram

    ObliqueShockWaves

    Obliqueshockwavesaresimilartonormalshockwaves,buttheyoccuratangleslessthan90withthedirectionofflow.Whenadisturbanceisintroducedtotheflowatanonzeroangle(),theflowmustrespondtothechangingboundaryconditions.Thusanobliqueshockisformed,resultinginachangeinthedirectionoftheflow.

    ShockPolarDiagram

    Basedonthelevelofflowdeflection(),obliqueshocksarecharacterizedaseitherstrongorweak.Strongshocksarecharacterizedbylargerdeflectionandmoreentropylossacrosstheshock,withweakshocksastheopposite.Inordertogaincursoryinsightintothedifferencesintheseshocks,ashockpolardiagramcanbeused.Withthestatictemperatureaftertheshock,T*,knownthespeedofsoundaftertheshockisdefinedas,

    withRasthegasconstantandasthespecificheatratio.TheMachnumbercanbebrokenintoCartesiancoordinates

    withVxandVyasthexandycomponentsofthefluidvelocityV.WiththeMachnumberbeforetheshockgiven,alocusofconditionscanbespecified.Atsomemaxtheflowtransitionsfromastrongtoweakobliqueshock.With=0,anormalshockisproducedatthelimitofthestrongobliqueshockandtheMachwaveisproducedatthelimitoftheweakshockwave.

    ObliqueShockReflection

  • 4/24/2015 CompressibleflowWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Compressible_flow 8/12

    PrandtlMeyerExpansionFanDiagram

    BasicPMCompressiondiagram

    Duetotheinclinationoftheshock,afteranobliqueshockiscreated,itcaninteractwithaboundaryinthreedifferentmanners,twowhichareexplainedbelow.

    SolidBoundary

    Incomingflowisfirstturnedbyanglewithrespecttotheflow.Thisshockwaveisreflectedoffthesolidboundary,andtheflowisturnedbytoagainbeparallelwiththeboundary.Itisimportanttonotethateachprogressiveshockwaveisweakerandthewaveangleisincreased.

    IrregularReflection

    Anirregularreflectionismuchlikethecasedescribedabove,withthecaveatthatislargerthanthemaximumallowableturningangle.Thusadetachedshockisformedandamorecomplicatedreflectionoccurs.

    PrandtlMeyerFans

    PrandtlMeyerfanscanbeexpressedasbothcompressionandexpansionfans.PrandtlMeyerfansalsocrossaboundarylayer(i.e.flowingandsolid)whichreactsindifferentchangesaswell.Whenashockwavehitsasolidsurfacetheresultingfanreturnsasonefromtheoppositefamilywhilewhenonehitsafreeboundarythefanreturnsasafanofoppositetype.

    PrandtlMeyerExpansionFans

    Tothispoint,theonlyflowphenomenathathavebeendiscussedareshockwaves,whichslowtheflowandincreaseitsentropy.ItispossibletoacceleratesupersonicflowinwhathasbeentermedaPrandtlMeyerexpansionfan,afterLudwigPrandtlandTheodoreMeyer.Themechanismfortheexpansionisshowninthefigurebelow.

    Asopposedtotheflowencounteringaninclinedobstructionandforminganobliqueshock,theflowexpandsaroundaconvexcornerandformsanexpansionfanthroughaseriesofisentropicMachwaves.TheexpansionfaniscomposedofMachwavesthatspanfromtheinitialMachangletothefinalMachangle.Flowcanexpandaroundeitherasharporroundedcornerequally,astheincreaseinMachnumberisproportionaltoonlytheconvexangleofthepassage().TheexpansioncornerthatproducesthePrandtlMeyerfancanbesharp(asillustratedinthefigure)orrounded.Ifthetotalturningangleisthesame,thenthePMflowsolutionisalsothesame.

    ThePrandtlMeyerexpansioncanbeseenasthephysicalexplanationoftheoperationoftheLavalnozzle.ThecontourofthenozzlecreatesasmoothandcontinuousseriesofPrandtlMeyerexpansionwaves.

    PrandtlMeyerCompressionFans

    APrandtlMeyercompressionistheoppositephenomenontoaPrandtlMeyerexpansion.Iftheflowisgraduallyturnedthroughanangleof,acompressionfancanbeformed.ThisfanisaseriesofMachwavesthateventuallycoalesceintoanobliqueshock.Becausetheflowisdefinedbyanisentropicregion(flowthattravelsthroughthefan)andananisentropicregion(flowthattravelsthroughtheobliqueshock),asliplineresultsbetweenthetwoflowregions.

    Applications

  • 4/24/2015 CompressibleflowWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Compressible_flow 9/12

    SupersonicWindTunnels

    Supersonicwindtunnelsareusedfortestingandresearchinsupersonicflows,approximatelyovertheMachnumberrangeof1.2to5.Theoperatingprinciplebehindthewindtunnelisthatalargepressuredifferenceismaintainedupstreamtodownstream,drivingtheflow.

    SupersonicWindTunnelClassificationList

    Windtunnelscanbedividedintotwocategories:continuousoperatingandintermittentoperatingwindtunnels.Continuousoperatingsupersonicwindtunnelsrequireanindependentelectricalpowersourcethatdrasticallyincreaseswiththesizeofthetestsection.Intermittentsupersonicwindtunnelsarelessexpensiveinthattheystoreelectricalenergyoveranextendedperiodoftime,thendischargetheenergyoveraseriesofbrieftests.Thedifferencebetweenthesetwoisanalogoustothecomparisonbetweenabatteryandacapacitor.

    Blowdownsupersonicwindtunnelschematic

    Langleyindraftsupersonicwindtunnelvacuumsphere

    BlowdowntypesupersonicwindtunnelsofferhighReynoldsnumber,asmallstoragetank,andreadilyavailabledryair.However,theycauseahighpressurehazard,resultindifficultyholdingaconstantstagnationpressure,andarenoisyduringoperation.

    Indraftsupersonicwindtunnelsarenotassociatedwithapressurehazard,allowaconstantstagnationpressure,andarerelativelyquiet.Unfortunately,theyhavealimitedrangefortheReynoldsnumberoftheflowandrequirealargevacuumtank.Thereisnodisputethatknowledgeisgainedthroughresearchandtestinginsupersonicwindtunnelshowever,thefacilitiesoftenrequirevastamountsofpowertomaintainthelargepressureratiosneededfortestingconditions.Forexample,ArnoldEngineeringDevelopmentComplexhasthelargestsupersonicwindtunnelintheworldandrequiresthepowerrequiredtolightasmallcityforoperation.Forthisreason,largewindtunnelsarebecominglesscommonatuniversities.

    SupersonicAircraftInlets

  • 4/24/2015 CompressibleflowWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Compressible_flow 10/12

    McDonnellDouglasF15C ConcordeonBristol LockheedSR71Blackbird

    Constructingnaturalgaslineinwinter,Finland

    Perhapsthemostcommonapplicationforobliqueshocksisinhighspeedaircraftinlets.Thepurposeoftheinletistoslowincomingsupersonicflowtothesubsonicregimebeforeitenterstheturbojetengine,withthecaveatofminimizinglossesacrosstheshock.Knowledgeofnormalandobliqueshockssuggeststhatthisbeaccomplishedwithaseriesofweakeningobliqueshocksfollowedbyaveryweaknormalshock,usuallylessthanM=1.4.Thismaysoundrelativelystraightforward,butthereisoneratherlargeissuetobedealtwithwhendesigningasupersonicaircraftinlet:acceleration.Betweentakingoff,maneuvering,andcruising,anaircrafttravelsatarangeofMachnumbers.Inordertoensureefficientflight,theaircraftintakemustbecapableofvariablegeometry.Ifitisnot,theshockwaveswillnotreflectproperlythroughtheinletandnegativelyaffectperformance.

    AlthoughvariablegeometryisauniversallyrecognizedapproachtoimproveaircraftefficiencyandperformanceoverarangeofMachnumbers,thereisnoonemethodtoachievevariablegeometry.TheF15Eagleemployswedgeinletswithadjustableflapstocontroltheflow.Forsubsonicflow,theflapsarecompletelyclosedandforsupersonicflow,theflapsareopen.TheConcordeemployedanexternalcompressioninlet,usingaseriesofobliqueshocksfollowedbyanormalshocktoslowtheflowsufficientlyfortheturbojetengine.Perhapsthemostrecognizablesupersonicaircraft,theSR71,usedahydraulicallyactuatedconetoreducethespeedofthesupersonicflowthroughtheaircraftinlet.

    NaturalGasPipeline

    Naturalgaspipelinesareusedtotransportnaturalgasfromextractionsitestorefinementorchemicalprocessingfacilities.IntheUnitedStatestherearemorethan210naturalgaspipelinesystemswithmorethan305,000milesofintrastatetransmissionpipelines.[4]Twocompressibleflowphenomenoncharacterizetheflowthroughthesepipelines:friction(Fannoflow)and(Rayleighflow)andheattransfer.Naturalgaspipelinesareburiedinthegroundataconstanttemperatureof15C.However,thefrictiongeneratedbytheflowoffsetstheheatlosstotheEarth,thusresultinginanisothermalflow.

  • 4/24/2015 CompressibleflowWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Compressible_flow 11/12

    FrictionfactorasafunctionofMachnumberinFannoFlow

    TherelationshipbetweenfLmax/DandMachnumberforFannoflowsuggeststhatonlysubsonicflowcanbeusedinthelongpipesusedtotransportnaturalgas(eventhesepipesmustbebrokenintoshortersegmentswithcompressorstationsatthediscontinuitiesinthepipeline).Additionallyusingconservation,anequationcanbederivedtodescribetheflow.

    ThisequationdescribesflowthatchokesatM*=0.87fornaturalgas=1.32howeverchokingrequiresaninfiniteheatflux.Therefore,acombinationofintuitionandmathematicsexplainswhyitismosteconomicallyfeasiblethatsubsonicnaturalgasispumpedthroughlongsectionsofpipetoreachitsintendeddestination.

    Seealso

    ConservationlawsEquationofstateThermodynamicsespeciallyCommonlyConsideredThermodynamicProcessesandLawsofThermodynamicsEnthalpyEntropyLagrangianandEulerianspecificationoftheflowfieldHeatcapacityratioChokedflowHypersonicflowTransonicflowIsothermalflowPrandtlMeyerfunctionIsentropicnozzleflow

    References

  • 4/24/2015 CompressibleflowWikipedia,thefreeencyclopedia

    http://en.wikipedia.org/wiki/Compressible_flow 12/12

    1. Butseecompressibilitywhichlistscompressibilitiesforwaterandsomeotherliquids2. [1](http://www.ibiblio.org/potto/text.pdf)3. [2](http://history.nasa.gov/SP4219/Chapter3.html)4. http://www.eia.gov/pub/oil_gas/natural_gas/analysis_publications/ngpipeline/index.html

    Externallinks

    NASABeginner'sGuidetoCompressibleAerodynamics(http://www.grc.nasa.gov/WWW/K12/airplane/bgc.html)VirginiaTechCompressibleFlowCalculators(https://engineering.purdue.edu/~wassgren/applet/java/comp_calculator/Index.html)[3](http://www.dept.aoe.vt.edu/~devenpor/aoe3114/calc.html)

    Retrievedfrom"http://en.wikipedia.org/w/index.php?title=Compressible_flow&oldid=658068536"

    Categories: Fluidmechanics Aerodynamics

    Thispagewaslastmodifiedon22April2015,at02:44.TextisavailableundertheCreativeCommonsAttributionShareAlikeLicenseadditionaltermsmayapply.Byusingthissite,youagreetotheTermsofUseandPrivacyPolicy.WikipediaisaregisteredtrademarkoftheWikimediaFoundation,Inc.,anonprofitorganization.